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15 Applications of the Completeness Theorem

Throughout, L denotes a countable first-order language.

15.1 Elementary equivalence

Definition 15.1.

• An L-theory is a set of L-sentences Σ ⊆ Sent(L).

• Let A be an L-structure. Then the (first-order) theory of A is the
L-theory

Th(A) = ThL(A) := {σ ∈ Sent(L) | A |= σ},

the set of all L-sentences true in A.

• L-structures A and B are elementarily equivalent, written A ≡ B, if
Th(A) = Th(B).

Exercise 15.2. An L-theory Σ ⊆ Sent(L) is maximal consistent if and only if Σ
has a model and A ≡ B for any two models A and B of Σ.

15.2 Axiomatisations

Definition 15.3. An axiomatisation of the theory Th(A) of an L-structure
A is a maximal consistent subset of Th(A); i.e. a set of sentences which hold of
A and which suffice to deduce any sentence which holds of A.

Recall Hilbert’s programme from Lecture 1. Now we have established the
Completeness Theorem, the programme would call for us to find “finitary” (i.e.
computable) axiomatisations of the structures in mathematics.

In general this is impossible: Gödel’s first incompleteness theorem shows that
already the theory of arithmetic Th(⟨N; +, ·⟩) has no computable axiomatisation.
But for some interesting structures it is possible, as we will now begin to see.
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15.3 A criterion for maximal consistency

Definition 15.4. Let A = ⟨A; . . .⟩ and B = ⟨B; . . .⟩ be L-structures. An
isomorphism of A with B is a bijection θ : A → B such that

• θ(cA) = cB for c a constant symbol;

• θ(fA(a1, . . . , ak)) = fB(θ(a1), . . . , θ(ak)) for f a k-ary function symbol
and ai ∈ A;

• (a1, . . . , ak) ∈ PA ⇔ (θ(a1), . . . , θ(ak)) ∈ PB for P a k-ary relation symbol
and ai ∈ A.

We write A ∼= B to mean that there exists such an isomorphism.

Exercise 15.5. A ∼= B implies A ≡ B.
The converse fails (e.g. due to Löwenheim-Skolem).

Theorem 15.6. Suppose Σ ⊆ Sent(L) has a unique countable model up to
isomorphism, i.e. Σ is consistent and if A,B ⊨ Σ are countable then A ∼= B.

Then Σ is maximal consistent.

Proof. Let A,B ⊨ Σ. We conclude by showing A ≡ B.
By Weak Downward Löwenheim-Skolem (Theorem 13.10), there are count-

able A′ ≡ A and B′ ≡ B. Then A′,B′ ⊨ Σ, so A′ ∼= B′, and so A′ ≡ B′ by
Exercise 15.5. Hence A ≡ A′ ≡ B′ ≡ B.

Remark 15.7. The converse fails. We will see an example in the next lecture.

Example 15.8. Let L= := ∅, the language with no non-logical symbols. For
n ≥ 2, set τn := ∃x1 . . . ∃xn

∧
1≤i<j≤n ¬xi

.
= xj . Then the models of

Σ∞ := {τn : n ≥ 2}

are precisely the infinite L=-structures (i.e. the infinite sets). By Theorem 15.6,
Σ∞ is maximal consistent.

15.4 Example: axiomatising Th(⟨Q;<⟩)
Definition 15.9. Let L< := {<} and let σDLO be the following L<-sentence,
whose models are the dense linear orderings without endpoints:

σDLO := ∀x ∀y ∀z (¬x < x

∧ (x < y ∨ x = y ∨ y < x)

∧ ((x < y ∧ y < z) → x < z)

∧ (x < y → ∃w (x < w ∧ w < y))

∧ ∃w w < x

∧ ∃w x < w).

Note that ⟨Q;<⟩ ⊨ σDLO, and also ⟨R;<⟩ ⊨ σDLO.

Theorem 15.10 (Cantor). σDLO has a unique countable model up to isomor-
phism (so any countable model is isomorphic to ⟨Q;<⟩).
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Proof. (“Back-and-forth argument”)
Let M,N ⊨ σDLO be countable. By the non-existence of endpoints, each is

infinite.
A partial isomorphism θ : M 99K N is a partially defined injective map

such that for all a, b ∈ dom(θ),

M ⊨ a < b ⇔ N ⊨ θ(a) < θ(b).

Enumerate the domains of M and N as (mi)i∈N and (ni)i∈N respectively.
We recursively construct a chain of partial isomorphisms θi : M 99K N such
that

dom(θi) is finite, and for all j < i, we have mj ∈ dom θi and nj ∈ im θi. (*)

Let θ0 := ∅.
Given θi satisfying (*), we first extend θi by finding n ∈ N such that setting

θ′i(mi) := n yields a partial isomorphism θ′i : M 99K N with dom θ′i = dom θ ∪
{mi}.

Say dom(θi) = {a1, . . . , as} with M ⊨ ak < al for 1 ≤ k < l ≤ s, and
similarly im(θi) = {b1, . . . , bs} with N ⊨ bk < bl for 1 ≤ k < l ≤ s. There are
four cases:

(i) mi = ak (some k ∈ [1, s]): set n := bk.

(ii) mi < a1: let n ∈ N be such that n < b1 (n exists, since N has no
endpoint).

(iii) mi > as: let n ∈ N be such that n > bs (n exists, since N has no
endpoint).

(iv) aj < mi < aj+1 (some j ∈ [1, s−1]): let n ∈ N be such that ai < n < ai+1

(n exists, since N is dense).

In all cases, θ′i is a partial isomorphism.
Symmetrically, (θ′i)

−1 : N 99K M extends to θ′′i : N 99K M with ni ∈
dom θi

′′;
then θi+1 := (θ′′i )

−1 : M 99K N is a partial isomorphism satisfying (*).

Then θ :=
⋃

i θi : M
∼=−→ N is an isomorphism.

Applying Theorem 15.6, we obtain:

Corollary 15.11. {σDLO} is maximal consistent. Hence {σDLO} axiomatises
Th(⟨Q;<⟩).

Corollary 15.12. Completeness of a linear order is not a first-order property:
there is no L<-theory Σ such that the models of Σ are precisely the complete
linear orders.

Proof. Suppose such a Σ exists. Then ⟨R;<⟩ ⊨ Σ since ⟨R;<⟩ is a complete
linear order. But ⟨R;<⟩ ≡ ⟨Q;<⟩, since both satisfy the maximal complete
theory {σDLO}, so then also ⟨Q;<⟩ ⊨ Σ. But ⟨Q;<⟩ is not a complete linear
order, contradicting the desired property of Σ.
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