B1.1 Logic Lecture 15

Martin Bays

Oxford, MT 2023

14. Prenex normal form

A formula is in **prenex normal form (PNF)** if it is of the form

$$Q_1 x_{i_1} Q_2 x_{i_2} \cdots Q_k x_{i_k} \psi,$$

where each Q_i is a quantifier (i.e. either \forall or \exists), and where ψ is a formula containing no quantifiers.

14.1 PNF-Theorem

Every $\phi \in \text{Form}(\mathcal{L})$ is logically equivalent to an \mathcal{L} -formula in PNF.

Proof: Induction on ϕ (working in the language with $\forall, \exists, \neg, \land$, recalling that $\{\neg, \land\}$ is adequate for propositional logic):

ullet ϕ atomic: ϕ is already in PNF.

•
$$\phi = \neg \chi$$
 with χ in PNF:
 say $\phi = \neg Q_1 x_{i_1} Q_2 x_{i_2} \cdots Q_k x_{i_k} \psi$.

Then
$$\phi \models \exists Q_1^- x_{i_1} \cdots Q_k^- x_{i_k} \neg \psi$$
, where $Q^- = \exists$ if $Q = \forall$, and $Q^- = \forall$ if $Q = \exists$.

• $\phi = (\chi \wedge \rho)$ with χ, ρ in PNF:

Note that $\forall x_i \alpha \models \exists \forall x_j \alpha [x_j/x_i]$ if x_j does not occur in α .

Swapping variables in this way, we may assume that the variables quantified over in χ do not occur in ρ , and vice versa.

But then, e.g.

$$(\forall x_1 \alpha \wedge \exists x_2 \beta) \models \exists \forall x_1 \exists x_2 (\alpha \wedge \beta). \qquad \Box$$