B1.1 Logic Lecture 15 Martin Bays Oxford, MT 2023 ## 14. Prenex normal form A formula is in **prenex normal form (PNF)** if it is of the form $$Q_1 x_{i_1} Q_2 x_{i_2} \cdots Q_k x_{i_k} \psi,$$ where each Q_i is a quantifier (i.e. either \forall or \exists), and where ψ is a formula containing no quantifiers. ## 14.1 PNF-Theorem Every $\phi \in \text{Form}(\mathcal{L})$ is logically equivalent to an \mathcal{L} -formula in PNF. *Proof:* Induction on ϕ (working in the language with $\forall, \exists, \neg, \land$, recalling that $\{\neg, \land\}$ is adequate for propositional logic): ullet ϕ atomic: ϕ is already in PNF. • $$\phi = \neg \chi$$ with χ in PNF: say $\phi = \neg Q_1 x_{i_1} Q_2 x_{i_2} \cdots Q_k x_{i_k} \psi$. Then $$\phi \models \exists Q_1^- x_{i_1} \cdots Q_k^- x_{i_k} \neg \psi$$, where $Q^- = \exists$ if $Q = \forall$, and $Q^- = \forall$ if $Q = \exists$. • $\phi = (\chi \wedge \rho)$ with χ, ρ in PNF: Note that $\forall x_i \alpha \models \exists \forall x_j \alpha [x_j/x_i]$ if x_j does not occur in α . Swapping variables in this way, we may assume that the variables quantified over in χ do not occur in ρ , and vice versa. But then, e.g. $$(\forall x_1 \alpha \wedge \exists x_2 \beta) \models \exists \forall x_1 \exists x_2 (\alpha \wedge \beta). \qquad \Box$$