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16 An algebraic application (non-examinable)

16.1 ACF

Let Lring := {+,−, ·, 0̄, 1̄}. Let ACF be the Lring-theory whose models are
precisely the algebraically closed fields:

ACF := [Field axioms] ∪{∀z0, . . . , zn

(
¬zn

.
= 0̄→ ∃x

n∑
i=0

zix
i .= 0̄

)
: n ≥ 1}.

Let
ACF0 := ACF ∪ {¬n̄ .

= 0̄ : n ∈ N},

where for n ≥ 1, n̄ := 1̄+ . . .+1̄ (n times). So the models of ACF0 are precisely
the algebraically closed fields of characteristic 0. In particular, 〈C; +,−, ·, 0, 1〉 �
ACF0. We aim to show that ACF0 is maximally consistent, i.e. axiomatises
Th(〈C; +,−, ·, 0, 1〉).

We can prove this analogously to the case of 〈Q;<〉, but working with un-
countable sets.

From now on, we assume the axiom of choice. We will explain this and
the related notion of the cardinality (“size”) |A| of a set A in the Set Theory
course; for now it suffices to know that |A| = |B| if and only if there exists a
bijection A→ B, and cardinalities are linearly ordered.

Fact 16.1. Any characteristic 0 algebraically closed field 〈K; +,−, ·, 0, 1〉 �
ACF0 with the same cardinality as C is isomorphic to 〈C; +,−, ·, 0, 1〉.

Sketch proof. A subset A ⊆ K is algebraically independent if there are no
non-trivial polynomial relations between its elements, i.e. f(a1, . . . , an) 6= 0 for
any f ∈ Z[X1, . . . , Xn] \ {0} and {a1, . . . , an} ⊆ A.

Then just as for linear independence in vector spaces, an algebraically closed
field has a well-defined dimension (“transcendence degree”) which is the cardi-
nality of any maximal algebraically independent subset, this dimension deter-
mines an algebraically closed field of a given characteristic up to isomorphism,
and the dimension of an uncountable ACF is equal to its cardinality.

Fact 16.2. Let L be a possibly uncountable first-order language, i.e. with sets
of constant, function, and relation symbols of arbitrary cardinality. Let |L| be
the cardinality of the language, i.e. that of the alphabet.
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Let Σ ⊆ Sent(L), and suppose any finite subset of Σ has a model. Then Σ
has a model of cardinality (i.e. with domain of cardinality) ≤ |L|.

Sketch proof. Our proof for countable L mostly goes through directly.
The only place we used the countability assumption was in extending a con-

sistent set Σ to a maximal consistent witnessing set. We can use Zorn’s lemma
here in the uncountable case – the union of a chain of consistent witnessing
sets containing Σ is still consistent and witnessing, so there exists a maximal
such with respect to inclusion, which (as in the proof in the countable case) is
maximal consistent witnessing.

Corollary 16.3. ACF0 is maximal consistent, hence axiomatises Th(C).

Proof. Let A � ACF0. Note that A is infinite, since it has characteristic 0.
Let C = {ca : a ∈ C} be a set of constant symbols of cardinality |C|, and let

L′ := Lring ∪ C. Let Σ := ThLring(A) ∪ {¬ca
.
= cb : a, b ∈ C, a 6= b} ⊆ Sent(L′).

Then since A is infinite, any finite subset of Σ has as model A with the finitely
many ca which appear interpreted as distinct elements. So by Fact 16.2, Σ has
a model B of cardinality ≤ |L′| = |C|. Considering the interpretations of the ca,
we actually have |B| = |C|. Let B′ be the Lring structure obtained from B by
ignoring the ca. Then by Fact 16.1, B′ ∼= C. So A ≡ B′ ≡ C.

So we conclude that any two models of ACF0 are elementary equivalent, so
ACF0 is maximal consistent.

Theorem 16.4 (Ax-Grothendieck). Let F : Cn → Cn be a polynomial map,
i.e. F (a1, . . . , an) = (F1(a1, . . . , an), . . . , Fn(a1, . . . , an)), where Fi ∈ C[X].

If F is injective, then F is surjective.

Proof. Fact: The algebraic closure of the finite field Fp is the union of a chain
of finite subfields, Falg

p =
⋃

k Fpk! .

Claim 16.5. Let p be prime. Any injective polynomial map F : (Falg
p )n →

(Falg
p )n is surjective.

Proof. Let k0 be such that the coefficients of F are in Fpk0! .
Let k ≥ k0. Then F (Fpk!

n) ⊆ Fpk!
n, and so by injectivity, finiteness of Fpk!

n,
and the pigeonhole principle, F (Fpk!

n) = Fpk!
n.

Hence F ((Falg
p )n) = (Falg

p )n.

Let n, d ∈ N. Let σn,d be an Lring-sentence expressing that any injective
polynomial map F : Kn → Kn consisting of polynomials of degree ≤ d is
surjective:

σn,d := ∀z1,0, . . . , zn,d (∀x, y ((
∧
i

∑
j

zi,jxi
j .

=
∑
j

zi,jyi
j)→

∧
i

xi
.
= yi)

→ ∀y ∃x
∧
i

∑
j

zi,jxi
j .

= yi).

Suppose C 6� σn,d. Then by maximal consistency of ACF0, ACF0 � ¬σn,d.
Then by compactness, for some m ∈ N,

ACF ∪ {¬ī .= 0̄ : 0 < i < m} � ¬σn,d.

So if p > m is prime, Falg
p � ¬σn,d. But this contradicts the Claim.
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