
2. EIGENVALUES, EIGENVECTORS AND DI-
AGONALIZABILITY

De…nition 36 An n£n matrix A is said to be diagonalizable if there is an invertible matrix
P such that P¡1AP is diagonal.

Two questions immediately spring to mind: why might this be a useful de…nition, and how
might we decide whether such a matrix P exists? In an attempt to partially answer the …rst
question, we note

(P¡1AP )k = (P¡1AP )(P¡1AP )£ ¢ ¢ ¢ £ (P¡1AP ) = P¡1AkP,

as all the internal products PP¡1 cancel. Thus if P¡1AP = D is diagonal then

Ak = PDkP¡1 for a natural number k

and so we are in a position to easily calculate the powers of A. So ease of calculation is clearly
one advantage of a matrix being diagonalizable.

For now we will consider this reason enough to seek to answer the second question: how do we
determine whether such a P exists? Suppose such a P exists and has columns v1,v2, . . . ,vn. As
P is invertible then the vi are independent. Further as AP = PD where D = diag(λ1, . . . , λn)
then we have that

ith column of AP = Avi and ith column of PD = P (λie
T
i ) = λivi.

So the columns of P are n independent vectors, each of which A maps to a scalar multiple of
itself. Thus we make the following de…nitions.

De…nition 37 Let A be an n £ n matrix. We say that a non-zero vector v in Rn
col is an

eigenvector 1 of A if Av = λv for some scalar λ. The scalar λ is called the eigenvalue of v
and we will also refer to v as a λ-eigenvector.

De…nition 38 n linearly independent eigenvectors of an n£ n matrix A are called an eigen-
basis.

Remark 39 As the determinant of a linear map T : V ! V of a …nite-dimensional vector
space is well-de…ned, then we can make the same de…nitions of eigenvalue, eigenvector and
eigenbasis for T.

And we have partly demonstrated the following.

1The German adjective eigen means ‘own’ or ‘particular’. David Hilbert was the …rst to use the term in the
early 20th century. The term proper or characteristic is sometimes also used, especially in older texts.
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Theorem 40 An n £ n matrix A is diagonalizable if and only if A has an eigenbasis.

Proof. We showed above that if such a P exists then its columns form an eigenbasis. Conversely
if v1, . . . ,vn form an eigenbasis, with respective eigenvalues λ1, . . . , λn, we de…ne

P = (v1j ¢ ¢ ¢ j vn)

to be the n£n matrix with columns v1, . . . ,vn. Again P is invertible as its columns are linearly
independent. Then

PeTi = vi and APeTi = Avi = λivi = λiPe
T
i = P (λie

T
i ),

so that P¡1APeTi = λie
T
i for each i or equivalently

P¡1AP = diag(λ1, λ2, . . . , λn).

Note that λ is an eigenvalue of A if and only if the equation Av = λv has a non-zero solution
or equivalently if (λIn ¡ A)v = 0 has a non-zero solution. This is equivalent to λIn ¡A being
singular, which in turn is equivalent to det(λIn ¡ A) = 0. Thus we have shown (a) below.

Proposition 41 Let A be an n £ n matrix.
(a) A real number λ is an eigenvalue of A if and only if x = λ is a root of det(xIn ¡ A) = 0.
(b) det(xIn ¡A) is a polynomial in x of degree n which is monic (i.e. leading coe¢cient is 1).
(c) If det(xIn ¡ A) = xn + cn¡1x

n¡1 + ¢ ¢ ¢+ c0 then

c0 = (¡1)
n detA and cn¡1 = ¡trace(A).

Proof. (b) Note

det(xIn ¡ A) =

¯
¯
¯
¯
¯
¯
¯
¯
¯

x¡ a11 ¡a12 ¢ ¢ ¢ ¡a1n
¡a21 x¡ a22 ¢ ¢ ¢ ¡a2n

...
...

. . .
...

¡an1 ¡an2 ¢ ¢ ¢ x¡ ann

¯
¯
¯
¯
¯
¯
¯
¯
¯

.

This determinant is the sum of n! products that take one entry from each row and each column.
The largest power of x is produced from the product of the diagonal entries

(x ¡ a11) (x ¡ a22) ¢ ¢ ¢ (x ¡ ann) . (2.1)

The greatest power of x here is xn and the coe¢cient of xn is 1. All other products give
polynomials in x of degree strictly less than n.

(c) By setting x = 0 we see that

c0 = det (¡A) = (¡1)n detA.

Contributions to the xn¡1 term only come from the product of the diagonal entries (2.1). If
one diagonal entry is omitted from a product then necessarily a second diagonal entry is also
omitted and thus the greatest power of x from such a product can be xn¡2. The coe¢cient of
xn¡1 from (2.1) is

¡a11 ¡ a22 ¡ ¢ ¢ ¢ ¡ ann = ¡trace(A).
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De…nition 42 Let A be a real n£ n matrix. Then the characteristic polynomial of A is

χA(x) = det(xIn ¡ A).

Example 43 Find the eigenvalues of the following matrices.

A =

µ
1 1
1 1

¶

; B =

µ
1 ¡1
1 1

¶

; C =

0

@
3 2 ¡4
0 1 4
0 0 3

1

A; D =

0

@
5 ¡3 ¡5
2 9 4

¡1 0 7

1

A.

Solution. By Proposition 41(a) this is equivalent to …nding the real roots of the matrices’
characteristic polynomials.

(a) The eigenvalues of A are 0 and 2 as

χA(x) =

¯
¯
¯
¯
x¡ 1 ¡1
¡1 x¡ 1

¯
¯
¯
¯ = (x¡ 1)2 ¡ 1 = x(x ¡ 2).

(b) Similarly note

χB(x) =

¯
¯
¯
¯
x ¡ 1 1
¡1 x ¡ 1

¯
¯
¯
¯ = (x ¡ 1)2 + 1 = x2 ¡ 2x+ 2.

Now χB(x) has no real roots (the roots are 1§ i) and so B has no eigenvalues.
(c) As C is triangular then we can immediately see that χC(x) = (x¡ 3)(x¡ 1)(x¡ 3). So

C has eigenvalues 1, 3, 3, the eigenvalue of 3 being a repeated root of χC(x).
(d) Finally D has eigenvalues 6, 6, 9, the eigenvalue of 6 being repeated as χD(x) equals

¯
¯
¯
¯
¯
¯

x ¡ 5 3 5
¡2 x ¡ 9 ¡4
1 0 x ¡ 7

¯
¯
¯
¯
¯
¯
=

¯
¯
¯
¯
¯
¯

x¡ 6 x¡ 6 x¡ 6
¡2 x¡ 9 ¡4
1 0 x¡ 7

¯
¯
¯
¯
¯
¯
= (x ¡ 6)

¯
¯
¯
¯
¯
¯

1 1 1
¡2 x ¡ 9 ¡4
1 0 x ¡ 7

¯
¯
¯
¯
¯
¯

= (x ¡ 6)

¯
¯
¯
¯
¯
¯

1 0 0
¡2 x¡ 7 ¡2
1 ¡1 x¡ 8

¯
¯
¯
¯
¯
¯
= (x¡ 6)

¯
¯
¯
¯
x¡ 7 ¡2
¡1 x¡ 8

¯
¯
¯
¯ = (x¡ 6)2(x ¡ 9).

Here follow some basic facts about eigenvalues, eigenvectors and diagonalizability.

Proposition 44 Let A be an n £ n matrix and λ 2 R.
(a) The λ-eigenvectors of A, together with 0, form a subspace of Rn

col. This is called the λ-
eigenspace.
(b) For 1 6 i 6 k, let vi be a λi-eigenvector of A. If λ1, . . . , λk are distinct then v1, . . . ,vk are
independent.

Proof. (a) This is ker (A ¡ λIn) and kernels are subspaces.
(b) may be proven by induction as follows. Note that v1 6= 0 (as it is an eigenvector) and so

v1 makes an independent set. Suppose, as our inductive hypothesis, that v1, . . . ,vi are linearly
independent vectors and that

α1v1 + ¢ ¢ ¢+ αivi + αi+1vi+1 = 0 (2.2)
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for some reals α1, . . . , αi+1. If we apply A to both sides of (2.2), we …nd

α1λ1v1 + ¢ ¢ ¢+ αiλivi + αi+1λi+1vi+1 = 0. (2.3)

Now subtracting λi+1 times (2.2) from (2.3) we arrive at

α1(λ1 ¡ λi+1)v1 + ¢ ¢ ¢+ αi(λi ¡ λi+1)vi = 0.

By hypothesis v1, . . . ,vi are linearly independent vectors and hence αj(λj ¡ λi+1) = 0 for
1 6 j 6 i. As λ1, . . . , λi are distinct then αj = 0 for 1 6 j 6 i and then by (2.2) αi+1 = 0. We
have shown that v1, . . . ,vi+1 are linearly independent vectors and so (b) follows by induction.

Corollary 45 If an n£ n matrix has n distinct eigenvalues then it is diagonalizable.

Proof. Let λ1, . . . , λn denote the distinct eigenvalues. For each i there is a λi-eigenvector vi
and by Proposition 44(b) v1, . . . ,vn are independent. There being n of them they form an
eigenbasis.

² It is important to note this is a su¢cient, but not a necessary condition for diagonaliz-
ability. For example, In is diagonal (and so diagonalizable) but has eigenvalue 1 repeated
n times.

Example 46 Determine the eigenvectors and diagonalizability of the matrices A,B,C,D from
Example 43.

Solution. (a) We determined that A has eigenvalues λ = 0 and 2. Note that

λ = 0 : ker

µ
1 1
1 1

¶

=

¿µ
1

¡1

¶À

;

λ = 2 : ker

µ
¡1 1
1 ¡1

¶

=

¿µ
1
1

¶À

.

(1,¡1)T and (1, 1)T form an eigenbasis and if we set

P =

µ
1 1

¡1 1

¶

then P¡1AP =

µ
0 0
0 2

¶

.

Note that we could have created an invertible matrix P by swapping its columns and we would
have found P¡1AP = diag(2, 0). The eigenvalues appear in the diagonal of P¡1AP in the order
the corresponding eigenvectors appear in the columns of P.

(b) B has no real eigenvalues and so no eigenvectors. Consequently B is not diagonalizable.
(At least not using a real matrix P ; however see Example 47.)

(c) C has eigenvalues 1, 3, 3. Note

λ = 3 : ker

0

@
0 2 ¡4
0 ¡2 4
0 0 0

1

A =

*0

@
1
0
0

1

A ,

0

@
0
2
1

1

A

+

.

λ = 1 : ker

0

@
2 2 ¡4
0 0 4
0 0 2

1

A =

*0

@
1

¡1
0

1

A

+

.
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An eigenbasis is (1, 0, 0)T , (0, 2, 1)T and (1,¡1, 0)T . Setting

P =

0

@
1 0 1
0 2 ¡1
0 1 0

1

A then P¡1CP = diag(3, 3, 1).

(d) D has eigenvalues 6, 6, 9. Note that

λ = 6 : ker

0

@
¡1 ¡3 ¡5
2 3 4

¡1 0 1

1

A =

*0

@
1

¡2
1

1

A

+

.

λ = 9 : ker

0

@
¡4 ¡3 ¡5
2 0 4

¡1 0 ¡2

1

A =

*0

@
¡2
1
1

1

A

+

The 6-eigenvectors are non-zero multiples of (1,¡2, 1)T and the 9-eigenvectors are non-zero
multiples of (¡2, 1, 1)T . As we can …nd no more than two independent eigenvectors, then there
is no eigenbasis and D is not diagonalizable. In fact, we will shortly see that as soon as we
noted the multiplicity two eigenvalue 6 yielded only one independent eigenvector then D could
not be diagonalizable.

Example 47 Find a complex matrix P such that P¡1BP is diagonal, where B is as given in
Example 43.

Remark 48 When we de…ned ‘diagonalizability’ in De…nition 36 we were, strictly speaking,
de…ning ‘diagonalizability over R’. We would say that B is not diagonalizable over R as no
such matrix P with real entries exists, but B is diagonalizable over C as such a complex matrix
P does exist.

Solution. The roots of χB(x) = (x ¡ 1)2 + 1 are 1 § i. When the …eld of scalars is C, then
these are distinct complex eigenvalues and we know that B is diagonalizable over C. Note that

λ = 1 + i : ker

µ
¡i ¡1
1 ¡i

¶

=

¿µ
i
1

¶À

;

λ = 1¡ i : ker

µ
i ¡1
1 i

¶

=

¿µ
1
i

¶À

.

So we may take

P =

µ
i 1
1 i

¶

and …nd P¡1BP =

µ
1 + i 0
0 1¡ i

¶

.

Examples 43 and 46 cover the various eventualities that may arise when investigating the
diagonalizability of matrices. In summary, the checklist when testing a matrix for diagonaliz-
ability is as follows.
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Algorithm 49 (Determining Diagonalizability over R and C)
(a) Let A be an n£ n matrix. Determine its characteristic polynomial χA.
(b) If any of the roots of χA are not real, then A is not diagonalizable over R.
(c) If all the roots of χA are real and distinct then A is diagonalizable over R.
(d) If all the roots of χA are real, and for each root λ there are as many independent λ-
eigenvectors as repeated factors of x¡ λ in χA(x), then A is diagonalizable over R.
(c)’ If the roots of χA are distinct complex numbers then A is diagonalizable over C.
(d)’ If for each root λ of χA and there are as many independent λ-eigenvectors in Cn

col as
repeated factors of x¡ λ in χA(x), then A is diagonalizable over C.

(c), and the same result (c’) for complex matrices, were proven in Corollary 45.
(d), and it complex version (d’), will be proven in Corollary 52.

So a square matrix can fail to be diagonalizable using a real invertible matrix P when

² not all the roots of χA(x) are real – counting multiplicities and including complex roots,
χA(x) has n roots. However we will see (Proposition 51) that there are at most as many
independent λ-eigenvectors as repetitions of λ as a root. So if some roots are not real
we cannot hope to …nd n independent real eigenvectors. This particular problem can be
circumvented by seeking an invertible complex matrix P instead.

² some (real or complex) root λ of χA(x) has fewer independent λ-eigenvectors (in Rn
col or

Cn
col) than there are factors of x ¡ λ in χA(x).

The latter problem cannot be circumvented, however this latter possibility is reassuringly un-
likely. If a matrix’s entries contain experimental data or randomly selected entries – rather
than being a contrived exercise – then χA(x) will almost certainly have distinct complex roots
and so A will be diagonalizable using a complex invertible matrix P .

De…nition 50 Let A be an n £ n matrix with eigenvalue λ.
(a) The algebraic multiplicity of λ is the number of factors of x¡λ in the characteristic

polynomial χA(x).
(b) The geometric multiplicity of λ is the maximum number of linearly independent λ-

eigenvectors. This equals the dimension of the λ-eigenspace.

Proposition 51 The geometric multiplicity of an eigenvalue is less than or equal to its alge-
braic multiplicity.

Proof. Let g and a respectively denote the geometric and algebraic multiplicities of an eigen-
value λ of an n£n matrix A. There are then g independent λ-eigenvectors v1,v2, . . . ,vg which
we can extend these vectors to n independent vectors v1, . . . ,vn. If we put v1, . . . ,vn as the
columns of a matrix P then, arguing as in Theorem 40, we have

P¡1AP =

µ
λIg B
0 C

¶

,
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where B is a g£ (n¡g) matrix and C is (n¡g)£ (n¡g). By the product rule for determinants
we have

χA(x) = det(xIn ¡ A)

= det(P (xIn ¡ P¡1AP )P¡1)

= det(xIn ¡ P¡1AP )

= det

µ
(x ¡ λ)Ig ¡B

0 xIn¡g ¡ C

¶

= (x ¡ λ)gχC(x).

So there are at least g factors of x ¡ λ in χA(x) and hence a > g.

Corollary 52 Let A be a square matrix with all the roots of χA being real. Then A is di-
agonalizable if and only if, for each eigenvalue, its geometric multiplicity equals its algebraic
multiplicity.

Proof. Let the distinct eigenvalues of A be λ1, . . . , λk with geometric multiplicities g1, . . . , gk
and algebraic multiplicities a1, . . . , ak. By the previous proposition

g1 + ¢ ¢ ¢+ gk 6 a1 + ¢ ¢ ¢+ ak = degχA = n, (2.4)

the equalities following as all the roots of χA are real. We can …nd gi linearly independent

λi-eigenvectors v
(i)
1 , . . . ,v

(i)
gi for each i. If gi = ai for each i then we have n eigenvectors in

all, but if gi < ai for any i then g1 + ¢ ¢ ¢ + gk < n by (2.4), so we will not be able to …nd n
independent eigenvectors and no eigenbasis exists. It remains to show that if gi = ai for each i
then these n eigenvectors are indeed independent. Say that

kX

i=1

giX

j=1

α
(i)
j v

(i)
j = 0,

for some scalars α
(i)
j . As λ1, . . . , λk are distinct, arguing along the same lines as Proposition

44(b), it follows that

wi =

giX

j=1

α
(i)
j v

(i)
j = 0, for each i,

as wi is a λi-eigenvector (or 0). Now the vectors v
(i)
1 , . . . ,v

(i)
gi are independent and so α

(i)
j = 0

for each i and j, and hence these n vectors are indeed independent and so form an eigenbasis.

Remark 53 Implicit in the above proof is the fact that the eigenspaces form a direct sum,
whether or not the matrix (or linear map) is diagonalizable. From this point of view a matrix
(or linear map) is diagonalizable if and only if Rn

col (or V ) can be written as a direct sum of
eigenspaces.
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If we recall the matrices A,B,C,D from Example 43, we can now see that A meets criterion
(c) and so is diagonalizable; B meets criterion (b) and so is not diagonalizable over R but
does meet criterion (c)’ and is diagonalizable over C; matrix C meets criterion (d) and so is
diagonalizable over R; matrix D fails criteria (c) and (d) and so is not diagonalizable over
R, speci…cally because the eigenvalue λ = 6 has a greater algebraic multiplicity of 2 than its
geometric multiplicity of 1. This problem remains true when using complex numbers and so D
is also not diagonalizable over C.

Remark 54 (Diagonalizability over a general …eld) We can decide on the diagonalizabil-
ity of a matrix over a general …eld by following the same procedures as above. Firstly all the
roots of the characteristic polynomial need to be in the …eld, and then for each eigenvalue the
algebraic multiplicy needs to equal the geometric multiplicity. For example the matrix

B =

µ
1 ¡1
1 1

¶

has characteristic polynomial (x ¡ 1)2 + 1 = x2 ¡ 2x+ 2.

² Over C this is diagonalizable as B has distinct roots 1§ i.

² The same would be true over the …eld Q [i] = fq1 + q2i j q1, q2 2 Qg .

² Over R and Q the characteristic polynomial has no roots and so B is not diagonalizable.

² Over Z2 the characteristic polynomial equals x2 but the 0-eigenspace,
D
(1, 1)T

E
, is 1-

dimensional. As g0 = 1 < 2 = a0 then B is not diagonalizable.

² Over Z3 the characteristic polynomials has no roots as ¡1 = 2 has no square root and so
B is not diagonalizable.

² Over Z5 we note ¡1 = 4 = 22 and so x2 ¡ 2x + 2 = (x+ 1) (x ¡ 3). As B has distinct
eigenvalues it is diagonalizable.

Example 55 Show that the matrix A below is diagonalizable and …nd An where n is a positive
integer.

A =

0

@
2 2 ¡2
1 3 ¡1

¡1 1 1

1

A.

Solution. Adding column 2 of xI ¡A to column 1, we can see that χA(x) equals
¯
¯
¯
¯
¯
¯

x ¡ 2 ¡2 2
¡1 x ¡ 3 1
1 ¡1 x ¡ 1

¯
¯
¯
¯
¯
¯
=

¯
¯
¯
¯
¯
¯

x ¡ 4 ¡2 2
x ¡ 4 x ¡ 3 1
0 ¡1 x ¡ 1

¯
¯
¯
¯
¯
¯

=

¯
¯
¯
¯
¯
¯

x ¡ 4 ¡2 2
0 x ¡ 1 ¡1
0 ¡1 x ¡ 1

¯
¯
¯
¯
¯
¯
= (x ¡ 4)(x ¡ 2)x.
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Hence the eigenvalues are λ = 0, 2, 4. That they are distinct implies immediately that A is
diagonalizable. Note

λ = 0: ker

0

@
¡2 ¡2 2
¡1 ¡3 1
1 ¡1 ¡1

1

A =

*0

@
1
0
1

1

A

+

;

λ = 2: ker

0

@
0 ¡2 2

¡1 ¡1 1
1 ¡1 1

1

A =

*0

@
0
1
1

1

A

+

;

λ = 4: ker

0

@
2 ¡2 2

¡1 1 1
1 ¡1 3

1

A =

*0

@
1
1
0

1

A

+

.

So three independent eigenvectors are (1, 0, 1)T , (0, 1, 1)T , (1, 1, 0)T . If we set

P =

0

@
1 0 1
0 1 1
1 1 0

1

A so that P¡1 =
1

2

0

@
1 ¡1 1

¡1 1 1
1 1 ¡1

1

A,

then P¡1AP = diag(0, 2, 4) and P¡1AnP = (P¡1AP )n = diag(0, 2n, 4n). Finally An equals

0

@
1 0 1
0 1 1
1 1 0

1

A

0

@
0 0 0
0 2n 0
0 0 4n

1

A 1

2

0

@
1 ¡1 1

¡1 1 1
1 1 ¡1

1

A

=

0

@
22n¡1 22n¡1 ¡22n¡1

22n¡1 ¡ 2n¡1 2n¡1 + 22n¡1 2n¡1 ¡ 22n¡1

¡2n¡1 2n¡1 2n¡1

1

A.

Example 56 Let

A =

0

@
6 1 2
0 7 2
0 ¡2 2

1

A.

(a) Show that A has two eigenvalues λ1 and λ2. Is A diagonalizable?
(b) Show further that A2 = (λ1 + λ2)A ¡ λ1λ2I. Are there scalars a0, a1, . . . , an, for some n,
such that

anA
n + an¡1A

n¡1 + ¢ ¢ ¢+ a0I = diag(1, 2, 3) ?

Solution. (a) We have

χA(x) =

¯
¯
¯
¯
¯
¯

x ¡ 6 ¡1 ¡2
0 x ¡ 7 ¡2
0 2 x ¡ 2

¯
¯
¯
¯
¯
¯
= (x¡ 6) f(x ¡ 7)(x ¡ 2) + 4g = (x¡ 6)2(x ¡ 3).
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As one of the eigenvalues is repeated then we cannot immediately decide onA’s diagonalizability.
Investigating the repeated eigenvalue we see

λ1 = 6: ker

0

@
0 ¡1 ¡2
0 ¡1 ¡2
0 2 4

1

A =

*0

@
1
0
0

1

A ,

0

@
0
2

¡1

1

A

+

,

and this is su¢cient to con…rm that A is diagonalizable. Further

A2 ¡ (λ1 + λ2)A+ λ1λ2I

= A2 ¡ 9A+ 18I

=

0

@
36 9 18
0 45 18
0 ¡18 0

1

A ¡ 9

0

@
6 1 2
0 7 2
0 ¡2 2

1

A+

0

@
18 0 0
0 18 0
0 0 18

1

A = 0.

So A2 = 9A ¡ 18I can be written as a linear combination of A and I, and likewise

A3 = 9A2 ¡ 18A = 81A ¡ 180I

can also be written as such a linear combination. More generally (say using a proof by induction)
we …nd that any polynomial in A can be written as a linear combination of A and I. However
if diag(1, 2, 3) = αA+ βI for some α, β then, just looking at the diagonal entries, we’d have

6α+ β = 1, 7α+ β = 2, 2α+ β = 3,

and, with a quick check, we see this system is inconsistent. Hence diag(1, 2, 3) cannot be
expressed as a polynomial in A and no such scalars a0, a1, . . . , an exist.

Example 57 Determine xn and yn where x0 = 1, y0 = 0 and

xn+1 = xn ¡ yn and yn+1 = xn + yn for n > 0.

Solution. We can rewrite the two recurrence relations as a single recurrence relation involving
a vector, namely

µ
xn
yn

¶

=

µ
1 ¡1
1 1

¶µ
xn¡1
yn¡1

¶

=

µ
1 ¡1
1 1

¶n µ
x0
y0

¶

.

From Example 47 we have

P¡1

µ
1 ¡1
1 1

¶

P =

µ
1 + i 0
0 1¡ i

¶

where P =

µ
i 1
1 i

¶

.

So µ
1 ¡1
1 1

¶n

= P

µ
1 + i 0
0 1¡ i

¶n

P¡1

=

µ
i 1
1 i

¶µ
(1 + i)n 0
0 (1¡ i)n

¶
¡
¡1
2

¢
µ

i ¡1
¡1 i

¶

= 1
2

µ
(1 + i)n + (1¡ i)n i(1¡ i)n ¡ i(1 + i)n

i(1¡ i)n ¡ i(1 + i)n (1 + i)n + (1¡ i)n

¶

= 1
2

µ
2Re(1 + i)n 2 Im (1 + i)n

2 Im (1 + i)n 2Re(1 + i)n

¶

.
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By De Moivre’s theorem, and noting 1 + i =
p
2cis (π/4), we have

µ
xn
yn

¶

=

µ
Re(1 + i)n Im (1 + i)n

Im (1 + i)n Re(1 + i)n

¶µ
1
0

¶

=

µ
Re(1 + i)n

Im (1 + i)n

¶

= 2n/2
µ
cos (nπ/4)
sin (nπ/4)

¶

.

We brie‡y return to our …rst question from the start of the section: why might diago-
nalizability be a useful de…nition? We have seen that it can be computationally helpful, but
representing a linear map by a diagonal matrix also helps us appreciate the e¤ect of the linear
map.

For each choice of basis of a …nite dimensional vector space, a linear map is represented
by a certain matrix. So a sensible question is: is there a preferential basis to best describe
the linear map? Certainly if we can produce a diagonal matrix representative this will be a
computational improvement but we will also better appreciate how the linear map transforms
the vector space. To conclude, we recall that some matrices are not diagonalizable; this just
invites the more re…ned question: into what preferred forms might we be able to change those
matrices with a sensible choice of co-ordinates?
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