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1 Introduction to chemical reaction networks

This chapter is meant as a gentle introduction to some of the main themes in the course B5.1
Stochastic modelling of biological processes. The idea is to build intuition towards some of the
detail we will see later.

Many biological models can be formally seen as chemical reaction networks, or CRNs for short.
This includes not just models from biochemistry and physiology, but also models of ecosystems,
and epidemiological models for example.

Informally, chemical reactions are processes which cause the conversion of some combination of
species into some other combination of species. We might write

A1 + A2 → A3

to mean that a molecule each of species A1 and A2 can combine together to produce a molecule
of species A3. A CRN is simply a collection of chemical reactions.

Although we will often refer to the quantities involved as “chemical species”, they may equally
well refer to:

• Biological species in an ecological model. E.g. A + B → 2A could caricature the process
where A predates on B and this, in turn, allows A to reproduce.

• Subpopulations such as susceptible, infected or recovered individuals in an epidemiological
model. E.g., S+ I → 2I could represent a susceptible and infected individual meeting, and
the susceptible individual becoming infected.

• Gene expression-levels, protein activation states, and so forth.

To visualise a CRN, we could imagine many different kinds of molecules, or individuals, moving
about and colliding; and when this happens there is a chance of a reaction occurring, leading
to the creation or destruction of species. If we consider a biological population, the “reaction”
could refer to, for example, infection, competition, mutualism, predation, etc.

1.1 Key definitions

Let us introduce some basic concepts which allow us to define and discuss CRNs more formally.
Let S be a set of species which will be, unless stated otherwise, finite. Let ZS≥0 be the set of
formal linear combinations of elements of S with nonnegative integer coefficients. Each element
in ZS≥0 is termed a complex (on the species of S). The sum of coefficients in a complex is
the molecularity of the complex. The zero complex, denoted 0, is important and will figure
frequently. (It is also sometimes called the empty complex for obvious reasons.)

Example 1.1 (Complexes). If S = {S1, S2, S3}, then 6S1+2S3 would be an example of a complex,
namely, an element of ZS≥0. The coefficients of this complex would be (6, 0, 2), and their sum,
8, would be its molecularity.

B5.1 Additional Notes (version of January 5, 2024)
Corrections and comments to Murad Banaji

Murad Banaji



1.1 Key definitions 4

A reaction is an ordered pair of complexes (C1, C2) ∈ ZS≥0 × ZS≥0, which we prefer to write as
C1 → C2 to remind us that complex C1 is being converted into the complex C2. In this reaction,
C1 is the reactant complex, and C2 is the product complex. The order of the reaction is the
molecularity of its reactant complex C1.

Definition 1.2 (Nonnegative orthant and positive orthant). The nonnegative orthant in Rn
is defined as Rn≥0 = {x ∈ Rn : xi ≥ 0 for i = 1, . . . , n}. The positive orthant in Rn is defined as
Rn+ = {x ∈ Rn : xi > 0 for i = 1, . . . , n}. Clearly the nonnegative orthant is the closure of the
positive orthant. We define Zn≥0 and Zn+ similarly.

Given a fixed set of n species, it is common practice to identify a complex involving these
species with the vector in Zn≥0 of its coefficients, in which case adding and subtracting complexes
makes sense: with this convention, C2 − C1 is termed the reaction vector of the reaction. Its
components may be positive, negative or zero, and tell us the net production or consumption of
each species in the reaction.

In the example A1+A2 → A3 above, A1+A2 is the reactant complex, A3 is the product complex;
and the reaction vector is (−1,−1, 1)t, assuming that A1,A2 and A3 are the only species involved
in this CRN. The reaction is second order.

Definition 1.3 (Chemical reaction network). A CRN is a pair (S,R) where S is a finite set
of species; and R ⊆ ZS≥0 × ZS≥0 is a set of reactions on these species.

A useful way to visualise a CRN is via its Euclidean embedded graph. Given a CRN involving
n species, we consider each complex as a node in Zn≥0, and each reaction as a vector between
nodes. Picturing an abstract CRN as a set of vectors, each pushing us in a different direction, is
immensely useful in both deterministic and stochastic settings.

Example 1.4 (The Euclidean embedded graph). The fol-
lowing CRN has Euclidean embedded graph shown to the right

2A2 −→ 2A1, 2A1 −→ A2, 2A1 −→ 2A1 + A2 .

The reaction vectors tell us in what direction each reaction
“pushes” the state of the system when it fires.

A1

A2

Consider a CRN with n species and m reactions, and suppose we choose an ordering on the
species and reactions. Let ζ1, . . . , ζn be the reaction vectors of the CRN. Then the matrix
Γ = [ζ1 | ζ2 | · · · | ζm] with reaction vectors as columns is the stoichiometric matrix of the
network. The stoichiometric classes of the CRN are the intersections of cosets of im Γ and
Rn≥0.

It is often useful to treat processes as chemical reactions, even when they are, strictly speaking,
not. Let’s think of some examples:
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• We’ve already seen that in an epidemiological model we may write S + I → 2I for the
process where a susceptible individual S interacts with an infected individual I and (with
some probability) the susceptible individual becomes infected.

• We may treat a single type of molecule as two different species in two different com-
partments; and then treat its movement from one compartment to another as a chemical
reaction. In this case we might write Ai 
 Aj where Ai refers to the species A in com-
partment i and Aj refers to the same species but in compartment j.

• If a chemical species A flows into the compartment of interest to us, or is created from
some other species which is abundant and we do not wish to model, then we might write
0→ A for this process. Similarly, we can write A → 0 for the degradation of A into species
we are uninterested in; or for the outflow of A from the compartment of interest.

• We will often be interested in reactions such as A → 2A; again, we appear to be creating
a molecule of A from nowhere; but we should think of this reaction as involving a hidden
species which we are omitting from our model.

Reaction networks are often associated with conserved quantities. For example, if we have the
single reaction A 
 B, then we see that the total number of molecules of A and B is conserved.
Given a CRN with stoichiometric matrix Γ , we will see that for each element of ker Γ t we have a
linear conservation law associated with any deterministic or stochastic model of the network.

Example 1.5 (An epidemiological model). Consider a Susceptible-Infectious-Recovered-Vaccinated
model:

S+ I → 2I, I → R, S → V .

The meanings of the three “reactions” should be clear. The network has stoichiometric matrix

S
+
I
→2I

I
→R

S
→V

S
I
R
V


-1 0 -1
1 -1 0
0 1 0
0 0 1


It is straightforward to see that the total number of individuals S + I + R + V is a conserved
quantity. This is equivalent to the observation that the vector (1, 1, 1, 1)t is orthogonal to each
reaction vector.

1.2 Modelling CRNs

Models of CRNs explore the evolution of numbers or concentrations of species in time and,
for more complicated models, in space.
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Deterministic and stochastic models. Depending on the assumptions we make, we can get
either deterministic models involving ordinary differential equations (ODEs) or partial differential
equations (PDEs); or stochastic models in which the evolution follows probabilistic rules. It is
stochastic models which are the focus of this course, but we are often interested in comparing
their behaviour to the behaviour of deterministic models, so we need to understand both.

Kinetics. Apart from knowing the actual reactions, in order to build models of CRNs, we need
rules telling us the kinetics: the rates – or “probabilities per unit time” – of occurrence of each
reaction in a network. These rates will, in general, depend on the concentrations or numbers of
species present at each particular moment.

Some choices we make for the kinetics follow very naturally from physical assumptions. For ex-
ample, in the stochastic case, we will often make the time-homogeneous, Markov assumption,
roughly, that reaction rates depend on the current state of the system, but not its previous history,
and not on external factors. It is also often natural to assume that the rate of a given reaction
depends only the concentrations/numbers of molecules appearing in its reactant complex, as
these are the molecules that need to be present in order for the reaction to occur.

Remark 1.6 (Differential equations to study stochastic models). We will frequently write
down and work with differential equations describing the evolution of probabilities or probability
density functions (e.g., master equations, the Kolmogorov backward equation, the Fokker-
Planck equation, etc.). We can think of studying such equations as using deterministic tools,
namely, differential equations, to help us understand a stochastic process. It should not be
confused with deterministic modelling.

Remark 1.7 (Deterministic to stochastic and back again). The nature of the models we
study depends fundamentally on the scale at which we observe a system. For example, at the very
detailed scale, we might consider studying deterministic models, where we track each individual
molecule in space and time as it moves, collides with other particles, reacts with some, etc.
The complexity rapidly becomes immense, and it is natural to simplify the picture by moving to
stochastic models: we do not try to follow all the particles; rather the state of a particle colliding
with millions of others is treated as a collection of random variables – a stochastic process.
If we increase the scale still further, we no longer focus on individual particles, but rather on
concentrations, gradients, etc., which we hope to study using differential equations: we end up
back again with deterministic models.

Writing down a model of a CRN involves specifying:

1. The CRN itself, i.e., the set of species and reactions involved;

2. The modelling methodology (e.g. deterministic or stochastic);

3. The kinetics, i.e., the rates or probabilities of reactions occurring;

4. The setting: are we allowing diffusion, or other physical/environmental processes as part
of the model.

Time. We also need to specify how we are treating time: for example, time could proceed
in discrete steps, or could be continuous. In this course, we will focus on continuous time;
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1.3 Deterministic models of reaction networks 7

but sometimes we will look at “time-discretised” versions of the models we write down for the
purposes of simulation.

Analysis and computation. Intelligently approaching CRNs often involves a mixture of analysis
and computation. In both deterministic and stochastic cases, there are deep and difficult questions
connected with how best to simulate models; and we will be thinking of some of these questions
in the stochastic case during this course. In fact, sometimes we will do considerable work in order
to arrive at formulae we can’t hope to solve, but have to approach numerically!

Model outputs. What are we interested in getting out from models of CRNs? We may want
to consider short-term or transient behaviour; or focus only on long-term or steady state be-
haviour. In deterministic models, long-term behaviour corresponds to limit sets of the associated
dynamical systems. In stochastic models, long-term behaviour can correspond, for example, to
stationary measures (or distributions) (if these exist).

In stochastic models, only in the simplest cases can we follow all probabilities for all time. Often
we have to make do with finding stationary distributions; or tracking moments of distributions
over time; or constructing algorithms to approximate the quantities we want to calculate.

1.3 Deterministic models of reaction networks

In these models, chemical concentrations are taken to be nonnegative real numbers which vary
in time and, possibly, space. ODE models arise from the assumption that the system is “well-
mixed”, and so chemical concentrations do not vary in space. PDE models allow chemical
concentrations to vary in space, for example via diffusion or advection, and so are inherently
more complicated than ODE models.

In a CRN involving n species, the state of the system is a vector in Rn≥0: its kth component
is the concentration of the kth species. We expect this concentration vector to vary in time
(ODE case); or time and/or space (PDE case). The basic assumption behind these deterministic
models is that there are so many molecules of every species in any given “region” that we can
effectively ignore small fluctuations, and stochastic effects. We will explore this assumption in
some detail in this course, and see how it can break down.

Remark 1.8. Even in the case of ODE models of CRNs, there is still a lot that is not known.
Many exciting theorems have been proved about ODE models of CRNs in the last twenty years,
but there are still some big open conjectures.

One common choice of kinetics is mass action kinetics which arises, roughly speaking, from the
assumption that the probability of a reaction occurring is proportional to the probability of the
molecules in its reactant complex “meeting” each other. Both deterministic mass action kinetics
and the stochastic version, stochastic mass action kinetics, will be discussed further below.

Remark 1.9 (Kinetics other than mass action). Mass action is by no means the only possible
choice of reaction kinetics for either deterministic or stochastic models. Even in the deterministic
case, there are sometimes very good reasons why we might expect reaction rates to deviate from
mass action.
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Autonomous and nonautonomous models. While the simplest models give rise to au-
tonomous systems of differential equations (i.e., there is no explicit dependence on time), we
could also allow reaction rates to depend explicitly on time. You can think, for example, of a
container which is gradually being heated over time, or whose volume is changing periodically,
altering the rate at which reactions occur.

1.3.1 ODE models of CRNs

Consider a system of m chemical reactions on n species X1, . . . ,Xn, evolving in a well-mixed
container. Let xi denote the concentration of species Xi, and let x denote the vector (x1, . . . , xn)

t,
dependent on time t. Let vj(x) be the rate of the jth reaction, and let v(x) denote the vector of
reaction rates. Finally, let ζ1, . . . , ζm be the reaction vectors of the reactions involved, and let

Γ = [ζ1 | ζ2 | · · · | ζm]

be the n×m stoichiometric matrix obtained by writing the reaction vectors as the columns of a
matrix. Then we can write down the ODE governing the evolution of the species concentrations
(on Rn≥0 or Rn>0 for example) as

ẋ = v1(x)ζ1 + . . .+ vm(x)ζm ,

or, more briefly, as

ẋ = Γv(x) . (1)

This form is quite general and makes no assumptions about kinetics. But we have assumed that
reaction rates do not explicitly depend on time. We also always assume that v is sufficiently
well-behaved to guarantee existence and uniqueness of solutions, for example, locally Lipschitz.

We could discretise (1) to get

x(t+ ∆t) ' x(t) + Γv(x(t))∆t

which would form the natural starting point for numerical schemes to integrate the ODE. Given
an initial condition at time 0, we could also naturally recast (1) as an integral equation

x(t) = x(0) + Γ

[∫ t
0

v(x(s))ds

]
, (2)

which could also be written

x(t) = x(0) +

[∫ t
0

v1(x(s))ds

]
ζ1 +

[∫ t
0

v2(x(s))ds

]
ζ2 + · · ·+

[∫ t
0

vm(x(s))ds

]
ζm . (3)

Later on, we will see stochastic analogues of all of these equations, and it will be helpful to look
back to compare and contrast the determistic and stochastic evolutions equations.

From (1) we immediately see, for example, that if p is any vector in ker Γ t, then along any
trajectory of the system

d

dt
ptx = ptΓv(x) = 0,
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1.3 Deterministic models of reaction networks 9

i.e., ptx is a conserved (linear) quantity. This justifies our earlier claim that each element of
ker Γ t corresponds to a linear conservation law; we will see that this is also true in the stochastic
case.

Exercise 1.10 (Necessary and sufficient conditions for bounded stoichiometric classes).
We may assume the following result which is a straightforward corollary of Farkas’ Lemma in
convex geometry (it is sometimes called “Gordan’s alternative”):

Let S be a linear subspace of Rn, and S⊥ the orthogonal complement of S. Then
one of the following two occurs:

• S ∩ Rn≥0 = {0}; or

• S⊥ ∩ Rn+ 6= ∅.

With the help of this result, prove the following claim:

Claim. The following are equivalent for a CRN with stoichiometric matrix Γ . (i) There exists a
positive vector p ∈ ker Γ t; (ii) all stoichiometric classes of the CRN are bounded. (It may help
to note from basic linear algebra that im Γ and ker Γ t are orthogonal subspaces of Rn.)

Except in the simplest cases, we would not expect to be able to solve (1) explicitly. However, the
goal would often be to carry out a qualitative analysis of its solutions and find out, for example, the
number and stability of steady states; whether periodic solutions are possible; whether solutions
can become unbounded or converge to the boundary of the state space, etc.

1.3.2 Deterministic mass action kinetics

Let C1 and C2 be complexes and consider the reaction C1 → C2. Deterministic mass action
kinetics is the assumption that the rate of this reaction is proportional to the concentration of
each species in C1 to the power of its stoichiometry in C1. The constant of proportionality is
termed the rate constant of the reaction. For example, a reaction with reactant complex

A+ B

would proceed at rate kab where k is the rate constant, a is the concentration of A, and b is
the concentration of B. Similarly, a reaction with reactant complex

2A+ B

would proceed at rate ka2b. More generally, a reaction with reactant complex

α1A1 + α2A2 + · · ·+ αnAn ,

with mass action kinetics has rate

kaα1

1 a
α2

2 · · ·a
αn
n ,
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1.4 Introduction to stochastic models of CRNs 10

where ai is the concentration of Ai, and k is the rate constant of the reaction.

The assumption of mass action comes from considering the probabilities of molecules meeting in
a “well-mixed” environment. We will see this in more detail when we examine stochastic mass
action kinetics later.

1.3.3 PDE models of CRNs

ODE models of CRNs arise from the assumption that the reactions are occurring in a well-mixed
compartment – the concentrations of species depend on time, but do not vary in space. If we
cannot assume this, then we need to consider concentrations depending on both time and space.
We might, for example, introduce diffusion into a CRN model, to get a reaction-diffusion model.
In this case we obtain, for the evolution of the concentration vector x in time and space:

∂x

∂t
= Γv(x) +D∇2x , (4)

where D is a diagonal matrix of diffusion coefficients, and ∇2x is the vector obtained by the
operation of the Laplacian on each component of x, namely (∇2x1, . . . ,∇2xn)t. Note that in (4)
x is the vector of chemical concentrations which depends on time and a spatial variable whose
name we have not written down.

Reaction-diffusion equations give rise to fundamentally new phenomena, such as spatio-temporal
patterns (e.g., travelling waves), and diffusion-driven instability, leading to the formation of
complex spatial patterns. Spatial models have been most intensively used in biology to help
understand the process of biological pattern formation.

Apart from diffusion, we may also wish to introduce other transport processes, such as advection,
into spatial models. In this case we would need further space-dependent terms in (4), involving
partial derivatives of the concentration vector x with respect to the spatial variables.

Understanding spatial CRN models in the deterministic setting allows us to write down the
stochastic analogues of these models.

1.4 Introduction to stochastic models of CRNs

The state space. While we track species concentrations in differential equation models of
CRNs, we track species numbers in stochastic models. Consequently, while the state space of
an ODE model of a CRN on n chemical species is some subset of Rn≥0, the state space of the
corresponding stochastic model will be some subset of Zn≥0. The state of the system at time t,
which we will denote by X(t), is now a random variable taking values in (some subset of) Zn≥0.
Its jth component is the number of molecules of species j present at time t.

Stochastic processes. The collection of random variables X(t) (one for each t in some time
domain T ⊆ R) defines a stochastic process. The abstract probability space which forms the
common domain of all the X(t) in general isn’t specified, but it can be helpful to consider it
as the (function) space of all sample paths, with some appropriate σ-algebra and probability
measure. When we carry out stochastic simulations of CRNs, it is often sample paths that we
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compute. Knowing the distribution of X(t) for each t, conditional on some initial distribution,
can be regarded as knowing the “solution” of our stochastic model. But sometimes we may also
be interested in features of sample paths not necessarily visible in the distributions of X(t), e.g.,
if there is some “periodic” behaviour.

Example 1.11 (Stochastic models and the Euclidean embedded graph). Recall Exam-
ple 1.4 where we plotted the Euclidean embedded graph of the CRN

2A2 −→ 2A1, 2A1 −→ A2, 2A1 −→ 2A1 + A2 .

A1

A2

This picture helps us understand the evolution: given an initial point in Z2≥0, whenever a reaction
fires, we move along the corresponding reaction vector to a new grid point. We can thus visualise
the evolution as a walk on Z2≥0 (in fact a proper subset of Z2≥0 in this case – can you see why?).
This walk has an element of randomness, because

• We don’t know exactly when a reaction will fire.

• We don’t know which reaction will fire first.

Nevertheless, the walk is constrained to move in one of at most three possible directions at
each step. We already have, in this example, the intuition for how an algorithm to simulate the
evolution of a CRN should proceed.

Reaction intensities. Associated with any state, say x, and any reaction, say the jth reaction,
we have a stochastic reaction rate, or intensity, or propensity say vj(x). (You will see all
three of these terms in these notes, the course text, and other texts; but please remember that
they mean the same thing!) We will give a precise meaning to vj(x) later, but note for now that
the probability of reaction j occurring in a time interval of length ∆t is equal to vj(x)∆t+o(∆t),
conditional on the system remaining in state x until the reaction occurs. We will justify and more
fully discuss this claim later.

Intensities, being probabilities per unit time, are always nonnegative; but they need not be less
than 1. We will consider how we might set intensities later on; but for the moment we make only
the assumption that:

If there are sufficient molecules of all the species in the reactant complex of a reaction
for the reaction to proceed, then its intensity is positive. If there are insufficient
molecules for the reaction to proceed, then its intensity is zero.
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1.4 Introduction to stochastic models of CRNs 12

It is also useful (to simplify various calculations) to formally set the intensity associated with any
unphysical state (e.g., a state with some negative components) to be zero.

The following two examples demonstrate that the state space of a stochastic model of a CRN
may depend on the initial state, and may be finite or infinite.

Example 1.12 (Finite state space). Consider the CRN consisting of a single, reversible, dimeri-
sation reaction, 2A 
 B (this is an abbreviation for the two reactions 2A → B and B → 2A).
Let the initial state consist of 3molecules of B and one molecule of A. With our basic assumptions
about intensities above, the state space consists of the four points {(1, 3), (3, 2), (5, 1), (7, 0)} in
Z2≥0, where the first entry in each vector is the number of molecules of A and the second is the
number of molecules of B.

Example 1.13 (Infinite state space). Consider the CRN consisting of two reactions involving
a single species 0 
 2A (namely, 0 → 2A, 2A → 0). With our basic assumptions about
intensities,

• if the initial number of molecules is even, the state space consists of all the nonnegative,
even integers;

• if the initial number of molecules is odd, then the state space consists of all nonnegative,
odd integers.

The definition of reaction vectors and the stoichiometric matrix are exactly as in the deterministic
case. As an immediate consequence of the result in Exercise 1.10, we also have the following
result:

Exercise 1.14 (Necessary and sufficient conditions for a finite state space). Consider a
CRN with stoichiometric matrix Γ , and suppose that there exists a positive vector p ∈ ker Γ t.
Prove that (regardless of the initial state) the state space of any stochastic model of the CRN is
finite. [Hint: Use the result of Exercise 1.10.]

Remark 1.15. Note that the state space of a stochastic model may be finite even if stoichiometric
classes of the deterministic system are unbounded. For example, given the single reaction A → 0,
with n molecules of A initially, the state space is {0, . . . , n}, where these numbers denote the
number of molecules of A.

Remark 1.16 (Explicit time dependence). Although we generally assume time-homogeneity,
just as in the deterministic case, we might also want to consider “nonautonomous” evolution,
where the reaction intensities depend explicitly on time, and not just on the state of the system.
In this case we get stochastic processes which are not time-homogeneous.
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1.5 Comparing deterministic and stochastic models

We will frequently be interested in comparing the outputs of deterministic and stochastic models.
If we have a fixed volume in which the evolution takes place, we can easily pass back and
forth between numbers and concentrations; but we do have to be a bit careful when comparing
intensities with deterministic reaction rates. We will discuss more fully the relationship between
deterministic and stochastic mass action kinetics later. This will also allow us to examine examples
where the deterministic model loses some key information in the stochastic model.

One conclusion we may hope will sometime hold is that the mean behaviour of a stochastic model
matches the behaviour of the corresponding deterministic model. We will see situations where
this is the case, and others where it is not.

We will also see that there are many questions we can ask about stochastic models that we
cannot even ask about a deterministic model.

Finally, we will also see that there are some behaviours which occur in stochastic models which
are quite different to anything we might see in a deterministic model. Thus studying stochastic
models opens up a world of interesting behaviours going beyond the – already exotic – range of
behaviours seen in deterministic models.
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