Infinite Groups

Cornelia Druțu

University of Oxford

Part C course MT 2023, Oxford

Cornelia Druțu (University of Oxford)

Infinite Groups

Part C course MT 2023, Oxford

 $\frac{1}{18}$

Comparison between solvable and nilpotent: growth

Final topic of this course: distinguishing f.g nilpotent groups in the larger class of f.g. solvable groups *via* their growth.

This is the celebrated Milnor-Wolf Theorem.

Byproducts of the proof: new features that allow to distinguish between solvable and polycyclic, polycyclic and nilpotent.

Let $G = \langle S \rangle$, where S finite, $S^{-1} = S$, $1 \notin S$. Let dist_S be the word metric associated to S. The growth function of G with respect to S is

 $\mathfrak{G}_{G,S}(R) := \operatorname{card} \overline{B}(1, R).$

When there is no risk of confusion, we write simply $\mathfrak{G}_{\mathcal{S}}(R)$. Question: How much does $\mathfrak{G}_{\mathcal{G},\mathcal{S}}$ depend on \mathcal{S} ?

2 /

Growth functions

Definition

Given $f, g: X \to \mathbb{R}$ with $X \subset \mathbb{R}$, we define an asymptotic inequality $f \leq g \Leftrightarrow \exists a, b > 0, c \geq 0$ and $x_0 \in \mathbb{R}$ such that $\forall x \in X, x \geq x_0$, $bx + c \in X$ and $f(x) \leq ag(bx + c)$.

 $f \asymp g \Leftrightarrow f \preceq g$ and $g \preceq f$; we say that f and g are asymptotically equal.

Lemma

Assume that $(G, \operatorname{dist}_S)$ and $(H, \operatorname{dist}_X)$ are bi-Lipschitz equivalent, i.e. $\exists L > 0$ and a bijection $f : G \to H$ such that

$$\frac{1}{L} \operatorname{dist}_{\mathcal{S}}(g,g') \leqslant \operatorname{dist}_{X}(f(g),f(g')) \leqslant L \operatorname{dist}_{\mathcal{S}}(g,g'), \forall g,g' \in G.$$
(1)

Then $\mathfrak{G}_{G,S} \simeq \mathfrak{G}_{H,X}$. In particular true when $(H, \operatorname{dist}_X) = (G, \operatorname{dist}_{S'}), \ G = \langle S' \rangle$.

Growth functions

Corollary

If S, S' are two finite generating sets of G then $\mathfrak{G}_S \simeq \mathfrak{G}_{S'}$. Thus, one can speak of growth function \mathfrak{G}_G of a group G, well defined up to \simeq .

Examples

- If $G = \mathbb{Z}^k$ then $\mathfrak{G}_S \simeq x^k$ for every finite generating set $S = S^{-1}$.
- If G = F_k, the free group of finite rank k ≥ 2, and X is the set of k letters/symbols then

$$\mathfrak{G}_{X\sqcup X^{-1}}(n) = 1 + (q^n-1)rac{q+1}{q-1}, \quad q = 2k-1.$$

Growth functions: properties

Proposition

- If G is infinite, $\mathfrak{G}_G|_{\mathbb{N}}$ is strictly increasing.
- **2** If $H \leq G$ then $\mathfrak{G}_H \preceq \mathfrak{G}_G$.
- If $H \leq G$ finite index then $\mathfrak{G}_H \asymp \mathfrak{G}_G$.
- If $N \lhd G$ then $\mathfrak{G}_{G/N} \preceq \mathfrak{G}_G$.
- If $N \lhd G$, N finite, then $\mathfrak{G}_{G/N} \simeq \mathfrak{G}_G$.
- For each finitely generated group G, $\mathfrak{G}_G(r) \preceq 2^r$.
- The growth function is sub-multiplicative:

$$\mathfrak{G}_{G,S}(r+t) \leq \mathfrak{G}_{G,S}(r)\mathfrak{G}_{G,S}(t)$$
.

 $\mathfrak{G}_{G,S}$ sub-multiplicative $\Rightarrow \ln \mathfrak{G}_{G,S}(n)$ sub-additive.

By Fekete's Lemma, there exists a (finite) limit

$$\lim_{n\to\infty}\frac{\ln\mathfrak{G}_{G,S}(n)}{n}.$$

Hence, we also have a finite limit

$$\gamma_{G,S} = \lim_{n \to \infty} \mathfrak{G}_{G,S}(n)^{\frac{1}{n}},$$

called growth constant. The property (1) implies that $\mathfrak{G}_{G,S}(n) \ge n$; whence, $\gamma_{G,S} \ge 1$.

Definition

If $\gamma_{G,S} > 1$ then G is said to be of exponential growth. If $\gamma_{G,S} = 1$ then G is said to be of sub-exponential growth.

Note that if there exists a finite generating set S such that $\gamma_{G,S} > 1$ then $\gamma_{G,S'} > 1$ for every other finite generating set S'. Likewise for the equality to 1. Part C course MT 2023, Oxford

Cornelia Drutu (University of Oxford)

Two examples of order of growth

Example

For every $n \ge 2$, the group $SL(n, \mathbb{Z})$ has exponential growth.

Definition

Let G be a finitely generated nilpotent group of class k. Let m_i denote the free rank of the abelian group $C^iG/C^{i+1}G$. The homogeneous dimension of G is

$$d(G) = \sum_{i=1}^{k} im_i.$$

Theorem (Bass–Guivarc'h Theorem)

The growth function of G satisfies

$$\mathfrak{B}_G(n) \asymp n^d$$

Cornelia Druțu (University of Oxford)

Infinite Groups