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16 An algebraic application (non-examinable)

16.1 ACF

Let Lying := {+,—,-,0,1}. Let ACF be the L,ins-theory whose models are
precisely the algebraically closed fields:

n
ACF := [Field axioms] U{Vz, ...,z (—\zn =0— Iz Z it = O) in > 1}
i=0

Let
ACFg := ACFU{-n=0:n €N},

where forn > 1,7 := 1+...+1 (n times). So the models of ACFy are precisely
the algebraically closed fields of characteristic 0. In particular, (C; +, —,-,0,1) E
ACFy. We aim to show that ACF( is maximally consistent, i.e. axiomatises
Th((C; +,—,-,0,1)).

We can prove this analogously to the case of (Q; <), but working with un-
countable sets.

From now on, we assume the axiom of choice. We will explain this and
the related notion of the cardinality (“size”) |A| of a set A in the Set Theory
course; for now it suffices to know that |A| = |B] if and only if there exists a
bijection A — B, and cardinalities are linearly ordered.

Fact 16.1. Any characteristic 0 algebraically closed field (K;+,—,-,0,1) F
ACF( with the same cardinality as C is isomorphic to (C;+,—,-,0,1).

Sketch proof. A subset A C K is algebraically independent if there are no
non-trivial polynomial relations between its elements, i.e. f(a1,...,a,) # 0 for
any f € Z[X1,...,X,)\ {0} and {a1,...,a,} C A.

Then just as for linear independence in vector spaces, an algebraically closed
field has a well-defined dimension (“transcendence degree”) which is the cardi-
nality of any maximal algebraically independent subset, this dimension deter-
mines an algebraically closed field of a given characteristic up to isomorphism,
and the dimension of an uncountable ACF is equal to its cardinality. O

Fact 16.2. Let L be a possibly uncountable first-order language, i.e. with sets
of constant, function, and relation symbols of arbitrary cardinality. Let |L| be
the cardinality of the language, i.e. that of the alphabet.
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Let ¥ C Sent(L), and suppose any finite subset of ¥ has a model. Then ¥
has a model of cardinality (i.e. with domain of cardinality) < |L|.

Sketch proof. Our proof for countable £ mostly goes through directly.

The only place we used the countability assumption was in extending a con-
sistent set ¥ to a maximal consistent witnessing set. We can use Zorn’s lemma
here in the uncountable case — the union of a chain of consistent witnessing
sets containing X is still consistent and witnessing, so there exists a maximal
such with respect to inclusion, which (as in the proof in the countable case) is
maximal consistent witnessing. O

Corollary 16.3. ACFy is mazimal consistent, hence axiomatises Th(C).

Proof. Let AF ACFgy. Note that A is infinite, since it has characteristic 0.

Let C = {c, : a € C} be a set of constant symbols of cardinality |C|, and let
L' = Lyng UC. Let ¥ := Th™s(A) U {~c, = ¢ : a,b € C, a# b} C Sent(L').
Then since A is infinite, any finite subset of ¥ has as model A with the finitely
many ¢, which appear interpreted as distinct elements. So by Fact > has
a model B of cardinality < |£'| = |C|. Considering the interpretations of the c,,
we actually have |B| = |C|. Let B’ be the L,ing structure obtained from B by
ignoring the ¢,. Then by Fact B'~C. SoA=8B =C.

So we conclude that any two models of ACF( are elementary equivalent, so
ACF( is maximal consistent. O

Theorem 16.4 (Ax-Grothendieck). Let F : C" — C™ be a polynomial map,
i.e. F(ay,...,an) = (Fi(a1,...,an),..., Fp(ay,...,ay)), where F; € C[X].
If F is injective, then F is surjective.

Proof. Fact: The algebraic closure of the finite field F,, is the union of a chain
of finite subfields, F3's = J, Fpu.
Claim 16.5. Let p be prime. Any injective polynomial map F : (Fglg)" —

(Fal&)™ is surjective.

Proof. Let ko be such that the coefficients of F' are in .

Let k > ko. Then F(F,»") C Fyx™, and so by injectivity, finiteness of F ™,
and the pigeonhole principle, F(F,n™) = Fu™.

Hence F((Fglg)") = (]F;lg)". O

Let n,d € N. Let 0,4 be an L,ing-sentence expressing that any injective
polynomial map F : K™ — K™ consisting of polynomials of degree < d is
surjective:

On,d ‘= vZl,Oa <.y 2n, d w 0] /\Zzz sz = Zzz,]yz — /\:r'z = yz
— Vg Jz /\Z zwxz =1;).

Suppose C ¥ 0, 4. Then by maximal consistency of ACFy, ACFy F —op, 4.
Then by compactness, for some m € N,

ACFU{~i=0:0<1i<m}E -0, 4.

So if p > m is prime, Fglg FE —0,,q. But this contradicts the Claim. O
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