1. Let $f: X \rightarrow[0,1]$ be continuous mapping A to 0 and B to 1 . Extend f to βf and note $A \subseteq \beta f^{-1}(0), B \subseteq \beta f^{-1}(1)$ and these two are closed and disjoint, hence contain \bar{A} and \bar{B} respectively, so the latter are disjoint.
Note (for later) that if $A \cup B=X$ then $\bar{A}^{\beta X} \cup \bar{B}^{\beta X}=\beta X$, so that $\bar{A}^{\beta X}$ and $\bar{B}^{\beta X}$ are both clopen in βX.
2. Let D be a countable dense subset of X and choose some surjection $f: \mathbb{N} \rightarrow$ D. As \mathbb{N} has the discrete topology, f is continuous and can thus be extended to a continuous βf. But then $\beta f(\beta \mathbb{N})$ is compact (so closed) and contains $f(\mathbb{N})=D$, so contains $\bar{D}=X$. Hence βf is onto.
3. We will first show that $\mathcal{N}_{p} \cap \mathbb{N}=\left\{N \cap \mathbb{N}: N \in \mathcal{N}_{p}\right\}$ is an ultrafilter on \mathbb{N} : note that by density of \mathbb{N} in $\beta \mathbb{N}$, we have that $\mathcal{N}_{p} \cap \mathbb{N}$ is a filter. If $A \notin \mathcal{N}_{p} \cap \mathbb{N}$ then by the previous part $\bar{A}, \overline{X \backslash A}$ partition $\beta \mathbb{N}$ into disjoint clopen sets and by assumption and $\bar{A} \cap \mathbb{N}=\bar{A}^{\mathbb{N}}=A$ we must have $\overline{X \backslash A} \in \mathcal{N}_{p}$ so that $X \backslash A \in \mathcal{N}_{p} \cap \mathbb{N}$. Because each $\beta \mathbb{N} \backslash\{n\} \in \mathcal{N}_{p}, n \in \mathbb{N}$, $\mathcal{N}_{p} \cap \mathbb{N}$ is a free ultrafilter on \mathbb{N}. By a question from the last sheet $\mathcal{N}_{p} \cap \mathbb{N}$, and hence \mathcal{N}_{p}, cannot have a countable filter basis.
Metric spaces are first countable, showing that $\beta \omega$ is not metrizable. Similarly, $\omega \cup\{p\}$ can not be second countable (as otherwise the character of p would be at most countable). It is clearly countable and as only p is a non-trivial limit point of any closed set it is easily seen to be normal.
4. Writing $X \times Y=X \times\left\{y_{0}\right\} \cup \bigcup_{x \in X}\{x\} \times Y$ for some $y_{0} \in Y$ and observing that $X \sim X \times\left\{y_{0}\right\}$ meets each $\{x\} \times Y \sim Y$ gives that if X, Y are connected, then so is $X \times Y$. By induction, a finite product of connected spaces is connected.
If $X_{i}, i \in I$ is a collection of connected (non-empty) spaces, fix $x=\left(x_{i}\right) \in$ $\prod_{i} X_{i}$. For each F finite $\subseteq I$ the set

$$
D_{F}=\prod_{i \in F} X_{i} \times \prod_{i \in I \backslash F}\left\{x_{i}\right\}
$$

is homeomorphic to $\prod_{i \in F} X_{i}$ and hence connected and clearly contains x. Thus

$$
D=\bigcup_{F \text { finite } \subseteq I} D_{F}
$$

is connected.
If F finite $\subseteq I$ and $\emptyset \neq U_{i}$ open $\subseteq X_{i}$ for $i \in F$ then picking $y_{i} \in U_{i}$ for $i \in F$ and $y_{i}=x_{i}$ for $i \in I \backslash F$ gives a point

$$
y \in D \cap \pi_{i}^{-1}\left(U_{i}\right)
$$

Thus D is dense in $\prod_{i} X_{i}$ and hence $\prod_{i} X_{i}=\bar{D}$ is connected.
5. Suppose X is compact Hausdorff and $C_{n}, n \in \omega$ is a decreasing sequence of closed connected sets. Let $C=\bigcap_{n} C_{n}$ and note that C is a closed subset of X. If C can be partitioned into non-empty C-clopen $A, B \subseteq C$ then A, B are in fact X-closed, and X is compact Hausdorff, so there are disjoint X-open $U \supseteq A, V \supseteq B$. Now $\bigcap_{n} C_{n} \subseteq U \cup V$ which is open and hence (by the Lemma about compactness) there is some $N \in \omega$ with $C_{N} \subseteq U \cup V$. Then $C_{N} \cap U$ and $C_{N} \cap V$ are disjoint C_{N}-open and hence C_{N}-clopen sets partitioning C_{N}, so one of them, say $V \cap C_{N}$ must be empty. But then $B \subseteq C \cap V \subseteq C_{N} \cap V=\emptyset$, a contradiction.
For the example, let

$$
X=\{(0,0),(1,0)\} \cup\{0,1\} \times[0,1] \cup \bigcup_{n \in \omega}[0,1] \times\left\{2^{-n}\right\} \subseteq \mathbb{R}^{2}
$$

and $C_{n}=X \cap[0,1] \times\left[0,2^{-n}\right]$
6. Clearly if f is injective it is mono. If f is mono, let $x, y \in X$ with $f(x)=f(y)$, let $Z=\{\star\}$ and $g, h: Z \rightarrow X$ given by $g(\star)=x$ and $h(\star)=y$. Then $f g=f h$ and so $g=h$ which gives $x=y$ as required.
Again, surjectivity clearly implies epi. For the converse, suppose there is $y \in Y \backslash f(X)$. As X is compact, so is $f(X)$ and hence there is clopen $C \ni y$ with $C \cap f(X)=\emptyset$. Let $g=\chi_{C}$ be the indicator function on C and set $h=0$. Then $g f=0=h f$ but $g \neq h$.
7. Suppose $f: X \rightarrow Y$ is injective. Then f is a homeomorphism onto its image (since X is compact Hausdorff) and so wlog $X \subseteq Y$ and f : $X \rightarrow Y ; x \mapsto x$ by identifying X with its image under f. Note that $\{C \cap X: C$ clopen $\subseteq Y\}$ is a basis for X. If D is X-clopen then it is a closed subset of a compact space and thus compact. Hence it is a finite union of basic X-clopen sets and thus there are Y-clopen C_{1}, \ldots, C_{n} with

$$
D=\left(C_{1} \cup \ldots \cup C_{n}\right) \cap X=f^{-1}\left(C_{1} \cup \ldots \cup C_{n}\right)
$$

Hence $D=\mathcal{B}_{f}\left(C_{1} \vee \cdots \vee C_{n}\right)$. Since $D \in \mathcal{B}_{X}$ was arbitrary, $\mathcal{B}_{f}: \mathcal{B}_{Y} \rightarrow \mathcal{B}_{X}$ is surjective.
Now assume $\phi: B \rightarrow A$ is surjetive and let $\mathcal{U}, \mathcal{V} \in \mathcal{S}(A)$ be distinct ultrafilters. Note that $\mathcal{S}(\phi)(\mathcal{U})=\phi^{-1}(\mathcal{U})$. Let $a \in \mathcal{U} \backslash \mathcal{V}$ (wlog) and take $b \in B$ with $\phi(b)=a$ so $b \in \mathcal{S}(\phi) \mathcal{U} \backslash \mathcal{S}(\phi) \mathcal{V}$, so that $\mathcal{S}(\phi)$ is indeed injective.

Assume $f: X \rightarrow Y$ is surjective and let $C, D \in \mathcal{B}_{Y}$ be distinct clopen subsets of Y. Find (wlog) $y \in C \backslash D$ and $x \in X$ with $f(x)=y$. Then $x \in f^{-1}(C) \backslash f^{-1}(D)$ so $\mathcal{B}_{f}(D) \neq \mathcal{B}_{f}(C)$ and \mathcal{B}_{f} is indeed injective.
Assume $\phi: B \rightarrow A$ is injective and let $\mathcal{U} \in \mathcal{S}(B)$ be an ultrafilter on B. Then $\{\phi(b): b \in \mathcal{U}\}$ is closed under \wedge and does not contain $\mathbf{0}$, since ϕ is injective so can only map $\mathbf{0}$ to $\mathbf{0}$, and thus can be extended to an ultrafilter \mathcal{V} on A and by construction $\mathcal{S}(\phi)(\mathcal{V})=\phi^{-1}(\mathcal{V})=\mathcal{U}$. Hence $\mathcal{S}(\phi)$ is surjective.
8. Again, injective implies mono and surjective implies epi are clear.

Assume that $\phi: B \rightarrow A$ is mono. We show that $\mathcal{S}(\phi): \mathcal{S}(A) \rightarrow \mathcal{S}(B)$ is epi, hence surjective and thus ϕ must be injective.

Thus let Z be a Stone space and $g, h: \mathcal{S}(B) \rightarrow Z$ be continuous with $\mathcal{S}(\phi) g=\mathcal{S}(\phi) h$. By Stone Duality, $Z=\mathcal{S}(C)$ and $g=\mathcal{S}\left(\psi_{1}\right), h=$ $\mathcal{S}\left(\psi_{2}\right)$ for a Boolean Algebra C and homomorphisms $\psi_{1}, \psi_{2}: C \rightarrow B$ and $\psi_{1} \phi=\psi_{2} \phi$. Since ϕ is mono this mean $\psi_{1}=\psi_{2}$ and thus $g=\mathcal{S}\left(\psi_{1}\right)=$ $\mathcal{S}\left(\psi_{2}\right)=h$ as required.
[C] by hand Let $b, b^{\prime} \in B$ with $f(b)=f\left(b^{\prime}\right)$ and consider the Boolean Algebra $C=\mathcal{P}(\{0,1\})$ (ordered by \subseteq). Let $g, h: C \rightarrow B$ be given by $g(\{1\})=b$ (so that $g(\{0\})=\neg b, g(\mathbf{0})=\mathbf{0}, g(\mathbf{1})=\mathbf{1})$ and $h(\{1\})=b^{\prime}$. Then $f h=f g$ since $f(h(\{0\}))=f\left(\neg b^{\prime}\right)=\neg f\left(b^{\prime}\right)=\neg f(b)=f(\neg b)=$ $f(\{0\})$ and thus $g=h$ which gives $b=g(\{1\})=h(\{1\})=b^{\prime}$.
Now assume $\phi: B \rightarrow A$ is epi. We show that $\mathcal{S}(\phi): \mathcal{S}(A) \rightarrow \mathcal{S}(B)$ is mono, hence injective and thus ϕ must be surjective.
Thus let Z be a Stone space and $g, h: Z \rightarrow \mathcal{S}(A)$ be continuous with $g \mathcal{S}(\phi)=h \mathcal{S}(\phi)$. By Stone Duality, $Z=\mathcal{S}(C)$ and $g=\mathcal{S}\left(\psi_{1}\right), h=\mathcal{S}\left(\psi_{2}\right)$ for a Boolean Algebra C and homomorphisms $\psi_{1}, \psi_{2}: A \rightarrow C$ and $\phi \psi_{1}=$ $\phi \psi_{2}$. Since ϕ is epi this mean $\psi_{1}=\psi_{2}$ and thus $g=\mathcal{S}\left(\psi_{1}\right)=\mathcal{S}\left(\psi_{2}\right)=h$ as required.
[C] by hand This is very tricky indeed.
9. [A] Clearly \leq is a partial order on $A \times B$ with least element $(\mathbf{0}, \mathbf{0})$ and greatest element $(\mathbf{1}, \mathbf{1})$.
We then note that $(a, b) \wedge\left(a^{\prime}, b^{\prime}\right)=\left(a \wedge a^{\prime}, b \wedge b^{\prime}\right),(a, b) \wedge\left(a^{\prime}, b^{\prime}\right)=(a \vee$ $\left.a^{\prime}, b \vee b^{\prime}\right)$ and $\neg(a, b)=(\neg a, \neg b)$ work as expected.
From these definitions it is immediate that π_{A} and π_{B} are Boolean Algebra homomorphisms.
[B] An explicit isomorphism is provided by $\mathcal{B}_{X \oplus Y} \rightarrow \mathcal{B}_{X} \times \mathcal{B}_{Y}: C \mapsto$ $(C \cap X, C \cap Y)$ with inverse $(A, B) \mapsto A \cup B$.

