
B8.4 Information Theory

Sheet 4 — MT23

Section A

1. Let X and Y be finite sets, X be a random variable on X , and Y1 and Y2 be random

variables on Y . Conditioned on X, Y1 and Y2 are i.i.d..

(a) Show that I(X;Y1, Y2) = 2I(X;Y1)− I(Y1;Y2).

(b) Consider two DMCs of which (X, Y1) and (X, (Y1, Y2)) are realisations. Prove that

the capacity of the second DMC is at most twice that of the first.

Solution:

(a) We use the chain rule.

I(X;Y1, Y2) = I(X;Y2|Y1) + I(X;Y1)

= I(X, Y1;Y2)− I(Y1;Y2) + I(X;Y1)

= I(Y1;Y2|X) + I(X;Y2)− I(Y1;Y2) + I(X;Y1)

= 2I(X;Y2)− I(Y1;Y2).

where we used I(Y1;Y2|X) = 0 since Y1⊥Y2 conditioned on X, and I(X;Y2) =

I(X;Y1) since pY2|X = pY1|X .

(b) By (a), we have I(X;Y1, Y2) ≤ 2I(X;Y1), so

sup
pX

{I(X;Y1, Y2)} ≤ 2 sup
pX

{I(X;Y1)}.

2. Let X = Y = {0, 1}, and for each time i ∈ {1, · · · , n}, we can use a DMC with transition

matrix

X\Y 0 1

0 1− qi qi

1 qi 1− qi

to transmit a symbol. This is an example of a time-varying discrete memoryless channel.

Let X = (X1, · · · , Xn),Y = (Y1, · · · , Yn) with conditional pmf P(Y = y|X = x) =

Πn
i=1P(Yi = yi|Xi = xi). Calculate maxpXI(X;Y).
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Solution: As I(X;Y) = H(Y)−H(Y|X), we deal with the two terms separately.

H(Y|X = x) =
n∑

i=1

H(Yi|X, Yi−1, · · · , Y1)

=
n∑

i=1

H(Yi|X, )

=
n∑

i=1

H(Yi|Xi, )

=
n∑

i=1

H(qi);

For the first term,

H(Y) ≤
n∑

i=1

H(Yi) ≤
n∑

i=1

log(2) = n,

where the first equality hold iff Yi are independent to each other, which is true when Xi

are independent to each other; and the second equality hold iff Yi is evenly distributed,

which is true when Xi is evenly distributed.

So suppX
I(X;Y) =

∑n
i=1(1−H(qi)), and the capacity is obtained by the i.i.d. Xi with

P(Xi = 0) = P(Xi = 1) = 1/2.
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Section B

3. Consider the binary symmetric channel, i.e. X = Y = {0, 1} and the transition matrix

as below

X\Y 0 1

0 1− q q

1 q 1− q

Let i ∈ {1, · · · , 16} and consider a version of the Hamming [7, 4, 3]2 code, as defined in

lectures. That is, we take our 24 input codewords, enumerate them using binary digits

s = s1s2s3s4 ∈ F4
2, and transmit

sG = s


1 0 0 0 1 0 1

0 1 0 0 1 1 0

0 0 1 0 1 1 1

0 0 0 1 0 1 1

 ∈ F7
2

Examples: c(2) = 0001011 since s1s2s3s3 = 0001, c(5) = 0100110 since s1s2s3s4 = 0100.

(a) Visualise this by drawing three intersecting circles. Put the first four bits into the

regions intersecting at least two of these circles, and the parity bits in the remaining

regions. Arrange the positions such that the sum of the four bits within each circle

is even. Use this to find a good decoder d : Y7 7→ {1, · · · , 16}, which will flip the

minimal number of bits to restore even parity within each circle.

(b) Decode the outputs 1100101, 1000001.

(c) Calculate the error probabilities of this channel code.

(d) Calculate the rate of this channel code.

4. A channel with alphabet X = Y = {0, 1, 2, 3, 4} has emission matrix of the form

P(y|x) =

1/2 if y = x± 1mod 5

0 otherwise.
.

(a) Compute the capacity of this channel in bits

(b) The zero-error capacity of a channel is the number of bits which can be transmitted

with zero probability of error. Find a block code that shows that the zero-error

capacity of this channel is at least (log2 5)/2. [Hint: consider a code consisting of

5 codewords with block-length 2]
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5. (a) Suppose X is a semi-Markov chain, that is, there exists an integer k > 0 such that

P(Xn = xn|Xn−1 = xn−1, ...X1 = x1) = P(Xn = xn|Xn−1 = xn−1, ...Xn−k = xn−k)

for all n > k and all x1, ..., xn ∈ X . Show that the augmented process (Xn, Xn−1, ..., Xn−k)

is a Markov chain, and describe its transition matrix.

(b) Suppose {Xt}t≥1 is iid, and is encoded as a sequence Z1Z2Z3... by applying a

Huffman coding algorithm. Show that the resulting process {Zt}t≥0 is not generally

a Markov chain, but is a Markov chain if all probabilities are powers of two.

(c) Suppose {Xt}t≥1 is a stationary Markov chain, and is encoded as a sequence of

Blocks (Z1...Zk)(Zk+1...Z2k)... using a Block Arithmetic Coding algorithm. Show

that the process {(Ztk+1, ..., Z(t+1)k}t≥1 is a Markov chain.

6. Using the one-step transition model of English characters (as in Problem Sheet 3),

consider an erasure channel where each character could be replaced by ∗ with equal

probability q = 0.1. Use the Viterbi algorithm to estimate the most likely source

messages for the following observations, and comment on your results:

(a) T*E R*IN *S W*T

(b) JAB*ERWOCKY

(c) Q**EN ELIZABETH

(d) *UEEN ELIZABETH

(e) T******
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Section C

7. Let X be a time-invariant Markov chain with 2 states, with transition probabilities

Pij = P(Xn+1 = xj|Xn = xi). Consider a DMC with emission matrix Mij = P(Yn =

yi|Xn = xj). Suppose X is stationary, so P(Xn = xi) = µi = xiµ, with the convention

that X and Y both take values in the basis vectors (with x a row vector, y a column

vector, as in Section 5.3 of the notes).

(a) Give an example of a chain X and a non-invertible function g such that {g(Xt)}t≥0

is a Markov chain.

(b) Give a formula for the joint probability P(Y1 = y1, Y2 = y2, Y3 = y3)

(c) Hence or otherwise, write down a necessary and sufficient algebraic condition on

M and P under which Y is also a Markov chain.

Solution:

(a) A simple example is g(x) ≡ 1.

(b) We first write the probability of (Yi, Xi)i≤3:

P(X1 = x1, Y1 = y1, ...)

= P(X1 = x1)P(Y1 = y1|X1 = x1)P(X2 = x2|X1 = x1)P(Y2 = y2|X2 = x2)

× P(X3 = x3|X2 = x2)P(Y3 = y3|X3 = x3)

= (x1µ)(x1My1)(x1Px⊤
2 )(x2My2)(x2Px⊤

3 )(x3My3)

We can therefore compute

P(Y1 = y1, Y2 = y2, Y3 = y3) =
∑

x1,x2,x3

(x1µ)(x1My1)(x1Px⊤
2 )(x2My2)(x2Px⊤

3 )(x3My3)

(c) In order for Y to be a Markov chain, we require Y3 to be independent of Y1 given

Y2 (this is sufficient, as our problem is time-homogenous). We can calculate this

quantity:

P(Y3 = y3|Y1 = y1, Y2 = y2)

=
P(Y1 = y1, Y2 = y2, Y3 = y3)

P(Y1 = y1, Y2 = y2)

=

∑
x1,x2,x3

(x1µ)(x1My1)(x1Px⊤
2 )(x2My2)(x2Px⊤

3 )(x3My3)∑
x1,x2

(x1µ)(x1My1)(x1Px⊤
2 )(x2My2)

In particular, the right hand side should simplify to a function independent of y1.
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8. Consider a channel with binary input and output alphabets, and emission matrix

M =

[
1 0

1/2 1/2

]
.

Find the capacity of the channel and the maximizing input probability distribution.

Solution: We write the information as a function of p = P(X = 1), that is

H(Y |X) = P(X = 0)× 0 + P(X = 1)× 1 = p

H(Y ) = H(P(Y = 1)) = H(p/2)

I(X;Y ) = H(Y )−H(Y |X) = H(p/2)− p.

Since I(X;Y ) = 0 when p = 0 or p = 1, the maximum mutual information is obtained

for some intermediate value of p. Using calculus, we see that

d

dp
I(X;Y ) =

1

2
log

1− p/2

p/2
− 1

which is zero when p = 2/5. So the capacity of the channel in bits is H(1/5) − 2/5 ≈
0.722− 0.4 = 0.322.
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