1. Let f: X — [0,1] be continuous mapping A to 0 and B to 1. Extend f
to Sf and note A C Bf;l (0),BC Bf~1 (1) and these two are closed and
disjoint, hence contain A and B respectively, so the latter are disjoint.

Note (for later) that if AU B = X then A UBT = BX, so that amx
and B are both clopen in fX.

2. Let D be a countable dense subset of X and choose some surjection f: N —
D. As N has the discrete topology, f is continuous and can thus be
extended to a continuous Sf. But then Sf(SN) is compact (so closed)
and contains f(N) = D, so contains D = X. Hence 3f is onto.

3. We will first show that M, NN = {NNN: N € N,} is an ultrafilter on
N: note that by density of N in SN, we have that NV, "N is a filter. If
A & N, NN then by the previous part A, X \ A partition SN into disjoint
clopen sets and by assumption and ANN = A" = A we must have
X\ A €N, sothat X \ A € N, NN. Because each SN\ {n} € N,,n € N,
N, NN is a free ultrafilter on N. By a question from the last sheet A}, NN,
and hence N, cannot have a countable filter basis.

Metric spaces are first countable, showing that Sw is not metrizable. Sim-
ilarly, w U {p} can not be second countable (as otherwise the character of
p would be at most countable). It is clearly countable and as only p is a
non-trivial limit point of any closed set it is easily seen to be normal.

4. Writing X xY = X x {yo} U, c x {#} x Y for some yo € Y and observing
that X ~ X x {yo} meets each {z} x Y ~ Y gives that if X,V are
connected, then so is X x Y. By induction, a finite product of connected
spaces is connected.

If X;,i € I is a collection of connected (non-empty) spaces, fix ¢ = (x;) €
1, Xi. For each F finite C I the set

Dp =[] xix [] {a:}
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is homeomorphic to [ [;. » X; and hence connected and clearly contains z.
Thus
D= |J Dr
F finite CI
is connected.

If F finite C T and @ # U; open C X; for i € F then picking y; € U; for
i€ Fand y; = x; for i € I\ F gives a point
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Thus D is dense in [, X; and hence [], X; = D is connected.



5. Suppose X is compact Hausdorff and C,,n € w is a decreasing sequence
of closed connected sets. Let C' = (), Cy, and note that C' is a closed
subset of X. If C' can be partitioned into non-empty C-clopen A, B C C
then A, B are in fact X-closed, and X is compact Hausdorff, so there are
disjoint X-open U 2 A,V O B. Now (),C, C U UV which is open
and hence (by the Lemma about compactness) there is some N € w with
Cny CUUYV. Then Cy NU and Cy NV are disjoint Cn-open and hence
Cn-clopen sets partitioning Cp, so one of them, say V' N Cy must be
empty. But then BC CNV CCyNV =0, a contradiction.

For the example, let

X ={(0,0),(1,0)y u{0,1} x [0,1]U [ J[0,1] x {27"} C R

new
and C,, = X N[0,1] x [0,27"]

6. Clearly if f is injective it is mono. If f is mono, let z,y € X with
flx) = fly), let Z = {x} and g,h : Z — X given by g(x) = z and
h(x) =y. Then fg = fh and so g = h which gives x = y as required.
Again, surjectivity clearly implies epi. For the converse, suppose there is
y €Y\ f(X). As X is compact, so is f(X) and hence there is clopen
C 5y with CN f(X) =0. Let g = x¢ be the indicator function on C
and set h = 0. Then gf =0 = hf but g # h.

7. Suppose f : X — Y is injective. Then f is a homeomorphism onto
its image (since X is compact Hausdorff) and so wlog X C Y and f :
X — Y;x — z by identifying X with its image under f. Note that
{CNX:Cclopen CY} is a basis for X. If D is X-clopen then it is a
closed subset of a compact space and thus compact. Hence it is a finite
union of basic X-clopen sets and thus there are Y-clopen C1, ..., C, with

D=(CiU...uC,)NX=f1C1U...UGC,).

Hence D = B¢ (C1V---VCy). Since D € Bx was arbitrary, By : By — Bx
is surjective.

Now assume ¢ : B — A is surjetive and let U,V € S(A) be distinct
ultrafilters. Note that S(¢) (U) = ¢~ (U). Let a € U\ V (wlog) and
take b € B with ¢(b) =asobe S(p)U\ S(¢)V, so that S (¢) is indeed
injective.

Assume f : X — Y is surjective and let C, D € By be distinct clopen
subsets of Y. Find (wlog) y € C'\ D and = € X with f(z) = y. Then
z€ f71(C)\ fH(D) so By(D) # B¢(C) and By is indeed injective.
Assume ¢ : B — A is injective and let # € S(B) be an ultrafilter on
B. Then {¢(b): b€ U} is closed under A and does not contain 0, since
¢ is injective so can only map 0 to 0, and thus can be extended to an
ultrafilter V on A and by construction S (¢) (V) = ¢! (V) = U. Hence
S (¢) is surjective.



8. Again, injective implies mono and surjective implies epi are clear.

Assume that ¢ : B — A is mono. We show that S (¢) : S(A) — S(B) is
epi, hence surjective and thus ¢ must be injective.

Thus let Z be a Stone space and g,h : S(B) — Z be continuous with
S(¢)g = S(¢)h. By Stone Duality, Z = S(C) and g = S(¢1),h =
S (1¢2) for a Boolean Algebra C' and homomorphisms 1,1 : C' — B and
16 = a¢. Since ¢ is mono this mean ¥ = 9 and thus g = S (¢1) =
S (1h2) = h as required.

[C] by hand Let b, € B with f(b) = f(b') and consider the Boolean
Algebra C = P({0,1}) (ordered by C). Let g,h : C — B be given by
g9({1}) = b (so that g({0}) = b, g(0) = 0, g(1) = 1) and h({1}) = V'.
Then fh = fg since f(h({0})) = f(=b") = ~f(b) = ~f(b) = f(-b) =
f({0}) and thus g = h which gives b = g({1}) = h({1}) =V’

Now assume ¢ : B — A is epi. We show that S(¢) : S(A) — S(B) is
mono, hence injective and thus ¢ must be surjective.

Thus let Z be a Stone space and g,h : Z — S(A) be continuous with
9S (¢) = hS (¢). By Stone Duality, Z =S (C) and g = S (¢1) ,h = S (¢2)
for a Boolean Algebra C' and homomorphisms ¥,y : A — C and ¢y, =
@)o. Since ¢ is epi this mean ¥ = 19 and thus g =S (¢¥1) = S (Y2) = h
as required.

[C] by hand This is very tricky indeed.

9. [A] Clearly < is a partial order on A x B with least element (0,0) and
greatest element (1,1).
We then note that (a,b) A (a/,b') = (a Ad',bAY), (a,b) A (a',0) = (aV
a',bVvb) and —(a,b) = (—a, =b) work as expected.
From these definitions it is immediate that 74 and wg are Boolean Algebra
homomorphisms.
[B] An explicit isomorphism is provided by Bxgy — Bx X By : C —
(CNX,CNY) with inverse (A, B) — AU B.



