Axiomatic Set Theory: Problem sheet 4

Α.

- 1. Prove 7.1.2, 7.1.3, and 7.1.4.
- **2.** Prove 7.1.11 (30), ie. that "x is a finite sequence of elements of y" (ie. $x \in {}^{<\omega}y$) is Σ_0^{ZF} , assuming that (1)–(29) of 7.11 are all Σ_0^{ZF} .

B.

- **3.** Prove that "x is a well-ordering of y" is Δ_1^{ZF} .
- **4.** Show that for every Σ_1 formula $\phi(x_1, \ldots, x_n)$, there exists a corresponding Σ_0 formula $\psi(x_1, \ldots, x_n, y_1, \ldots, y_m)$ such that

$$ZF \vdash \forall x_1, \dots, x_n (\phi(x_1, \dots, x_n) \leftrightarrow \exists y_1, \dots, y_m \psi(x_1, \dots, x_n, y_1, \dots, y_m)).$$

- **5.** Prove that ordinal addition, multiplication and exponentiation are Δ_1^{ZF} .
- **6.** Prove that for any infinite cardinal κ , $cf(\kappa)$ is a regular cardinal.
- 7. Suppose κ, λ are infinite cardinals such that $\kappa \geq \lambda$. Prove that if $\lambda \geq cf(\kappa)$, then $\kappa^{\lambda} > \kappa$. Suppose now that $\lambda < cf(\kappa)$, and that κ has the property that for any cardinal μ , if $\mu < \kappa$ then $2^{\mu} \leq \kappa$. Prove that $\kappa^{\lambda} = \kappa$. Hence show that if GCH is assumed, then for any infinite cardinals κ, λ with $\kappa \geq \lambda$, we have $\kappa^{\lambda} = \kappa$ or κ^{+} .

C.

- **8.** Suppose κ is an uncountable regular cardinal. Let $g: \kappa \to \kappa$ be any function. Prove that for any $\alpha < \kappa$, there exists $\beta < \kappa$, with $\alpha \leq \beta$, such that β is closed under g (ie. for all $\gamma < \beta$, $g(\gamma) < \beta$).
- **9.** Let κ be an uncountable regular cardinal with the property that for any cardinal $\mu < \kappa$, we have $2^{\mu} < \kappa \dots (*)$.

Prove that (i) if α is any cardinal and $\alpha < \kappa$, then $|V_{\alpha}| < \kappa$, (ii) $|V_{\kappa}| = \kappa$, (iii) if κ is regular, then $\langle V_{\kappa}, \in \rangle \models \text{ ZFC}$.

(For (iii) you need consider only the replacement scheme, since we essentially showed that if α is a limit ordinal and $\alpha > \omega$, then $\langle V_{\alpha}, \in \rangle$ satisfies all the axioms of ZFC except, possibly, replacement.)

Deduce that in ZFC one cannot prove the existence of a cardinal that satisfies (*).