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Integration by parts formula

Let Ω be a bounded Lipschitz domain and ν the outward normal to ∂Ω. If u ∈ W 1,p(Ω)
and v ∈ W 1,p′(Ω) with 1 < p < ∞ and 1

p
+ 1

p′
= 1. Then∫

Ω

∂iuv dx =

∫
∂Ω

uvνi dS(x)−
∫
Ω

u∂iv dx.

Here the values of u and v on ∂Ω are understood in the sense of trace.

Density results

(i) Let k ≥ 0 and 1 ≤ p < ∞. Then C∞(Rn) ∩W k,p(Rn) is dense in W k,p(Rn).

Proof: Convolution.

(ii) Let k ≥ 0 and 1 ≤ p < ∞. Then C∞
c (Rn) is dense in W k,p(Rn). In particular

W k,p
0 (Rn) = W k,p(Rn).

(iii) (Meyers-Serrin) Let k ≥ 0, 1 ≤ p < ∞ and Ω be an open subset of Rn. Then
C∞(Ω) ∩W k,p(Ω) is dense in W k,p(Ω).

(iv) Let k ≥ 0, 1 ≤ p < ∞ and Ω be an open bounded subset of Rn satisfying the
segment condition. Then C∞(Ω̄) is dense in W k,p(Ω).

Extension

(i) Let k ≥ 0, 1 ≤ p < ∞ and Ω be an open subset of Rn. If u ∈ W k,p
0 (Ω), then its

extension by zero ū to Rn belongs to W k,p
0 (Rn).

(ii) (Stein) Let Ω be a bounded Lipschitz domain. Then there exists a linear operator
sending functions defined a.e. in Ω to functions defined a.e. in Rn such that for
every k ≥ 0, 1 ≤ p < ∞ and u ∈ W k,p(Ω) it hold that Eu = u a.e. in Ω and

∥Eu∥Wk,p(Rn) ≤ Ck,p,Ω∥u∥Wk,p(Ω).

Traces

Let 1 ≤ p < ∞ and Ω be a bounded Lipschitz domain. Then there exists a bounded
linear operator T : W 1,p(Ω) → Lp(∂Ω) such that Tu = u|∂Ω if u ∈ W 1,p(Ω) ∩ C(Ω̄).
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Characterisation via translations

(i) Let 1 ≤ p < ∞ and v ∈ W 1,p(Rn). Then

∥τyv − v∥Lp ≤ Cn,p|y|∥∇v∥Lp(Rn).

(ii) Let 1 < p < ∞, Ω be a bounded Lipschitz domain. If v ∈ Lp(Ω) and if C > 0
such that

∥τyv − v∥Lp(ω) ≤ C|y| for any ω ⋐ Ω, |y| < dist(ω, ∂Ω),

then v ∈ W 1,p(Ω).

Embeddings

Unless otherwise stated, let Ω be a bounded Lipschitz domain

(i) (Gagliardo-Nirenberg-Sobolev: Gagliardo-Nirenberg for p = 1 and Sobolev for
short in general) Let 1 ≤ p < n. Then W 1,p(Rn) ↪→ Lp∗(Rn) continuously:

∥u∥Lp∗ (Rn) ≤ Cn,p∥∇u∥Lp(Rn).

Proof: First prove the embedding inequality for p = 1 and smooth functions, by
Newton-Leibnitz along lines parallel to axes and multiplying them all together.
Then prove for W 1,1 functions using density, where in passing to limit one needs
to use Fatou’s lemma on one side of the inequality. Then prove forW 1,p functions
by applying the case p = 1 to a power.

Reason for the exponent p∗: Scaling.

(ii) W 1,n(Rn) does not embed in L∞(Rn).

(iii) (Gagliardo-Nirenberg-Sobolev) Let 1 ≤ p < n. Then W 1,p(Ω) ↪→ Lq(Ω) contin-
uously for any 1 ≤ q ≤ p∗:

∥u∥Lq(Ω) ≤ Cn,p,Ω∥u∥W 1,p(Ω).

Proof: Via extension.

(iv) (Morrey) Let n < p ≤ ∞. Then W 1,p(Rn) ↪→ C0,1−n
p (Rn) continuously:

∥u∥
C

0,1−n
p (Rn)

≤ Cn,p∥u∥W 1,p(Rn).

Proof for finite p: Reduce to smooth case via density. Compare the value of u
at a point by its average on a ball using the integral mean value inequality:∫

Br(x)

|u(y)− u(x)| dx ≤ 1

n
rn

∫
Br(x)

|∇u(y)|
|y − x|n−1

dx.
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(v) (Morrey) Let n < p ≤ ∞. Then W 1,p(Ω) ↪→ C0,β(Rn) continuously for any
0 < β < 1− n

p
.

Proof: Via extension.

(vi) W 1,∞(Ω) = C0,1(Ω).

(vii) (Rellich-Kondrachov) Let 1 ≤ p < n. Then W 1,p(Ω) ↪→ Lq(Ω) compactly for
any 1 ≤ q < p∗. The limit case q = p∗ is non-compact.

Proof: First prove for q = p using Komolgorov-Riesz-Fréchet. This implies the
case q < p. For p < q < p∗, use interpolation knowing the convergence in Lp

and boundedness in Lp∗ .

Reason for non-compactness in the critical case: Scaling, translations.

(viii) W 1,n(Ω) ↪→ Lq(Ω) compactly for any 1 ≤ q < ∞. This follows from Rellich-
Kondrachov.

(ix) Let p > n. Then W 1,p(Ω) ↪→ C0,β(Ω) compactly for any 0 < β < 1 − n
p
. The

limit case β = 1− n
p
is non-compact.

Proof: Use Ascoli-Arzèla and Morrey.

Reason for non-compactness in the critical case: Scaling, translations.

(x) (Friedrichs) Let 1 ≤ p < ∞ and Ω be a bounded open set. Then

∥u∥Lp(Ω) ≤ Cn,p,Ω∥Du∥Lp(Ω) for all u ∈ W 1,p
0 (Ω).

(xi) (Friedrichs-type) Let 1 ≤ p < n, 1 ≤ q ≤ p∗ and Ω be a bounded open set.
Then

∥u∥Lq(Ω) ≤ Cn,p,Ω∥Du∥Lp(Ω) for all u ∈ W 1,p
0 (Ω).

(xii) (Poincaré) Let 1 ≤ p ≤ ∞. Then

∥u− ūΩ∥Lp(Ω) ≤ Cn,p,Ω∥Du∥Lp(Ω) for all u ∈ W 1,p(Ω).

Proof: Argue by contradiction and appeal to Rellich-Kondrachov.

(xiii) (Poincaré-Sobolev) Let 1 ≤ p < n and 1 ≤ q ≤ p∗. Then

∥u− ūΩ∥Lq(Ω) ≤ Cn,p,Ω∥Du∥Lp(Ω) for all u ∈ W 1,p(Ω).

Proof: Apply Gagliardo-Nirenberg-Sobolev inequality, then appeal to Poincaré
inequality. (Mimicking the proof of Poincaré only gives the case q < p∗.)
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