Axiomatic Set Theory: Problem sheet 1

Α.

1. Write the following as formulas of LST:

(a) $x = \langle y, z \rangle$; (b) $x = y \times z$; (c) $x = y \cup \{y\}$; (d) "x is a successor set"; (e) $x = \omega$.

2. Deduce the Axiom of Pairs from the other axioms of ZF^{*}.

3. Assuming ZF, show that if a is a non-empty transitive set then $\emptyset \in a$.

В.

4. Which of the Axiom of Extensionality, the Empty Set Axiom, the Powerset Axiom, and the Axiom of Infinity hold in the structure $\langle \mathbb{Q}, \langle \rangle$? Also, find an instance of the Separation Schema that is true in $\langle \mathbb{Q}, \langle \rangle$ and one that is false.

5. Assuming ZF^* , show that there exists a *transitive* set M such that

(a) $\emptyset \in M$, and

(b) if $x \in M$ and $y \in M$, then $\{x, y\} \in M$, and

(c) every element of M contains at most two elements.

Show further that if σ is an axiom of ZF^{*}+AC other than the Axioms of Infinity, Unions and Powerset, then $\langle M, \in \rangle \vDash \sigma$. (It follows that if ZF^{*} is consistent then so is this reduced set of axioms, together with the Axiom of Choice.)

С.

6. (a) Assuming ZF (ie. ZF*+Foundation) prove that the following two definitions of "ordinal" are equivalent:

(i) An ordinal is a transitive set well-ordered by \in .

(ii) An ordinal is a transitive set totally ordered by \in .

(b) Prove the principle of induction for **On** using only ZF^* .

7. (ZF) Let H_{ω} denote the class of *hereditarily finite sets*, i.e. $H_{\omega} = \{x : TC(x) \text{ is finite}\}$. Prove that $H_{\omega} = V_{\omega}$ (and hence that H_{ω} is a set). Prove that $\langle V_{\omega}, \in \rangle \vDash$ the axiom of foundation, and $\langle V_{\omega}, \in \rangle \vDash \neg$ the axiom of infinity.

[It is easy, but tedious, to check that $\langle V_{\omega}, \in \rangle \vDash$ the other axioms of ZF. This shows that the other axioms of ZF do not imply the axiom of infinity.]