B1.1 Logic Lecture 16

Martin Bays

Oxford University, MT 23

16 An algebraic application (non-examinable)

16.1 ACF

Let $\mathcal{L}_{ring} := \{+, -, \cdot, \bar{0}, \bar{1}\}$. Let ACF be the \mathcal{L}_{ring} -theory whose models are precisely the algebraically closed fields:

ACF := [Field axioms]
$$\cup \{ \forall z_0, \dots, z_n \ \left(\neg z_n \doteq \bar{0} \to \exists x \ \sum_{i=0}^n z_i x^i \doteq \bar{0} \right) : n \ge 1 \}.$$

Let

$$ACF_0 := ACF \cup \{\neg \bar{n} \doteq \bar{0} : n \in \mathbb{N}\},\$$

where for $n \ge 1$, $\bar{n} := \bar{1} + \ldots + \bar{1}$ (*n* times). So the models of ACF₀ are precisely the algebraically closed fields of characteristic 0. In particular, $\langle \mathbb{C}; +, -, \cdot, 0, 1 \rangle \models$ ACF₀. We aim to show that ACF₀ is maximally consistent, i.e. axiomatises Th($\langle \mathbb{C}; +, -, \cdot, 0, 1 \rangle$).

We can prove this analogously to the case of $\langle \mathbb{Q}; < \rangle$, but working with uncountable sets.

From now on, we assume the axiom of choice. We will explain this and the related notion of the **cardinality** ("size") |A| of a set A in the Set Theory course; for now it suffices to know that |A| = |B| if and only if there exists a bijection $A \to B$, and cardinalities are linearly ordered.

Fact 16.1. Any characteristic 0 algebraically closed field $\langle K; +, -, \cdot, 0, 1 \rangle \models ACF_0$ with the same cardinality as \mathbb{C} is isomorphic to $\langle \mathbb{C}; +, -, \cdot, 0, 1 \rangle$.

Sketch proof. A subset $A \subseteq K$ is algebraically independent if there are no non-trivial polynomial relations between its elements, i.e. $f(a_1, \ldots, a_n) \neq 0$ for any $f \in \mathbb{Z}[X_1, \ldots, X_n] \setminus \{0\}$ and $\{a_1, \ldots, a_n\} \subseteq A$.

Then just as for linear independence in vector spaces, an algebraically closed field has a well-defined dimension ("transcendence degree") which is the cardinality of any maximal algebraically independent subset, this dimension determines an algebraically closed field of a given characteristic up to isomorphism, and the dimension of an uncountable ACF is equal to its cardinality.

Fact 16.2. Let \mathcal{L} be a possibly uncountable first-order language, i.e. with sets of constant, function, and relation symbols of arbitrary cardinality. Let $|\mathcal{L}|$ be the cardinality of the language, i.e. that of the alphabet.

Let $\Sigma \subseteq \text{Sent}(\mathcal{L})$, and suppose any finite subset of Σ has a model. Then Σ has a model of cardinality (i.e. with domain of cardinality) $\leq |\mathcal{L}|$.

Sketch proof. Our proof for countable \mathcal{L} mostly goes through directly.

The only place we used the countability assumption was in extending a consistent set Σ to a maximal consistent witnessing set. We can use Zorn's lemma here in the uncountable case – the union of a chain of consistent witnessing sets containing Σ is still consistent and witnessing, so there exists a maximal such with respect to inclusion, which (as in the proof in the countable case) is maximal consistent witnessing.

Corollary 16.3. ACF₀ is maximal consistent, hence axiomatises $Th(\mathbb{C})$.

Proof. Let $\mathcal{A} \models ACF_0$. Note that \mathcal{A} is infinite, since it has characteristic 0. Let $C = \{c_a : a \in \mathbb{C}\}$ be a set of constant symbols of cardinality $|\mathbb{C}|$, and let $\mathcal{L}' := \mathcal{L}_{\operatorname{ring}} \cup C. \text{ Let } \Sigma := \operatorname{Th}^{\mathcal{L}_{\operatorname{ring}}}(\mathcal{A}) \cup \{ \neg c_a \doteq c_b : a, b \in \mathbb{C}, a \neq b \} \subseteq \operatorname{Sent}(\mathcal{L}').$ Then since \mathcal{A} is infinite, any finite subset of Σ has as model \mathcal{A} with the finitely many c_a which appear interpreted as distinct elements. So by Fact 16.2, Σ has a model \mathcal{B} of cardinality $\leq |\mathcal{L}'| = |\mathbb{C}|$. Considering the interpretations of the c_a , we actually have $|\mathcal{B}| = |\mathbb{C}|$. Let \mathcal{B}' be the \mathcal{L}_{ring} structure obtained from \mathcal{B} by ignoring the c_a . Then by Fact 16.1, $\mathcal{B}' \cong \mathbb{C}$. So $\mathcal{A} \equiv \mathcal{B}' \equiv \mathbb{C}$.

So we conclude that any two models of ACF_0 are elementary equivalent, so ACF_0 is maximal consistent.

Theorem 16.4 (Ax-Grothendieck). Let $F : \mathbb{C}^n \to \mathbb{C}^n$ be a polynomial map, *i.e.* $F(a_1, \ldots, a_n) = (F_1(a_1, \ldots, a_n), \ldots, F_n(a_1, \ldots, a_n)), where F_i \in \mathbb{C}[\overline{X}].$ If F is injective, then F is surjective.

Proof. Fact: The algebraic closure of the finite field \mathbb{F}_p is the union of a chain of finite subfields, $\mathbb{F}_p^{\text{alg}} = \bigcup_k \mathbb{F}_{p^{k!}}$.

Claim 16.5. Let p be prime. Any injective polynomial map $F : (\mathbb{F}_p^{\mathrm{alg}})^n \to$ $(\mathbb{F}_p^{\mathrm{alg}})^n$ is surjective.

Proof. Let k_0 be such that the coefficients of F are in $\mathbb{F}_{p^{k_0!}}$.

Let $k \ge k_0$. Then $F(\mathbb{F}_{p^{k!}}^n) \subseteq \mathbb{F}_{p^{k!}}^n$, and so by injectivity, finiteness of $\mathbb{F}_{p^{k!}}^n$, and the pigeonhole principle, $F(\mathbb{F}_{p^{k!}}^n) = \mathbb{F}_{p^{k!}}^n$.

Hence $F((\mathbb{F}_p^{\mathrm{alg}})^n) = (\mathbb{F}_p^{\mathrm{alg}})^n$.

Let $n, d \in \mathbb{N}$. Let $\sigma_{n,d}$ be an \mathcal{L}_{ring} -sentence expressing that any injective polynomial map $F: K^n \to K^n$ consisting of polynomials of degree $\leq d$ is surjective:

$$\sigma_{n,d} := \forall z_{1,0}, \dots, z_{n,d} \; (\forall \overline{x}, \overline{y} \; ((\bigwedge_i \sum_j z_{i,j} x_i^{j} \doteq \sum_j z_{i,j} y_i^{j}) \to \bigwedge_i x_i \doteq y_i) \\ \to \forall \overline{y} \; \exists \overline{x} \; \bigwedge_i \sum_j z_{i,j} x_i^{j} \doteq y_i).$$

Suppose $\mathbb{C} \not\models \sigma_{n,d}$. Then by maximal consistency of ACF₀, ACF₀ $\models \neg \sigma_{n,d}$. Then by compactness, for some $m \in \mathbb{N}$,

$$ACF \cup \{\neg i \doteq 0 : 0 < i < m\} \vDash \neg \sigma_{n,d}.$$

So if p > m is prime, $\mathbb{F}_p^{\text{alg}} \models \neg \sigma_{n,d}$. But this contradicts the Claim.