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1 Introduction

Commutative algebra is the study of commutative rings, with a focus on the commutative rings which arise
in algebraic geometry. As will be explained in the Part C course Introduction to Schemes, a commutative
ring corresponds to an affine scheme and in this sense, commutative algebra is a part of the theory of
schemes. Affine schemes are generalisations of affine varieties over fields. The class of rings, which arise
from affine varieties over fields (as their coordinate rings) is the class of finitely generated algebras over
fields, ie quotients of polynomial rings K|[z1, ..., x|, where K is a field. In the context of schemes, the most
commonly studied affine schemes are those which are of finite type over a noetherian affine scheme. The
corresponding class of rings is then the class of rings, which are finitely generated over a noetherian ring.

This class is the prime object of study of these notes.

Some history. Up to the end of the nineteenth century, one mainly studied finitely generated algebras
over fields given by explicit equations (ie by polynomials generating an ideal I, when the algebra has the
presentation K[xz1,...,2zx|/I). The study of commutative rings in abstracto only started in the 1930s and
it gathered a lot of momentum in the 1960s, when many geometric techniques became available through the

theory of schemes.

2 Preamble

All rings in these lectures are commutative unitary rings. A ring will be short for a commu-

tative unitary ring.
We assume that the reader is familiar with the content of the part A course Rings and Modules.
In particular, we assume that the following notions/terminology is known:

ring, product of rings, subring, domain (or integral domain, or entire ring), field, homomorphism of rings,
module over a ring, finitely generated module over a ring, ideal, ideal generated by a set, product of two
ideals, intersection of a family of ideals, sum of a family of ideals, coprime ideals, submodule, intersection
of family of submodules, sum of a family of submodules, submodule generated by a set, quotient module,
direct sum of modules over a ring, homomorphisms of modules over a ring, prime ideal, maximal ideal, ring
of polynomials over a ring, zero-divisor, unit, Chinese remainder theorem, Euclidean division, fraction field

of a domain.

The basic reference for this course is the book

Introduction to Commutative Algebra by M. F. Atiyah and I. G MacDonald. Perseus Books.
We shall refer to this book as ” AT”.

Note however that certain parts of section 8 and section 10 are not covered by this book.

If in doubt, all the terms (and the associated symbols, which are standard) in the list above are defined in
the first chapter of AT.

For (a lot) more material and more explanations on the material presented here, see the book

Commutative Algebra with a View Toward Algebraic Geometry by D. Eisenbud. Springer, Graduate Texts
in Mathematics 150.



Let R be aring. If I C R is an ideal in R, we shall say that I is non trivial if I # R (this is not entirely

standard terminology). The ideal I is principal if it can be generated by one element as an R-module.
We shall write R* := R\{0}.
An element € R is said to be nilpotent if there exists an integer n > 1 such that ™ = r-r---r (n-times) = 0.

The ring R is local if it has a single maximal ideal m. Note that in this case, every element of R\m is a unit
(because otherwise, any such element would be contained in a non trivial maximal ideal of R, which would
not coincide with m - see Lemma 2.4 below).

The prime ring of a ring R is the image of the unique ring homomorphism Z — R (which sends n € Z to

the corresponding multiple of 1 € R).

If R is a ring, a zero-divisor of R is an element r € R such that there exists an element ' € R\{0} such

that r - 7/ = 0. Note that 0 is always a zero-divisor of R.

A domain or (integral domain) is a ring R with the property that the set of zero-divisors of R consists only
of 0.

A Unique Factorisation Domain (UFD) or factorial ring is a domain R, which has the following property.

For any r € R\{0}, there is a sequence r1,...,r; € R (for some k > 1), st

(1) all the r; are irreducible;

(2) (r) = (r1---7e);
(3) if r{,...,7, is another sequence with properties (1) and (2), then k£ = k' and there is a permutation

o € Sp st (ri) = (r};) foralli € {1,... k}.

If R, T are rings, then T is said to be a R-algebra if there is a homomorphism of rings R — T. Note that
this homomorphism is part of the datum of a R-algebra, so that strictly speaking, it is not 1" which should
be called a R-algebra, but the homomorphism R — 7. Note also that a R-algebra T naturally carries a
structure of R-module. If ¢1 : R — T} and ¢5 : R — T5 are two R-algebras, a homomorphism of R-algebras
is a homomorphism of rings A : T} — T such that A o ¢; = ¢o.

A R-algebra ¢ : R — T is said to be finitely generated if there exists an integer k > 0 and a surjective
homomorphism of R-algebras R[x1,...,z;] — T (where R[x1,...,z5] = R if k = 0). Note the following
elementary fact: if R — T (resp. T — W) is a finitely generated R-algebra (resp. a finitely generated
T-algebra), then the composed map R — W makes W into a finitely generated R-algebra (why?).

If M is an R-module and S C M is a subset of M, we write
Ann(S) :={r € R|rm = 0for all m € S}
The set Annp(S) is an ideal of R (check), called the annihilator of S.
If I,J C R are ideals in R, we shall write
(I:J)={reR|rJ I}

From the definitions, we see that (I : .J) is also an ideal and that ((0) : J) = Ann(J). If z,y € R, we shall
often write (I : x) for (I : (z)), (x : I) for ((z),I) and (z : y) for ((x) : (y)). Note that if M is another ideal
of R, we have (I : M)N(J: M)=({InNJ:M) (why?).
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be a sequence of R-modules such that d;11 o d; = 0 for all ¢ € Z. Such a sequence is called a complezx of
R-modules. We shall say that the complex is ezact if ker(d;4+1) = Im(d;) for all i € Z.

For the record, we recall the following two basic results:
Theorem 2.1 (Chinese remainder theorem). Let R be a ring and let Iy, ..., I, be ideals of R. Let
k
¢:R— ][R/

i=1
be the ring homomorphism such that ¢(r) = Hi;l(r (mod I;)) for all € R. Then ker(¢) = Nk_ 1.
Furthermore the map ¢ is surjective iff I, + I; = R for any i,j € {1,...,k} such that i # j, and in that
case, we have NF_ I; = [[*_, I;.
(for the proof see Prop. 10 in AT).

Proposition 2.2 (Euclidean division). Let R be a ring. Let P(x),T(x) € Rlx] and suppose that the leading
coefficient of T'(x) is a unit of R. Then there exist unique polynomials Q(x), J(x) € R[z] such that

P(z) = Q)T (x) + J(x)

and deg(J(x)) < deg(T'(x)) (here we set the degree of the zero polynomial to be —o0).

We shall also need the following result from set theory.

A partial order on a set S is a relation < on S, such that

- (reflexivity) s < s for all s € S;

- (transitivity) if s <t and t < r for s,t,7 € S then s <r;

- (antisymmetry) if s <t and t < s for ¢, s € S then s =t¢.

If we also have

- (connexity) for all s,t € S, either s <tort<s

then the relation < is said to be a total order on S.

Let T C S be a subset and let b € S. We say that b is an upper bound for T if t < b for all t € T.

An element s € S is said to be a mazimal element of S if for all t € S, we have s <t iff s =¢. An element
s € S is said to be a minimal element of S if for all t € S, we have t < s iff s =¢.

Note that if S is partially ordered by the relation < and 7' C S is a subset, then the relation < restricts to
a partial order on T'.

Proposition 2.3 (Zorn’s lemma). Let < be a partial order on a non-empty set S. Suppose that for every
subset T C S, which is totally ordered (with the restriction of the relation < to T), there is an upper bound

for T in S. Then there exists a mazimal element in S.

Proof. Omitted. See any first course on set theory. Zorn’s lemma is a consequence of the axiom of
choice. [

A classical application of Zorn’s lemma is the following.



Lemma 2.4. Let R be a ring. If I C R be a non trivial ideal. Then there is a mazimal ideal M C R such
that I C M.

Proof. Let S be the set of all non trivial ideals containing /. Endow S with the relation given by inclusion.
If T C S is a totally ordered subset, then 7 has the upper bound Ujec7J (verify that this is an ideal
containing I; it is non trivial because otherwise we would have 1 € J for some J € T). Hence, by Zorn’s
lemma, there is a maximal element M in S. By definition, the ideal M has the property that whenever J
is a non trivial ideal containing I and M C J, then M = J. If J is an ideal of R, which does not contain
I, then we cannot have M C J (since M contains I). We conclude that for any non trivial ideal J of R, we
have M = J if M C J. In other words, M is a maximal ideal of R, which contains I. [

END OF LECTURE 1

3 The nilradical and the Jacobson radical

Definition 3.1. Let R be a ring. The nilradical of R is the set of nilpotent elements of R.

A ring R is called reduced if its nilradical is {0}.

The nilradical captures the ”infinitesimal part” of a ring. In the classical algebraic geometry of varieties,
the coordinate rings were always assumed to be reduced, and nilradicals did not play a role. Part of the

strength of scheme theory is that it allows the presence of infinitesimal phenomena.

Proposition 3.2. Let R be a ring. The nilradical of R is the intersection of all the prime ideals of R.

Proof. Suppose that f € R is a nilpotent element. Let p C R be a prime ideal. Some power of f is 0, which
is an element of p. In particular, f (modp) € A/p is a zero-divisor. Since p is a prime ideal, the ring A/p is
a domain and so f (modp) = 0 (mod p). In other words, f € p. We conclude that f is in the intersection of
all the prime ideals of R.

Conversely, suppose that f € R is not nilpotent. Let ¥ be the set of non trivial ideals I of R, such that for
all n > 1 we have f™ ¢ I. The set ¥ is non-empty, since (0) € X. If we endow this set with the relation
of inclusion, we may conclude from Zorn’s lemma that 3 contains a maximal element M (verify that the

assumptions of Zorn’s lemma are verified). We claim that M is a prime ideal.

To prove this, suppose that z,y € R and that =,y ¢ M. Note that the ideal () + M strictly contains M
and hence cannot belong to ¥ (by the maximality property of M). Similarly, the ideal (y) + M strictly
contains M and hence cannot belong to X. Hence there are integers n,,n, > 1 such that f* € (z) + M
and f™ € (y) + M. In other words, f™ = ajx 4+ my, where a; € R and m; € M and f™ = ayy + ma,
where as € R and mo € M. Thus

=™ = ayaszy + mg
where m3z € M. We thus see that xy & M, for otherwise we would have f"=*™s € M, which is not possible

since M € X. Since z,y € R were arbitrary, we conclude that M is a prime ideal.

Since M € %, for all n > 1 we have f™ ¢ M. In particular we have f & M. In other words, we have
exhibited a prime ideal in R, which does not contain f. In particular, f does not lies in the intersection of
all the prime ideals of R. O



Corollary 3.3. Let R be a ring. The nilradical of R is an ideal.

Note that this corollary can also easily be proven directly (without using Proposition 3.2) (exercise).
Examples. The nilradical of a domain is the zero ideal. The nilradical of Clz]/(z") is ().

Let I C R be an ideal. Let g : R — R/I be the quotient map and let N be the nilradical of R/I. The
radical t(I) of I is defined to be ¢~ 1(N'). From the definitions, we see that the nilradical of R coincides
with the radical ©((0)) of the 0 ideal. Abusing language, we will sometimes write t(R) for the nilradical of
R. Again from the definitions and from Proposition 3.2, we see that the radical of I has the two equivalent

descriptions:
- it is the set of elements f € R such that there exists an integer n > 1 such that f™ € I;
- it is the intersection of the prime ideals of R, which contain I.

Notice the following elementary properties of the operator v(e). Let I,J be a ideals of R. Then we have
t(t(I)) =t(I) and we have t(I N J) =(I) Ne(J) (why?).

An ideal, which coincides with its own radical is called a radical ideal.

Definition 3.4. Let R be a ring. The Jacobson radical of R is the intersection of all the mazximal ideals of
R.

By definition, the Jacobson radical of R contains the nilradical of R.

Let I C R be a non trivial ideal. Let ¢ : R — R/I be the quotient map and let J be the Jacobson radical of
R/I. The Jacobson radical of I is defined to be ¢~1(J). By definition, this coincides with the intersection

of all the maximal ideals containing I. Again by definition, the Jacobson radical of I contains the radical
of I.

Proposition 3.5 (Nakayama’s lemma). Let R be a ring. Let M be a finitely generated R-module. Let I be
an ideal of R, which is contained in the Jacobson radical of R. Suppose that IM = M (ie every m € M is
a finite sum of elements of the form a - n, where a € I and n € M ). Then M ~ (0).

Proof. Suppose for contradiction that M # (0). Let x1,...,25 be a set of generators of M and suppose
that s is minimal (ie every set of generators for M has at least s elements). By assumption, there are
elements aq,...,as € I such that

Tsg = a1x1 + -+ + as%s

so that (1 — ag)xs lies in the submodule M’ generated by z1,...,25_1. Here we set 29 := 0 if s = 1. Now
the element 1 — a, is a unit. Indeed, if 1 — as were not a unit then it would be contained in a maximal ideal
m of R (apply Lemma 2.4) and by assumption as € m so that we would have 1 € m, which is contradiction.
Hence

zs = ((1— as)_lal)xl +- 4+ (1= as)_las,l)xs,l. (1)
If s = 1 then we see from (1) that x5 = 0. This is a contradiction, since M # (0). Thus either M ~ (0) or
s> 1. If s > 1 we again see from (1) that M has s — 1 generators, which is also a contradiction. Hence
M~ (0). O

Corollary 3.6. Let R be a local ring with mazimal ideal m. Let M be a finitely generated R-module.
Let x1,...,2s € M be elements of M and suppose that x; (modm), ...z, (modm) € M/mM generate the
R/m-module M/mM. Then the elements x1,...,xs generate M.



Proof. Let M’ C M be the submodule generated by z1,...,zs. By assumption, we have M’ +mM = M
so that m(M/M') = M/M’. By Nakayama’s lemma, we thus have M/M’' ~ (0),ie M = M'. O

Corollary 3.7. Let R be a local ring with mazimal ideal m. Let M, N be finitely generated R-modules and let
¢: M — N be a homomorphism of R-modules. Suppose that the induced homomorphism M/mM — N/mN

is surjective. Then ¢ is surjective.

Proof. Let x1,...,x5 be generators of M. By assumption, the elements ¢(x1) (modm), ..., ¢(zs) (mod m)
generate N/m. Hence the elements ¢(z1),...,¢(zs) generate N by Corollary 3.6. In particular, ¢ is

surjective. [

Definition 3.8. A ring R is called a Jacobson ring if for all the non trivial ideals I of R, the Jacobson

radical of I coincides with the radical of 1.

From the definition, we see that any quotient of a Jacobson ring is also Jacobson.

We will study Jacobson rings in section 10 below. It is easy to see that the ring Z is Jacobson, and that any
field is Jacobson. So is K|[z], if K is a field, and in fact so is any finitely generated algebra over a Jacobson
ring (see Theorem 10.5 below). On the other hand, a local domain is never Jacobson unless it is a field

(why?). So for instance the ring of p-adic integers Z, (where p is a prime number) is not Jacobson.

END OF LECTURE 2

4 The spectrum of a ring

Let R be a ring. We shall write Spec(R) for the set of prime ideals of R.
If a € R is an ideal, we define

V(a) := {p € Spec(R) |p 2 a}

Lemma 4.1. The symbol V (o) has the following properties:
e V(a)UV(b)=V(a-b);

i ﬁiel Vi) = V(Zl a;);
e V(R)=0; V((0)) = Spec(R).

Proof. Straightforward. Left to the reader. [

An immediate consequence of Lemma 4.1 is that the sets V(a) (where a is an ideal of R) form the closed
sets of a topology on Spec(R). This topology is called the Zariski topology. The closed points in Spec(R)
are precisely the maximal ideals of R. If R is the coordinate ring of an affine variety W over an algebraically
closed field, the closed points correspond to the classical points of the variety (ie the simultaneous solutions
of the polynomials defining the variety), whereas the other prime ideals correspond to the irreducible closed

subvarieties of W.

From the definitions, we see that if R is a Jacobson ring, then the closed points are dense in any closed set

of Spec(R). This is not true for a general ring.



If $: R — T is a homomorphism of rings, there a map Spec(¢) : Spec(T') — Spec(R) given by the formula
p — ¢~ 1(p) (check that this is well-defined). If a is an ideal in R and b is the ideal generated in T by ¢(a),
we clearly have Spec(¢)~1(V(a)) = V(b), so that Spec(¢) is a continuous map for the Zariski topologies on
source and target. Notice also that if ¢ : T — P is another ring homomorphism, then we have from the
definition that Spec(¢) o Spec(1)) = Spec(¢) o ¢).

Lemma 4.2. Let ¢ : R — T be a surjective homomorphism of rings. Then Spec(¢) is injective and the
image of Spec(¢) is V (ker(¢)).

Proof. To see that Spec(¢) is injective, note that if p € Spec(T'), then p = ¢(¢~1(p)), since ¢ is surjective,
so distinct elements of Spec(T') have distinct images in Spec(R).

For the second statement, note first that the image of Spec(¢) is clearly contained in V'(ker(¢)). On the
other hand if p is a prime ideal containing ker(¢) (ie p € V(ker(¢))), then ¢(p) is a prime ideal of T' and
¢~ 1(p(p)) = p. Indeed ¢(p) is an ideal of T  since ¢ is surjective. Furthermore, we clearly have ¢~1(¢(p)) 2 p
and if 7 € $71(¢(p)) then there exists r’ € p such that ¢(r) = ¢(r’), so that ¢(r —1’) = 0. Since p contains
the kernel of ¢, we thus see that » € p. In other words ¢~1(¢(p)) = p. Finally, ¢(p) is a prime ideal of
T. Indeed, suppose that z,y € T and zy € ¢(p). Let 2,y € R such that ¢(2’') = z and ¢(y’') = y. Then
2y’ € ¢7H(p(p)) = p and so either 2’ € p or 3y € p, since p is prime. Hence either z € ¢(p) or y' € ¢(p).
All in all, we have shown that Spec(¢(p)) = p for any p € V (ker(¢)), as required. O

We shall see after Corollary 8.11 below that Spec(¢) is actually a homeomorphism onto its image (exercise:

prove this directly).
Lemma-Definition 4.3. Let f € R. The set

Dy(R) = Dy = {p € Spec(R) | f & p}

is open in Spec(R). The open sets of Spec(R) of the form Dy form a basis for the Zariski topology of
Spec(R). Furthermore, the topology of Spec(R) is quasi-compact.

The open sets of the form Dy are often called basic open sets (in Spec(R)). Recall that a set B of open sets
of a topological space X is said to be a basis for the topology of X if every open set of X can be written as
a union of open sets in B. A topological space X is called quasi-compact if: for every family (U;cr) of open

sets in X such that (J;c; Ui = X there exists a finite subset Iy C I such that {J;c; U; = X.

Proof. We shall prove that Dy is open. To see this, just notice that the complement of Dy in Spec(R) is
precisely V((f)), where (f) is the ideal generated by f.

We now prove that the open sets of Spec(R) of the form D form a basis for the Zariski topology of Spec(R).
Let a be an ideal. We have to show that
Spec(R)\V (a) := {p € Spec(R) |p 2 a} = | ] D5
il
for some index set I and some function r : I — R. Let r : I — a be an enumeration of a set of generators

of a. In view of Lemma 4.1, we have the required equality.

Finally, we show that Spec(R) is quasi-compact. In view of the fact that the open sets of Spec(R) of the
form Dj form a basis for the Zariski topology of Spec(R), we only need to show that if

Spec(R) = U D, (2)
iel



where 7 : I — R is a some function, then there is a finite subset Iy C I such that Spec(R) = U;c;, Dr(i)-

Now notice that by Lemma 4.1 and the proof of the first statement of the present lemma, the equality (2)
is equivalent to the equality

V(@) = V(1)) =0 (3)

iel
where we have used the short-hand (r(I)) for the ideal generated by all the r(i). Now the equality
V((r(I))) = 0 says that no prime ideal contains (r(I)). This is only possible if (r(I)) = R, for other-
wise (r(I)) would be contained in at least one maximal ideal and maximal ideals are prime. Now choose a
finite subset Io C I and a map c¢: Io — R such that 1 =3, ¢(i) - r(i). We then have }_,_; (r(i)) = R
and thus (;c;, V((r(i))) = 0, which is what we want. [
Lemma 4.4. Let a,b be ideals in R. Then V(a) = V(b) if and only if t(a) = ¢(b).
Proof. ”=": Suppose that for all prime ideal p of R, we have p D a iff p O b. Then we have t(a) = v(b)
by Proposition 3.2 (see before Definition 3.4).

7<= This is again a consequence of Proposition 3.2. [J

In particular, there is a one to one correspondence between radical ideals in R and closed subsets of Spec(R).
The closed subsets corresponding to prime ideals are called irreducible. If a, b are radical ideals then a C b
if and only if V(a) 2 V (b).

If R is the coordinate ring of an affine variety W over an algebraically closed field, the radical ideals

correspond to the closed (but not necessarily irreducible) subvarieties of W.

We conclude from Lemma 4.2, Lemma 4.4 and Lemma 4.1 that if ¢ : R — R/t((0)) is the quotient map,
then Spec(q) is bijective (and thus a homeomorphism - see after Lemma 4.2). So the Zariski topology ”does
not see the nilradical”.

Remark 4.5. Let R be a commutative ring and let a, b be two ideals in R. Then we have
(anb)-(anb)Ca-bCanb
and thus t(a - b) = v(anNb). In particular, we have
V(ia-b)=V(anb).

Note that if a and b are radical ideals then a N b is also a radical ideal, whereas a - b might not be.

END OF LECTURE 3

5 Localisation

Let R be aring. A subset S C R is said to be a multiplicative setif 1 € S and if xy € S whenever x,y € S.
A basic example of a multiplicative set is the set {1, f, 2, f3,...}, where f € R.

Let S C R be a multiplicative subset.

Consider the set R x .S (cartesian product). We define a relation ~ on R x S as follows. If (a, s), (b,t) € Rx S

then (a, s) ~ (b, t) iff there exists u € S such that u(ta — sb) = 0. The relation ~ is an equivalence relation

10



(verify) and we define S™'R to be (R x S)/ ~, ie ST R is the set of equivalence classes of R x S under ~. If
a € Rand s € S, we write a/s for the image of (a, s) in S R. We define a map +: ST'1Rx S™'R — S7'R
by the rule

(a/s,b/t) — (at + bs)/(st).
This is well-defined (verify). We also define a map - : S'R x S~'R — S71R by the rule

(a/s,b/t) — (ab)/(ts).
Again this is well-defined. One checks that these two maps provide S~ R with the structure of a commutative
unitary ring, whose identity element is 1/1. Here + give the addition in the ring and - gives the multiplication.
The 0 element in S~ R is then the element 0/1. There is natural ring homomorphism from R to Rg, given

by the formula r — r/1. By construction, if r € S, the element r/1 is invertible in R, with inverse 1/r.

We shall see in Lemma-Definition 5.1 below that S™!R is the "minimal extension” of R making every

element of S invertible.

Note that if R is a domain, the fraction field of R is the ring Rg\o. Note also that if R is a domain and
0 ¢ S, then ST'R is a domain. Indeed suppose that R is domain and that (a/s)(b/t) = 0, where a,b € R
and s,t € S. Then by definition we have u(ab) = 0 for some u € S, which implies that ab = 0 so that either
a =0 or b=0, in particular either a/s =0/1 or b/t = 0/1.

Note also that if 0 € S, then S™!R is the zero ring (ie 1 = 0 in S~*R. This simply follows from the fact
that in this case 0/1 is a unit in S~'R. More generally, the definition shows that S™!'R is the zero ring iff
for all € R, there is an s € S st sr = 0.

If M is an R-module, we may carry out a similar construction. We define a relation ~ on M x S as follows.
If (a,s),(b,t) € M x S then (a,s) ~ (b,t) iff there exists v € S such that u(ta — sb) = 0. The relation ~
is again an equivalence relation and we define S~'M to be (M x S)/ ~, ie S™1M is the set of equivalence
classes of M x S under ~. If a € M and s € S, we again write a/s for the image of (a,s) in S™'M. We
define a map +: S7'M x S™'M — S~'M by the rule

(a/s,b/t) — (at + bs/(st).
This is also well-defined. Similarly, we define the map - : ST'R x S~™'M — S~1M by the rule
(a/s,b/t) — (ab)/(ts).
Again, this is well-defined. One checks that these two maps provide S~'M with the structure of a S™'R-
module. Here + give the addition in the ring and - gives the scalar multiplication. The 0 element in S~'M

is then the element 0/1. The S~!R-module S~™'M carries a natural structure of R-module via the natural
map R — S™'R and there a natural map of R-modules M — S~1M, given by the formula m + m/1.

We shall also use the less cumbersome notation Rg for S~'R and Mg for S~1M. The ring Rg (resp. the
R-module Mg) is called the localisation of the ring R at S (resp. localisation of the R-module M at S).

Lemma-Definition 5.1. Let ¢ : R — R’ be a ring homomorphism. Let S C R be a multiplicative subset.
Suppose that ¢(S) consists of units of R'. Then there is a unique ring homomorphism ¢s = S~1¢ : Rg — R
such that ¢s(r/1) = ¢(r) for all r € R.

Proof. Define the map \ : Rg — R’ by the formula \(a/s) = ¢(a)(¢(s))~! for all a € R and s € S. We
show that A is well-defined. Suppose that (a,s) ~ (b,t). Then

Ab/t) = d(b)(6(1) ™
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and we have u(ta — sb) = 0 for some u € S. Thus ¢(u)(d(t)p(a) — d(s)p(b)) = 0 and since ¢(u) is a unit in
R, we have ¢(t)6(a) — 6()6(b) = 0. Thus ¢(t)p(a) = o(s)(b) and

Ma/s) = ¢(a)(é(s) ™" = o(b)(6(t) ™" = A(b/1).

Thus A is well-defined. We skip the straightforward verification that A is a ring homomorphism. We have
thus proven that there is a ring homomorphism ¢g : Rg — R’ such that ¢g(r/1) = ¢(r) for all » € R
(namely A\). We now prove unicity. Suppose that ¢’y : Rg — R’ is another ring homomorphism such that
¢s(r/1) = ¢(r) for all r € R. Then for any r € R and ¢ € S, we have

Ps(r/t) = ¢s((r/D(X/1) ™) = ¢s(r/D)Ps(t/1) ™ = ¢s(r)ds(t) ™ = ¢s(r/t)
and thus ¢y coincides with ¢g (and in particular with A). O
There is a similar result for modules:

Lemma 5.2. Let R be a ring and let S C R be a multiplicative subset. Let M be a R-module and suppose
for each s € S, the ”scalar multiplication by s” map [s|p : M — M is an isomorphism. Then there is a

unique structure of Rg-module on M such that (r/1)m = rm for allm € M and r € R.

Keeping the notation of the lemma, note that if /s € Rg, we necessarily have (r/s)(m) = [s];; (rm), where

[s]f is the inverse of the map [s]ar.

Proof. Left to the reader. O
We also record the following important fact.

Lemma 5.3. Let R be a ring and let f € R. Let S = {1, f, f,...}. Then the ring Rg is finitely generated

as a R-algebra.

Proof. Consider the R-algebra T := R[z]/(fx — 1). Note that T is a finitely generated R-algebra by
definition. Let ¢ : R[x] — Rg by the homomorphism of R-algebras such that ¢(z) = 1/f. Note that
¢(fx — 1) = 0 and hence ¢ induces a homomorphism of R-algebras ¢ : T — Rg. Now since the image of f
in T is invertible by construction, there is by Lemma 5.1 a unique homomorphism of R-algebras A : Rg — T.
We have o\ = Idr by unicity and hence ) is injective. On the other hand ) is surjective, since the image of
A contains 1/(f (mod (fx —1))) = « (mod (fa — 1)), which generates R as an R-algebra. Thus A is bijective,
and hence an isomorphism of R-algebras. [

In view of Lemma 5.2, if R is a ring and ¢ : N — M is a homomorphism of R-modules, there is a unique
homomorphism of Rg-modules ¢g : Ng — Mg such that ¢g(n/1) = ¢(n)/1 for all n € N. We verify on the
definitions that if ¢ : M — T is another homomorphism of R-modules then we have (¢ o ¢)g = 15 o ¢g.

Lemma 5.4. Let R be a ring and let S C R be a multiplicative subset. Let
) d;
s My M S
be an exact complex of R-modules. Then the sequence
dit1,s

di,s
o> Mys = Miy1s =

is also exact.
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Proof. Let m/s € M; g (with m € M; and s € S) and suppose that d; g(m/s) = (1/s)d; s(m/1) = 0. Then
d; s(m/1) = d;i(m)/1 = 0 so that there is a u € S, such that u - d;(m) = d;(um) = 0. Now by assumption
there is an element p € M;_; such that d;_;(p) = um. Then we have d;_1 s(p/(us)) = m/s. This concludes
the proof. [

Lemma 5.5. Let ¢ : R — T be a ring homomorphism. Let S C R be a multiplicative subset. By Lemma-
Definition 5.1 there is a unique homomorphism of rings ¢' : Rs — Ty(s) such that ¢'(r/1) = ¢(r)/1. We
may thus view Tys) (resp. T) as a Rg-module (resp. as a R-module). There is then a unique isomorphism
of Rs-modules i : Ts ~ Ty(g) such that p(a/1) = a/1 for all a € T and we have o ¢ps = ¢'.

Proof. Define p(a/s) := a/¢(s) for any a € T and s € S. This is well-defined. Indeed, suppose that
a/s = b/t. Then there is v € S such that ¢(u)(¢d(t)a — ¢(s)b) = 0, ie d(w)d(t)a = d(u)d(s)b. We thus see
that a/¢(s) = b/p(t), which shows that p is well-defined. From the definitions, we see that u is a map of
Rg-modules. We also see from the definition that p is surjective. To see that u is injective, suppose that
wu(a/s) =0/1 for some a € T and s € S. Then there is a u € ¢(S) such that ua = 0. Hence a/1 =0 in Tg
and thus a/s = 0. Thus p is bijective. The identity p o ¢g = ¢’ follows from the fact that u, ¢gs and ¢’ are
homomorphisms of Rg-modules and from the fact that po ¢s(1) = ¢'(1/1). O

Let R be a ring and let p be a prime ideal in R. Then the set R\p is a multiplicative subset. Indeed, 1 & p
for otherwise p would be equal to R and if z,y & p then zy & p, for otherwise either x or y would lie in p.
We shall use the shorthand Ry for Rg\, and if M is a R-module, we shall use the shorthand M, for Mpg.

If : M — N is a homomorphism of R-modules, we shall write ¢, for ¢\, : M — Ny.

If ¢ : U — R is a homomorphism of rings and p is a prime ideal of R, then ¢ naturally induces a homomor-
phism of rings Ug-1(p) — Ry, since #(U\¢~1(p)) € R\p. This homomorphism is sometimes also denoted

Pp-
Lemma 5.6. Let R be a ring and let S C R be a multiplicative subset. Let A : R — Rg be the natural

ring homomorphism. Then the prime ideals of Rg are in one-to-one correspondence with the prime ideals
p of R such that pNS = 0. If q is a prime ideal of Rg then the corresponding ideal of R is \=1(q). If p is
a prime ideal of R such that p NS = 0 then the corresponding prime ideal of Rg is iy s(ps) C Rs, where
ty 1 p — R is the inclusion map (which is a homomorphism of R-modules). Furthermore, v, s(ps) is then
the ideal generated by A\(p) in Rg.

Note that in view of Lemma 5.5, if we localise R at S when R is viewed as a R-module or as a ring, we get
the same Rg-module.

Proof. We first prove that if p is any ideal of R, then ¢, g(pg) is the ideal generated by A(p) in Rg. For
this, notice that by definition ¢, g(ps) consists of all the element a/s € Rg, where a € p and s € S. Hence
tp.s(pg) is an ideal of Rg, which contains A(p). Furthermore, since a/s = (a/1)(1/s), any element a/s as
above is contained in the ideal generated by A(p) in Rg. Hence ¢, s(pg) is the ideal generated by A(p) in
Rg.

To prove the lemma, we thus only have to show the following

(i) If q is a non trivial ideal of Rg then A~1(q) NS = 0.

(ii) If q is an ideal of Rg, the ideal generated by A(A~1(q)) in Rg is g.
(iii) If p is a prime ideal of R such that p NS =0, then A7 (¢, 5(ps)) = p.
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(iv) If p is a prime ideal of R such that p NS = 0 then ¢, g(ps) is a prime ideal of Rg.

(v) If q is a prime ideal of Rg then A~!(q) is a prime ideal.

A more general form of statement (v) was left to the reader after Lemma 4.1 so we skip the proof of (v).
We prove (i). If A=1(q) NS # 0 then (by definition) there exists s € A~*(q) such that s € S. But then
A(s) =s/1 € q and s/1 is a unit, so that q is trivial. This proves (i).

To prove (ii), notice first that A(A~1(q)) C q. Furthermore, if a/s € q then as before a/1 = (a/s)(s/1) also
lies in q and hence a € A(A71(q)). Since a/s = (a/1)(1/s) we thus see that a/s lies in the ideal generated
by A(A1(q)). Since a/s was arbitrary, q is thus the ideal generated by A(A~1(q)).

To prove (iii) note that since ¢, 5(ps) is the ideal generated by A(p) in Rg, we clearly have A= (¢ s(ps)) 2 p.
Now suppose that a € A= (¢, s5(ps)). Then by definition a/1 = b/s for some b € p and some s € S. Again
by definition, this means that for some t € S, we have t(sa — b) = 0, ie tsa = tb. Since tb € p and ts & p (by
assumption), we deduce from the fact that p is prime that a € p, as required.

To prove (iv), consider the exact sequence of R-modules
0—-p—=RL5R/p—0
where ¢ is the quotient map. Applying Lemma 5.4, we see that the sequence of Rg-modules
0—ps — Rs 5 (R/p)s — 0

is also exact. Furthermore, by Lemma 5.5, we see that (R/p)g is isomorphic as a Rg-module with the ring
(R/p)q(s) and that we have an isomorphism of rings Rg/ps >~ (R/p)q(s). Now since SN p = ), we see that
0 ¢ q(S). Since R/p is a domain by assumption, we deduce that (R/p),(s) is also a domain (see beginning
of this section). We conclude that pg is a prime ideal. O

Note the following rewording of part of Lemma 5.6: Spec(\)(Spec(Rg)) consists of the prime ideals in
Spec(R), which do not meet S. In particular, in the notation of Lemma-Definition 4.3,

Spec(A)(Spec(Rs)) = Dy (R)

if S={1,f f%f3, ...}
Still keeping the notation of Lemma 5.6, we also note the following. If q € Spec(Rg) then A induces a natural
homomorphism of rings Ry-1(q) — (Rs)q (see before Lemma 5.6). This homomorphism is an isomorphism.

We leave the proof of this statement as an exercise.

Second proof of Proposition 3.2 using localisations. Let R be a ring. Let » € R be an element,
which is not nilpotent. To prove Proposition 3.2, we need to show that there is a prime ideal p of R such
that r € p. Let S := {1,7,72,...} be the multiplicative set generated by r. The ring Rg is not the zero
ring because r/1 # 0/1 (because r is not nilpotent). Let q be a prime ideal of Rg (this exists by Lemma
2.4). By lemma 5.6, the ideal q corresponds to a prime ideal p of R such that r & p so it has the required

properties.

Lemma 5.7. Let R be a ring and let p C R be a prime ideal. Then the ring Ry is a local ring. If m is the
mazimal ideal of R, and X : R — Ry, is the natural homomorphism of rings, then A\™'(m) = p.

Proof. By Lemma 5.6 the prime ideals of R, correspond to the prime ideals of R which do not meet R\p,

ie to the prime ideals of R which are contained in p. This correspondence preserves the inclusion relation,

14



so every prime ideal of R, is contained in the prime ideal corresponding to p. Now let I be a maximal
ideal of R,. Since I is contained in the prime ideal corresponding to p, it must coincide with this ideal by
maximality. So the prime ideal m corresponding to p is maximal and it is the only maximal ideal of R,. By
Lemma 5.6, we have A™1(m) =p. O

Lemma 5.8. Let R be a ring. Let
"'HMi%MiJ'_ldi)l"' (4)

be a complex of R-modules. Then the complex (/) is exact iff the complex
di p dit1,p
e My = Mg, S (5)
is exact for all the mazimal ideals p of R.

Proof. ”=": By Lemma 5.4.

7<": Suppose that the complex (4) is not exact. Then ker(d;y1)/Im(d;) # 0 for some i € Z. By Lemma

5.4, there is a natural isomorphism

(ker(diy1)/Im(d;))p ~ ker(dit1)p/Im(d;i),

for all the prime ideals p in R. In particular, if (ker(d;11)/Im(d;)), # O for some prime ideal p, then the

complex (5) is not exact for that choice of prime ideal.

Now since ker(d;+1)/Im(d;) # 0, we see that there is an element a € ker(d;+1)/Im(d;) such that Ann(a) # R
(any non zero element of ker(d;+1)/Im(d;) will do). Let p be a maximal ideal of R, which contains Ann(a)
(this exists by Lemma 2.4). Then (ker(d;y1)/Im(d;)), # 0 for otherwise there would be an element u €
R\p C R\Ann(a) such that ua = 0, which is a contradiction. Thus the complex (5) is not exact. [

END OF LECTURE 4

6 Primary decomposition

In this section, we study a generalisation of the decomposition of integers into products of prime numbers.
In a geometric context (ie for affine varieties over algebraically closed fields) this generalisation also provides
the classical decomposition of a subvariety into a disjoint union of irreducible subvarieties. Applied to the
ring of polynomials in one variable over a field, it yields the decomposition of a monic polynomial into a

product of irreducible monic polynomials.
The main result is Theorem 6.7 below.

Let R be a ring.

Proposition 6.1. (i) Let p1,...,px be prime ideals of R. Let I be an ideal of R. Suppose that I C UK_ p;.
Then there is ig € {1,...,k} such that I C p;,.

(ii) Let Iy,..., I} be ideals of R and let p be a prime ideal of R. Suppose that p O NE_,I;. Then there is
io € {1,...,k} such thatp D I,,. If p = NF_,I;, then there is aig € {1,...,k} such thatp = I,,.
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Proof. (i) By induction on k. The case kK = 1 holds tautologically. Suppose for contradiction that
the conclusion does not hold. By the inductive hypothesis, we see that for each i € {1,...,k}, we have
I & Ujzip;. In other words, there are elements z1,...,z; € I such that for each ¢ € {1,...,k} we have
x; € p; and x; € p; if j # i. Now consider the element

k
Y= E T1X2 Ti—1Ti41 " Tk
i=1

where we set g = 11 = 1. Note that for each i € {1,...,k} we have z1z2- - ;1241 - - x5 € p; for all
j#i. Nowlet i € {1,...,k} be such that y € p;,. Then y — x129- - x;—1Ti41 - T € p; and thus

T1T2 - Ti—1Ti+1 Tk € Pi-
Now, since p; is prime, one of x1,29,...,2;—1, %41, ..., 2 must lie in p;, which is a contradiction.

(ii) We first prove the first statement. Suppose that the conclusion does not hold. Then for each i €
{1,...,k}, there is an element x; € I; such that x; & p. But x125--- 2 € ﬂleli C p and since p is prime,

one of the x; must lie in p, which is a contradiction.

The second statement follows from the first, since N¥_,I; C I;;. O

Note. The proof of Proposition 6.1 shows that in (i), the condition that the ideals p; are prime is superfluous
if £ <2.

Definition 6.2. An ideal I of R is primary if it is non trivial and all the zero-divisors of R/I are nilpotent.
In other words, I is primary if the following holds: if xy € I and z,y ¢ I then z! € I and y™ € I for some
I,n > 1 (in other words, z,y € v(I)). From the definition, we see that every prime ideal is primary.
Example. The ideals (p™) of Z are primary if p is prime and n > 0.

Lemma 6.3. Suppose that I is a primary ideal of R. Then v(I) is a prime ideal.

Proof. Let z,y € R and suppose that zy € v(I). Then there is n > 0 such that z"y™ € I and thus either
z" €I, ory" €I, or '™ € I and y™* € I for some [,k > 1. Hence either z or y lies in t(I). O

The previous Lemma justifies the following terminology.
If p is a prime ideal and T is a primary ideal, we say that I is p-primary if ¢(I) = p.

Note that if the radical of an ideal is prime, it does not imply that this ideal is primary. For counterexamples,

see AT, beginning of chapter 4.

We have however the following result:

Lemma 6.4. Let J be an ideal of R. Suppose that v(J) is a mazimal ideal. Then J is primary.

Proof. (suggested by Hanming Liu; see also Q3 of Sheet 1). From the assumptions, we see that the
nilradical v(R/J) of R/J is maximal. Hence R/J is a local ring, because any maximal ideal of R/J contains
t(R/J) by Proposition 3.2 and hence must coincide with it. Hence any element of R/J is either a unit or

is nilpotent. In particular, all the zero divisors of R/J are nilpotent, in particular J is primary.

Here is another proof, which does not use Proposition 3.2. Let x,y € R and suppose that xy € J and
that =,y ¢ J. Since zy € t(J) and since t(J) is prime, we have either z € v(J) or y € v(J). Suppose
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without restriction of generality that y € v(J). Then y™ € J for some n > 1. Suppose for contradiction that
x & t(J). Then there exists 2’ € R such that zz’ — 1 € ¢(J) by the maximality of t(J). In other words,
there is [ > 0 such that

l
(z2' = 1) = (-1)' + > (i)(—nl—i(m')i eJ
i=1
Then we have

l
v+ 3 () 0wy e g

and since 22:1 (é)(—l)l_i(yx)xi_l(m’)i € J we conclude that y € J, a contradiction. So we must have
z € v(J). All in all, we have x,y € v(J), which is what we wanted to prove. [

From the previous Lemma, we see that powers of maximal ideals are primary ideals.

Lemma 6.5. Let p be a prime ideal and let I be a p-primary ideal. Let x € R.
(i) Ifx €I then (I:2)=R.
(ii) If x &€ I thenv(I : x) =p.
(i) If x & p then (I : z) = I.

Proof. (i) and (iii) follow directly from the definitions. We prove (ii). Suppose that y € v(I : z). By
definition, this means that for some n > 0, we have xy™ € I. As x & I, we see that '™ € I for some [ > 0 so
that y € t(I) = p. Hence v(I : ) C p. Now consider that we have I C v(I : x) C p. Applying the operator
t(e), we see that we have t(I) =p Ce(v({: x)) =¢v(l:2) Cr(p) =psothat ¢(J:z) =p. O

Lemma 6.6. Let p be a prime ideal and let qy ...,qx be p-primary ideals. Then q := N¥_,q; is also

p-primary.

Proof. We compute
e(q) = Nz ye(aq) = p.

In particular, q is p-primary if it is primary. We verify that q is primary. Suppose that xy € q and that
z,y € q. Then then there are ¢,j € {1 ...,k} such that ¢ q; and y ¢ q;. Hence there are {,£ > 0 such
y' € q; and 2t € q;. In other words, z,y € v(q;) = t(q;) = p = v(q). In other words, q is primary. O

We shall say that an ideal I of R is decomposable if there exists a sequence q; ..., qx of primary ideals in R
such that I = ﬂleqi. Such a sequence is called a primary decomposition of I. A primary decomposition as

above is called minimal if
(a) all the v(q;) are distinct;
(b) for all i € {1,...,k} we have q; 2 Nj£q;.

Note that any primary decomposition can be reduced to a minimal primary decomposition in the following

way:

- first use Lemma 6.6 to replace the sets of primary ideals with the same radical by their intersection; then

(a) is achieved;

- then successively throw away any primary ideal violating (b).
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In general, not all ideals are decomposable. We shall see in section 7 below that all ideals are decomposable
if R is noetherian.

END OF LECTURE 5

The following theorem examines what part of primary decompositions are unique.

Theorem 6.7. Let I be a decomposable ideal. Let qy ...,qx be primary ideals and let I = N¥_,q; be a
minimal primary decomposition of I. Let p; := tv(q;) (so thatl p; is a prime ideal). Then the following two

sets of prime ideals coincide

- the set {pi}tieq1,... k)5
- the ideals among the ideals of the type v(I : x) (where x € R), which are prime.

Proof. Let x € R. Note that (I : z) = N¥_,(q; : ) and t(I : #) = N¥_,t(q; : ¥). Hence by Lemma 6.5, we
have v(1 : ) = N; zgq, Pi-

Now suppose that v(I : x) is a prime ideal. Then ¢(I : z) = p;, for some ig € {1,...,k} by Proposition 6.1.

Conversely, note that for any io € {1,...,k}, there exists an x € R, such that « ¢ q;, and such that z € g;
for all ¢ # ig. This follows from the minimality of the decomposition. For such an z, we have t(I : ) = p;,
by the above. [

As a consequence of Theorem 6.7, we can associate with any decomposable ideal I in R a uniquely defined
set of prime ideals. These prime ideals are said to be associated with I. Note that the intersection of these
prime ideals is the ideal v(I). Another consequence is that any radical decomposable ideal has a minimal
primary decomposition by prime ideals (so that in this case, the associated primes are the elements of the
minimal primary decomposition itself). Furthermore, any two minimal primary decompositions by prime
ideals of a radical ideal coincide.

Remark. One can show that any minimal primary decomposition of a radical ideal consists only of prime
ideals (without requiring a priori that the primary decomposition consist of prime ideals, as in the previous
paragraph). This follows from the '2nd uniqueness theorem’. See AT, p. 54, Cor. 4.11. In particular,
a decomposable radical ideal has a unique primary decomposition. We do not prove this in these notes
however.

Examples. If n = 4pi"* - .- p* € Z, where the p; are distinct prime numbers, a primary decomposition of

(n) is given by
k i
(n) = Nz (P™)
(apply the Chinese Remainder Theorem). The set of prime ideals associated to this decomposition is of

course {(p1),--.,(pr)}-

A more complex example is the ideal (22, zy) C C[z,y]. Here

(%, 2y) = (2) N (2,7)

is a primary decomposition and the associated set of prime ideals is {(z), (z,y)}. To see that we indeed
have (z2,zy) = (x) N (x,y)? note that by construction, the ideal (z,y)? consists of the polynomials of
the form z2P(x,y) + 2yQ(z,y) + y*T(x,y). Thus (x) N (z,y)? consists of the polynomials x?P(z,y) +
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2yQ(x,y) + y?T(x,y) such that T(x,y) is divisible by x. Hence (z) N (x,y)? C (22, zy) and clearly we also
have (22, zy) C (z) N (z,y)? so that (z%,zy) = (z) N (z,y)?. To see that the decomposition is primary,
note that C[z,y]/(z) ~ Cly] and C|z,y]/(x,y) ~ C. Thus (z) is prime and (hence primary) and (z,y) is
maximal, so that (z,y)? is primary by Lemma 6.4.

Lemma 6.8. Let I be a decomposable ideal. Let S be the set of prime ideals associated with some (and
hence any) minimal primary decomposition of I. Let T be the set of all the prime ideals of R, which contain
I. View S (resp. I) as partially ordered by the inclusion relation. Then the minimal elements of S coincide

with the minimal elements of T.

Proof. Clearly the minimal elements of Z are also minimal elements of S. We only have to show that the
minimal elements of S are also minimal in Z. Let Spin € S (resp. Zmin € Z) be the set of minimal elements
of S (resp. Z). Note first that by Theorem 6.7, we have t(I) = Nyesp and thus we also have v(I) = Nyes,... -
Now let pp € Smin. Suppose for contradiction that pg & Zmin. Then there exists an element pj, € Z such
that pj € po. On the other hand, we have pj, D I, so that p{; 2 p for some p € Spin by Proposition 6.1. We

conclude that pg 2 p, which contradicts the minimality of pg. Thus Spmin = Zmin- O

The elements of Sy,;, are called the isolated or minimal prime ideals associated with I whereas the elements
of §\Spin are called the embedded prime ideals associated with I. This terminology is justified by algebraic
geometry. According to the last lemma, the isolated prime ideals associated with I are precisely the prime
ideals, which are minimal among all the prime ideals containing I.

In the second example given before Lemma 6.8, the set Sy consists only of (z).
Note also the following important facts:

- if I is a decomposable radical ideal, then all the associated primes of I (which coincide with the elements
of the unique minimal primary decomposition - see above) are isolated. This simply follows from the fact

that I has a minimal primary decomposition by prime ideals.

- if I is a decomposable ideal, there are only finitely many prime ideals, which contain I and are minimal

among all the prime ideals containing I. These prime ideals are also the isolated ideals associated with I.
We also record the following lemma, which makes no assumption of decomposability.

Lemma 6.9. Let R be a ring. Let I C R be an ideal. Then there are prime ideals, which are minimal
among all the prime ideals containing I. Furthermore, if p 2O I is a prime ideal, then p contains such a

prime ideal.

Proof. Exercise. Use (and generalise) Q7 of sheet 1. [

END OF LECTURE 6

7 Noetherian rings

Let R be a ring. We say that R is noetherian if every ideal of R is finitely generated. In other words, if
I C R is an ideal of R, then there are elements r1,...,7 such that I = (rq,...,7%).

Examples. Fields and PIDs are noetherian (why?). In particular, Z and C are noetherian, and so is K|[x],
for any field K.
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We shall see that "most” rings that one encounters are noetherian. In fact any finitely generated algebra

over a noetherian ring is noetherian (see below).
We begin with some generalities.

Lemma 7.1. The ring R is noetherian iff whenever Iy C Is C ... is an ascending sequence of ideals, there
exists a k > 1 such that I, = Iy, = U2 1 for alli > 0.

Proof. 7=". Suppose first that R is noetherian. Let Iy C Iy C ... be an ascending sequence of ideals.
The set U2, I, is clearly an ideal (verify) and it is finitely generated by assumption. A given finite set of

generators for U2, I; lies in Iy, for some k£ > 1. The conclusion follows.

7« Conversely, suppose that whenever I; C I, C ... is an ascending sequence of ideals, there exists a
k > 1 such that I = I4; = U2 I; for all ¢ > 0. Let J C R be an ideal. We need to show that J is finitely
generated. For contradiction, suppose that J is not finitely generated. Define a sequence rq,72--- € J by
the following inductive procedure. Let r; € J be arbitrary. Suppose that r1,...,r; € J is given and let
rit1 € J\(r1,...,7;). Note that J\(r1,...,r;) # 0 for otherwise J would be finitely generated. We then
have an ascending sequence

(r1) G (r1,72) G (r1,72,73) & - o

which contradicts our assumptions. So J is finitely generated. O

Lemma 7.2. Let R be a noetherian ring and I C R an ideal. Then the quotient ring R/I is noetherian.

Proof. Let g : R — R/I be the quotient map. Let J be an ideal of R/I. The ideal ¢~ !(J) is finitely
generated by assumption and the image by ¢ of any set of generators of ¢=1(J) is a set of generators for
J. O

Lemma 7.3. Let R be a noetherian ring and let S C R be a multiplicative subset. Then the ring Rg is
noetherian.

Proof. Let A : R — Rg be the natural ring homomorphism. In the proof of Lemma 5.6, we showed that
for any ideal I of Rg, the ideal generated by A(A~1(I)) is I (see (ii) in the proof). The image of any finite
set of generators of A™1(I) under X is thus a finite set of generators for I. [

Lemma 7.4. Let R be a noetherian ring. Let M be a finitely generated R-module. Then any submodule of
M s also finitely generated.

Proof. By assumption there is a surjective map of R-modules ¢ : R™ — M for some n > 0. To prove that
a submodule N C M is finitely generated, it is sufficient to prove that ¢~*(IV) is finitely generated. Hence
we may assume that M = R™. We now prove the statement by induction on n. The case n = 1 is verified
by assumption. Let ¢ : R™ — R be the projection on the first factor. Let N C R™ be a submodule. We
then have an exact sequence

0NNR" ' 5N = ¢(N)—=0

where R"~! is viewed as a submodule of R" via the map (r1,...,7,—1) = (T1,...,7,—1,0). Now ¢(NN) is
finitely generated since ¢(N) is an ideal in R and NN R" ! is finitely generated by the inductive hypothesis.
Let ai,...,ar € NN R ! be generators of NN R" ! and let by,...,b € ¢(N) be generators of ¢(N). Let
bi,...,b; € R™ be such that ¢(b}) = b; for all ¢ € {1,...,l}. Then the set {a1,...,ax,b},..., b} generates
N (verify). O
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Lemma 7.5. Let R be a noetherian ring. If I C R is an ideal, then there is an integer t > 1 such that
()t C I. In particular, some power of the nilradical of R is the 0 ideal.

Proof. By assumption, we have t(I) = (a; ..., ay) for some aq, ..., a; € R. By assumption again, there is an
integer n > 1 such that a? € I for alli € {1,...,k}. Let t = k(n—1)+1. Then t(I)! C (a}...,a}) CI. O

The following theorem is one of the main justifications for the introduction of the noetherian condition.

Theorem 7.6 (Hilbert basis theorem). Suppose that R is noetherian. Then the polynomial ring Rlx| is
also noetherian.

Proof. Let I C R[z]| be an ideal. The leading coefficients of the polynomials in I form an ideal J of R
(check). Since R is noetherian, J has a finite set of generators, say ai,...,ax. For each i € {1,... k},
choose f; € I such that f;(x) = a;2™ + (terms of lower degree). Let n be the maximum of the n;. Let
I' = (f1(x),..., fx(z)) C I be the ideal generated by the f;(x).

Now let f(z) = ax™ + (terms of lower degree) be any polynomial in I. By construction, we have a =

riai + - -+ + rpay for some r1,...,rx € R.

Suppose first that m > n. The polynomial

f(@) =rifi(@)a™ ™ = =g fi ()™

is then of degree < m (the leading terms cancel) and it also lies in I. Applying the same procedure to this
polynomial we obtain a new polynomial of degree < m — 1 and we keep going in the same way until we
obtain a polynomial of degree < n. We have then expressed the polynomial f(x) as a sum of a polynomial
of degree < n and an element of I’. In other words, we have shown that f(x) lies in the R-submodule
M NI+ I of Rlz], where M is the R-submodule of R[z], generated by 1,z,22,..., 271,

If m < n then we have f(x) € M NI so that we also have f(z) e M NI+ 1.

Since f(z) was arbitrary, we see that we have shown that
I=MnI+T.

Now M NI is an R-submodule of M ~ R™ and is thus finitely generated (as an R-module) by Lemma 7.4.
If we let g1(x),...,g:(x) € M N 1T be a set of generators, then the set ¢1(z),...,9:(x), fi(z),..., fr(x) is
clearly a set of generators of I (as an ideal). [

Some history. The German mathematician Paul Gordan, who was active at the beginning of the 20th
century, was the first to ask explicitly (to my knowledge) whether Theorem 7.6 is true and considered this
to be a central question of a then very popular subject, called Invariant Theory (which we don’t have the
time to describe here). As the name of the theorem suggests, David Hilbert found the above simple proof.
Paul Gordan had presumably tried to tackle the problem directly, by devising an algorithm that would
provide a finite set of generators for an ideal given by an infinite set of generators and did not think of
applying the abstract methods, which are used in Hilbert’s proof (which is the above proof). The proof
of Hilbert’s basis theorem is one of the starting points of modern commutative algebra. Paul Gordan is
said to have quipped on seeing Hilbert’s proof that ”Das is nicht Mathematik, das ist Theologie!” (This is
not mathematics, this is theology!). There are nowadays more ”effective” proofs of Hilbert’s basis theorem,

using so-called Groebner bases.
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From Theorem 7.6, we deduce that R[z1,..., )] is noetherian for any k > 0. From this and Lemma 7.2,

we deduce that every finitely generated algebra over a noetherian ring is noetherian.

The following simple but remarkable result will be used later to give a simple proof of the so-called weak

Nullstellensatz. It also has several other applications (see exercises).

Theorem 7.7 (Artin-Tate). Let T be a ring and let R, S C T be subrings. Suppose that R C S and that
R is noetherian. Suppose that T is finitely generated as a R-algebra and that T is finitely generated as a
S-module. Then S is finitely generated as a R-algebra.

Proof. Let r1,...,r be generators of T as a R-algebra. Let ¢1,...,t; be generators of T as an S-module.

By assumption, for any a € {1,...,k}, we can write

l
T = E Sjatj
Jj=1

where s; € S. Similarly, for any b,d € {1,...,k}, we can write

!
tptqg = Z Sjbdt;
j=1

where 55,4 € S. Let Sy be the R-subalgebra of S generated by all the s;, and sj54. Since every element of
T can be written as an R-linear combination of products of some r, (a € {1,...,k}, we see using the two
formulae above that T is finitely generated as a Sp-module, with generators t1,...,t;. Furthermore, Sy is
a finitely generated R-algebra by construction. The R-algebra S is naturally a Sy-algebra, in particular a
So-module, and it is a Sp-submodule of T'. Since R is noetherian, Sy is also noetherian (see after Theorem
7.6) and since S is a submodule of a finitely generated Sp-module, S is also finitely generated as a Sp-module
by Lemma 7.4. In particular S is a finitely generated Sy-algebra, and since Sy is finitely generated over R,
sois S. O

Finally, we consider primary decompositions in noetherian rings.

Proposition 7.8 (Lasker-Noether). Let R be a noetherian ring. Then every ideal of R is decomposable.

Proof. If I is an ideal of R, we shall say that I is irreducible if whenever I, Is are ideals of R and I = Iy N 15,
we have either I = I, or I = I.

Claim. Let J C R be an ideal. Then there are irreducible ideals Jy, ..., J; such that J = ﬂleJk.

We prove the claim. Let us say that an ideal is decomposable by irreducible ideals (short: dic) if it is a finite
intersection of irreducible ideals. Suppose that J is not dic (otherwise we are done). In particular, J is not
irreducible and thus there are ideals M and N such that M N N = J and such that J C M and J C N.
Since J is not dic, we see that either N or M are not dic. Suppose without restriction of generality that
M is not dic. Repeating the same reasoning for M and continuing we obtain a sequence of non dic ideals
JCMC M C My,C... This contradicts Lemma 7.1. Thus J is dic.

Claim. An irreducible ideal is primary.

We prove the claim. Let J be an irreducible ideal and suppose that J is not primary. Then there is an
element z € R/J, which is a zero divisor and is not nilpotent. Let ¢ : R — R/J be the quotient map.
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Consider the ascending sequence
Ann(z) € Ann(z?) C Ann(z®) C ...
This sequence must stop by Lemma 7.1 and Lemma 7.2. So let us suppose that
Ann(z¥) = Ann(z**1) = Ann(2*+?) = ...

for some k > 1. Now consider the ideal (z¥) N Ann(z*). If Az* € (z*) N Ann(2*) for some A\ € R/J then we
have by definition Az?* = 0 and hence A € Ann(2?¥). Since Ann(z%*) = Ann(z*) we then have Az* = 0.
Thus (z*) N Ann(z*) = (0). On the other hand, note that (z*) # (0) and Ann(z*) # 0 by construction.
Thus we have J = ¢~ !((2*)) Ng~ (Ann(z*)) and ¢~ 1((z*)) # J, ¢~ (Ann(z*))) # J, a contradiction. Thus

J is primary.
The conjunction of both claims obviously proves the Proposition, so we are done. [

Note. A primary ideal is not necessarily irreducible. See exercises.

Let R be a noetherian ring and let I C R be a radical ideal. As explained after Theorem 6.7, a consequence

of Proposition 7.8 is that there is a unique set {q; ..., qx} of distinct prime ideals in R such that
-I= m?:ﬂlié
-forall i € {1,...,k} we have q; 2 N;xq;.

Furthermore, the set {q1,...,qr} is precisely the set of prime ideals, which are minimal among the prime

ideals containing I.

In terms of the spectrum of R, V(I) is the union of the V' (q;). If R is the coordinate ring of an affine variety
over an algebraically closed field, this decomposition is the classical decomposition of a closed subvariety

into its irreducible components.

In particular, if pq,...,p; is the set of minimal prime ideal of R, then there is a natural injective homomor-

phism of rings

l
E/(0) = [] £/

END OF LECTURE 7

8 Integral extensions

The notion of integral extension of rings is a generalisation of the notion of algebraic extension of fields. We

shall see below that an extension of fields is integral iff it is algebraic.
Let B be a ring and let A C B be a subring. Let b € B. We shall say that b is integral over A if there is a
monic polynomial P(z) = 2" + a,—12" "' + - + ag € A[z] such that

P(b):b"—|—an_1b"_1—|—-~-+ao:0.

We shall say that b is algebraic over A if there is a polynomial Q(x) € A[z] (not necessarily monic) such
that Q(b) = 0. Note that if A is a field, b is algebraic over A iff it is integral over A (why?) but this is not

true in general.
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If S C B is a subset, we write A[S] for the intersection of all the subrings of B which contain A and S.
Note that A[S] is naturally an A-algebra.

Abusing notation slightly, we shall write A[b] for A[{b}] and more generally A[bs,...,by] for A[{b1,...,bx}].

Note that we have the explicit description

A[bl,...,bk] = {Q(bl,...,bk)|Q(.T1,...,(Ek;) € A[l’l,...7$k]}

and that we have
Alby, ... by = Albi][ba] - .. [br]

(why?).

Proposition 8.1. Let R be a ring and let M be a finitely generated R-module. Let ¢ : M — M be a
homomorphism of R-modules. Then there exists a monic polynomial Q(x) € Rlx] such that Q(¢) = 0.

Proof. By assumption, there is a surjective homomorphism of R-modules A : R" — M for some n > 0. Let
b1,...,by, be the natural basis of R™. For each b;, choose an element v; € R™ such that A(v;) = ¢(A\(b;)).
Define a homomorphism of R-modules 5 : R" — R™ by the formula (Z(bi) = v;. By construction, we have
Ao 8 = ¢ o A and thus we have A o 50" = ¢°" o X for all n > 0. Hence it is sufficient to find a monic

polynomial Q(x) € R[z] such that Q(¢) = 0. Hence we might assume that M = R".

The homomorphism ¢ is now described by a n x n-matrix C € Mat,x,(R). We need to find a monic
polynomial Q(x) € R[z] such that Q(C) = 0.

Let R’ be the subring of R generated by the coefficients of C' over the prime ring of R. There is by

construction a surjective homomorphism of rings h : Z[x11,Z21,...,%21,%22,...,Znn] — R'. Let D €
Maty,xn (Z[x11, 21, - - -y T21, T22, - - -, Tnpn]) be a matrix, whose image by h is C. If we can exhibit a monic
polynomial T'(z) € (Z[x11,Z21,- .., %21, %22, - -, Tnn))[x] such that T(D) = 0 then the monic polynomial

Q(x), whose coeflicients are the images of the coefficients of T'(x) under h, will have the property that

Q(C) = 0. So we may assume that R = Z[x11,Za1,...,221,T22, -+, Tnn)-

Let K be the fraction field of R. The natural homomorphism of rings R — K is then injective, since
R =7Z[x11,%01,...,%21,T22,...,Tny] is a domain. Hence we may view R as a subring of K. By the Cayley-
Hamilton theorem, the polynomial Q(z) = det(x - Id,,xn, — C') € K|x] is monic and it has the property that
Q(C) =0, when C is viewed as an element of Mat,, x,(K). Since Q(x) is a polynomial in the coefficients of

C, it has coefficients in R. It thus has the required properties. [

Proposition 8.2. Let A be a subring of the ring B. Let b € B and let C be a subring of B containing A
and b.

(i) If the element b € B is integral over A then the A-algebra A[b] is finitely generated as a A-module.

(ii) If C is finitely generated as an A-module then b is integral.
Proof. (i): if b is integral over A, we have
b = —ap, 10" — - —a1b—ag

for some a; € A (where i € {0,...,n — 1}). Hence b"** is in the A-submodule of B generated by
1,b,6%,...,b" 1 for all k > 0. In particular A[b] is generated by 1,b,b2,...,b" ! as an A-module.
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(ii): Let ¢ : C — C be the homomorphism of A-modules such that ¢(v) = b-v for all v € C. By
Proposition 8.1, there a polynomial Q(x) = 2™ + a,_12" ! + -+ + ap € A[z] such that Q(¢) = 0. Hence
Q(d)(1) =" + ap_1b" 1 + -+ ag = 0. In particular, b is integral over A. O

The following lemma and its proof is a generalisation of the tower law (see the part B course on Galois

Theory or the part A course on Rings and Modules).

Lemma 8.3. Let ¢ : R — T be a homomorphism of rings and let N be a T-module. If T is finitely generated
as a R-module and N is finitely generated as a T-module, then N is finitely generated as a R-module.

Proof. Let t1,...,tx € T be generators of T' as a R-module and let l1,...l; be generators of N as a

T-module. Then the elements t;l; are generators of N as a R-module. [

Corollary 8.4 (of Proposition 8.2). Let A be a subring of B. Let by,...,b, € B be integral over A. Then
the subring Alby,...,by| is finitely generated as a A-module.

Proof. By Proposition 8.2 (i), A[b;] is finitely generated as an A-module, A[by,by] = A[b1][b2] is finitely
generated as a A[bi]-module, A[by, by, b3] = A[b1][b2][bs] is finitely generated as a A[by, bs]-module etc. Hence
by Lemma 8.3, A[by,...,bg] is finitely generated as a A-module. [

Corollary 8.5 (of Corollary 8.4 and Proposition 8.2). Let A be a subring of the ring B. The subset of

elements of B, which are integral over A, is a subring of B.

Proof. Let b,c € B. Then b+ ¢, bc € A[b,c] and A[b, ¢] is a finitely generated A-module by Corollary 8.4.
Hence b + ¢ and be are integral over A by Proposition 8.2 (ii). O

Let ¢ : A — B be a ring homomorphism (in other words B is an A-algebra). We shall say that B is integral
over A (or an integral A-algebra) if all the elements of B are integral over the ring ¢(A). We shall say
that B is finite over A (or a finite A-algebra) if B is a finitely generated ¢(A)-module. Proposition 8.2 and
Corollary 8.4 show that B is a finite A-algebra iff B is a finitely generated integral A-algebra.

If A is a subring of a ring B, the set of elements of B, which are integral over A, is called the integral closure
of A in B. This set is a subring of B by Corollary 8.5. If A is a domain and K is the fraction field of K,
we say that A is integrally closed if the integral closure of A in K is A.

Example. Z and K|[x] are integrally closed, if K is a field. Fields are obviously integrally closed. The

integral closure of Z in Q(¢) is the ring of Gaussian integers Z[i] (see exercises).

Lemma 8.6. Let A C B C C, where A is a subring of B and B is a subring of C. If B is integral over A

and C is integral over B, then C is integral over A.

Proof. Let ¢ € C. By assumption, we have
"+ by 1" by =0

for some b; € B. Let B’ = Albg,...,b,—1]. Then c is integral over B’ and so B’[¢] is finitely generated as
a B’-module by Proposition 8.2 (i). Hence B’[c] is finitely generated as a A-module by Corollary 8.4 and
Lemma 8.3. Hence c is integral over A by Proposition 8.2 (ii). O

Let A C B C C, where A is a subring of B and B is a subring of C'. A consequence of the previous lemma

is that the integral closure in C' of the integral closure of A in B is the integral closure of A in C.
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Lemma 8.7. Let A be a subring of B. Let S be a multiplicative subset of A. Suppose that B is integral
(resp. finite) over A. Then the natural ring homomorphism Ag — Bg makes Bg into an integral (resp.
finite) Ag-algebra.

We first prove the unbracketed statement. So suppose that B is integral over A. The ring homomorphism
Ags — Bg arises from Lemma-Definition 5.1. It is injective by Lemma 5.4 and Lemma 5.5 (injectivity can
also be established directly).

Proof. Let b/s € Bg, where b € B and s € S. By assumption we have
b 4y 1" P4 +ay=0
for some a; € A. Thus
(b/8)" + (an—1/8)(b/8)" "' + (an—2/8*)(b/s)" 2+ -+ +ag/s" = (1/s™)(b" + an_1b" "' + -+ +ag) = 0/1.

In particular, b/s is integral over Ag.

We now prove the bracketed statement. Suppose that ai,...,a, are generators for B as a A-module. Then

a1/1,...,ax/1 € Bg are generators of Bg as an Ag-module so Bg is also finite over Ag. [

END OF LECTURE 8

Theorem 8.8 (part of the Going Up Theorem). Let A be a subring of a ring B and let ¢ : A — B be the
inclusion map. Suppose that B is integral over A. Then Spec(¢) : Spec(B) — Spec(A) is surjective.

To prove Theorem 8.8, we shall need the following lemma.

I am grateful to Tobia Beccari for having suggested a simplification of its proof.

Lemma 8.9. Suppose that C is a subring of a ring D. Suppose that D (and hence C') is a domain and that
D is integral over C. Then D is a field if and only if C is a field.

Proof. (of Lemma 8.9). ”<”: Suppose that C is a field. Let d € D*. We need to show that d has an
inverse in D. Let ¢ : C[t] — D be the C-algebra map sending ¢ on d. The kernel of this map is a prime
ideal, since D is integral. Since non-zero prime ideals in C[t] are maximal (because C' is a field), we conclude

that the image of ¢ contains an inverse of d.

”=": Suppose that D is a field. Let ¢ € C*. We only have to show that the inverse ¢=! € D lies in C. By
assumption, D is integral over C' so there is a polynomial P(t) = t" +a,_1-t"" ' +---+ag € C[t] such that
P(1/c) = 0. Thus we have ¢"~!- P(1/c) =0, ie

c b an 1+ Fag- =0
which implies that ¢ € C. O
We record the following consequence of Lemma 8.9:

Corollary 8.10 (of lemma 8.9). Let A be a subring of a ring B and let ¢ : A — B be the inclusion map.
Suppose that B is integral over A. Let q be a prime ideal of B. Then qN A is a maximal ideal of A iff q is

a mazimal ideal of B.
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Proof. The induced map A/(qN A) — B/q is injective and makes B/q into an integral A/(qN A)-algebra.
Since both A/(qN A) and B/q are domains, the conclusion follows from Lemma 8.9. O

Proof. (of Theorem 8.8) Write B, for the localisation Bg(a\p) of the ring B at the multiplicative set
¢(A\p). Note that by Lemma 5.5, B, is isomorphic to the localisation of B at p, when B is viewed as an
A-module. By Lemma-Definition 5.1, we thus obtain a unique ring homomorphism ¢, : A, — B, such that
op(a/l) = ¢(a)/1. Write Ay : A = A, and Ap : B — By, for the natural ring homomorphisms. We have
A © ¢ = ¢p 0 Aa (check) and thus we obtain a commutative diagram

Spec(A
Spec(By) peciiz) Spec(B)
JSPCC(%:) lSpeC(aﬁ)
Spec(4;) Specha) Spec(A)

By Lemma 5.7, p is the image of the maximal ideal m of A, under the map Spec(A4). Thus it is sufficient
to show that there is a prime ideal q in By so that ¢, ' (q) =: Spec(ép)(q) = m. Let g be any maximal ideal
of By (this exists by Lemma 2.4). Note that the ring B, is integral over A, by Lemma 8.7. Thus Corollary
8.10 implies that ¢, '(q) is a maximal ideal of A,. Since A, is a local ring, we have m = ¢, '(q). O

Corollary 8.11. Let ¢ : A — B be a homomorphism of rings. Suppose that B is integral over A. Then the
map Spec(¢) : Spec(B) — Spec(A) is closed (ie it sends closed sets to closed sets).

Proof. Let a be an ideal of B. We have to show that Spec(¢)(V (a)) is closed in Spec(A). Let g, : B — B/a
be the quotient map and let p:=¢gq0¢ : A — B/a. Let ¢, : A — A/ker(n) be the quotient map and let
1 : A/ker(n) — B be the ring homomorphism induced by p. We have the following commutative diagram:

A—" B

Jr - J
qn qa

Afker(p) Y— BJa

Since B is integral over A, B/a is also integral over A/ker(u). Furthermore, the map v is injective
by construction. By Theorem 8.8, we thus have Spec(v)(Spec(B/a)) = Spec(A/ker(y)). Furthermore,
by Lemma 4.2, we have Spec(gq)(Spec(B/a)) = V(a) and Spec(q,)(Spec(A/ker(n)) = V(ker(n)). Thus
Spec(¢)(V (a)) = V(ker(p)), which is closed. O

Note that the previous corollary shows in particular (although this is easier to prove) that if ¢ : A — B
is surjective, then Spec(¢) is a closed map. In particular, since Spec(¢) is injective and continuous in that

case (by Lemma 4.2), it is a homeomorphism onto its image.
Proposition 8.12. Let ¢ : A — B be a ring homomorphism and suppose that B is finite over A. Then the
map Spec(¢) has finite fibres (ie for any p € Spec(A), the set Spec(¢)~1({p}) is finite).

Proof. Let ¢ : A — A/ker(¢) be the quotient map. The map Spec(gq) has finite fibres by Lemma 4.2 (since
it is injective), so we may replace A by A/ker(¢) and suppose that A is a subring of B. Let p be a prime
ideal of A. We have to show that there are finitely many prime ideals q in B such that gN A = p.

Let p be the ideal of B generated by p. Let ¢ : A — A/p (resp. ¢ : B — B/p) be the quotient map. Let
¥ : A/p — B/p be the ring homomorphism induced by ¢.
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By construction, we have a commutative diagram

Spec(B/p) _ Seee@ Spec(B)
Spec(v)) lspec(@
Spec(A/p) Specl®) Spec(A)

Since any prime ideal q € Spec(B) such that ¢ N A = p has the property that q D p, we see (using Lemma
4.2) that any such prime ideal lies in the image of Spec(q). The corresponding prime ideals of Spec(B/p)
are the primes ideals I such that ¢»~1(I) = (0). We thus have to show that Spec(¢))~1((0)) is a finite set.

Now let S = (A/p)*. This is a multiplicative set. Let A4/, : A/p — (A/p)s and let A5 : B/p — (B/p)y(s)
be the natural ring homomorphisms. There is also a natural ring homomorphism ¢ : (4/p)s — (B/P)y(s),
which is compatible with A4/, and A5 (see Lemma 5.5). We thus obtain a diagram

_ Spec(Ap/5) _
Spec((B/p)y(s)) ——— Spec(B/p)
lSpecws) JSpec(w
Spec(Aa/p)
Spec((4/p)s) " Spec(A/p)

Now notice that if q € Spec(B/p) then 1~1(q) = (0) iff g N (S) = @. In particular, any such ideal lies in
the image of Spec(Ap/p).

It is thus sufficient to prove that the map Spec(¢g) has finite fibres.

Notice now that A/p is domain (since p is a prime ideal) and that (A/p)s is none other than the fraction
field of A/p.

Note further that we may assume that p N A = p, or in other words that v is injective. Indeed, if there is a
prime ideal q € Spec(B) such that N A =p, then pN A C gN A = p. Since we of course have pN A D p
we then have p N A = p. So either we have p N A = p or there are no prime ideals q € Spec(B) such that
qN A =p (in which case, there is nothing to prove - and this is contradicted by Theorem 8.8 anyway).

Now, since B is finite over A, B/p is also finite over A/p and further, applying Lemma 8.7, we see that
(B/p)y(s) is finite over (A/p)s. In other words, (B/p)y (s) is a finite-dimensional (A4 /p)s-vector space. Write
K :=(A/p)s. If q is a prime ideal in (B/p)ys), then (B/p)y(s)/q is a domain, which is finite over the field
K and it is thus a field by Lemma 8.9. Thus q is maximal. So we only have to show that (B/p)ys) has
finitely many maximal ideals. Let qq,...,qx be any distinct maximal ideals of (B/p)ys). By the Chinese

remainder theorem, we have a surjective homomorphism of K-algebras

k
(B/B)wes) = [ [(B/P)us)/ai

i=1

and each (B/p)y(s)/qi is a K-algebra, which has dimension > 0 as K-vector space. Hence (B/p)ys) has
dimension at least k as a K-vector space. Hence there are at most dimg ((B/p)y(s)) prime (and therefore

maximal) ideals in (B/p)ys). O
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9 The Noether normalisation lemma and Hilbert’s Nullstellensatz

Noether’s normalisation lemma shows that any finitely generated algebra over a field can be ”approximated”
by a polynomial ring, up to a finite injective homomorphism. In terms of affine varieties, in say that for any

affine variety, there is a finite surjective map from the variety to some affine space.

Theorem 9.1 (Noether’s normalisation lemma). Let K be a field and let R be a non zero finitely generated

K-algebra. Then there exists an injective homomorphism of K -algebras
K[yla'“vyt] — R

for some t > 0 (where we set Klyy,...,y:] = K if t =0), such that R is finite as a K[y, ..., y:]-module.

The idea of the proof is as follows. It is easy to see that there is an injective homomorphism of algebras
Klyi,...,y:] = R so that R is algebraic over K|[y,...,y:]. The proof of the normalisation lemma basically
considers such a homomorphism and tweaks it, using properties of polynomials, so that R becomes integral
over Ky1,... Y-

Proof. We will only prove this result in the situation where K is infinite. For a proof in the situation
where K is finite, see H. Matsumura, Commutative Algebra, 2nd ed., Benjamin 1980 (14.G).

Let r1,...,7, € R be a set of generators of minimal size (ie n is minimal) for R as a K-algebra. We proceed
by induction on n. If n = 1 then either R ~ K|[z] or R ~ K|[z]/I for some non trivial ideal I in K[z]. In
the first case, we may set t = 1 in the theorem and in the second case we may set ¢ = 0. So the theorem is
proven when n = 1. So suppose that n > 1 and that the theorem holds for n — 1.

Up to renumbering the generators, we may assume that there is a k € {1,...,n} such that for all ¢ €
{1,...,k}, r; is not algebraic over K[ry,...,r;_1] (where we set K[ry,...,r;_1] = K if ¢ = 1) and such that
Tk+; is algebraic over K[ry,...,rg] for all € {1,...,n — k} (where we set {1,...,n—k} =0 if k =n).

Indeed, we may assume that not all the elements of {rq,...,r,} are algebraic over K, for then they would
all be integral over K (since K is a field) and we could then set ¢ = 0 in the theorem by Corollary 8.4.
To find a suitable renumbering, choose one generator r;, € {r1,...,7}, which is not algebraic over K and
then look for a second generator r;, € {ry,...,r}, which is not algebraic over K[r;,]. If this does not exist
then renumber the remaining generators in an arbitrary way. Otherwise, let r;, € {ry,...,r} be such a
generator and look for a generator r;,, which is not algebraic over K{r;,,7;,]. Keep going in this way until
all the remaining generators are algebraic over the K-algebra generated by the previous ones, and renumber

the remaining generators in an arbitrary way.

Now we may assume that k < n, for otherwise we may set t = k = n in the theorem. The generator r,, is thus
algebraic over Klri,...,mp—1]. Let Pi(x) € K[r1,...,rp—1][x] be a non zero polynomial (not necessarily
monic) such that Pj(r,) = 0. Since K|[ry,...,r,—1] is the image of the polynomial ring K|x1,...,z,_1] by

the homomorphism of K-algebras sending x; to r;, there is a non zero polynomial
P(zy,...,z,) € K[z1,...,Tp—1][xn] = K[z1,...,2,)

such that P(ry,...,r,) =0 . Let F(x1,...,2,) be the sum of the monomials of degree d := deg(P) which
appear in P (so that in particular deg(P—F') < d). Choose A1, ..., An—1 € K sothat F(A1,..., Ap—1,1) #0.
To see why the \; exist, note that since F' is a homogenous polynomial, the polynomial F(z1,...,2,—1,1)

is a sum of homogenous polynomials of distinct degrees and thus is not the zero polynomial. Hence
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F(z1,...,%n—1,1) must be non-zero for some specific values of 1, ..., z,_1, because a non-zero polynomial

with coefficients in an infinite field cannot evaluate to 0 for all the values of its variables (why? - exercise).
Now let u; :==r; — \jry, for all 4 € {1,...,n — 1}. We compute
P(Tlv s ,’I"n) = P(U1 + >\1Tn, Ug + )\27'717 sy Un—1 + )‘nflrnarn)

= F()\l, . -7)\n—17 1)7’g + Fl(ul, e ,Un_l)’l"zil + e + Fd(ul, e ,un_l) = 0

for some polynomials Fi,..., Fy in the u;. To see why these equalities hold, note that if J(x1,...,x,) €
K[x1,...,x,] is a monomial of degree ¢, then

J(ug + A1rn, s + Aoy oy Un—1 + 170, ) = J (A1, -0 o5 A1, 1)7“2 + (polynomial in r,, of lower degree)
and apply this remark to the monomials of maximal degree appearing in P(z1,...,zy).
Thus

’I“fll + (F()\l, ey )\nfl, 1))_1F1(u1, ce ,un,l)rﬁ_l + -+ (F()\l, ey )\nfl, 1))_1Fd(u1, ey ’U,n,1> =0

and we see that r, is integral over K[uj,...,u,—1]. Now, by the inductive hypothesis, there exists an

injective homomorphism of K-algebras
Ky, ... y) = Klug, ..., up—1]
for some t > 0, such that K[uy,...,u,—1] is integral over K[yi,...,y:]. Hence
R=K[r1,...,mp) = Klu1, ..., un_1][rs]
is integral over K|[yi,...,y:] by Lemma 8.6. O

Noether’s normalisation lemma has the following fundamental corollary.

Corollary 9.2 (weak Nullstellensatz). Let K be a field and let R be a finitely generated K -algebra. Suppose
that R is a field. Then R is finite over K (ie R is a finite-dimensional K -vector space).

Proof. Let
Kly1,...,yt) @ R

be as in Noether’s normalisation lemma. Recall that by Theorem 8.8, the map Spec(R) — Spec(K[y1, - - -, yt])
is surjective. Now Spec(R) has only one element, since R is a field. Hence Spec(K]|yi,...,y:]) has only one

element. Thus ¢ = 0, because for any ¢ > 1, Spec(K|[yi, ..., y:]) has more than one element.

To see this, suppose ¢t > 1 and note first that the ring K[yi, ...,y has the prime ideal (0) since it is a
domain. Also, the element y; is not a unit and it is thus contained in a maximal ideal (use Lemma 2.4),
which is not equal to (0), since y; # 0. Hence KJyi,...,y:] has at least two prime ideals (in fact it has
infinitely many but we don’t need this here).

We conclude that R is integral over K. Since R is also finitely generated over K, it must be finite over K
(see after Corollary 8.5). [

END OF LECTURE 10
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The weak Nullstellensatz has the following corollaries, which are of fundamental importance in algebraic

geometry.

Corollary 9.3. Let K be an algebraically closed field. Lett > 1. Then an ideal I of K|x1, ..., 2] is mazimal
iff it has the form (x1 —aq,...,xs—at) for some ay,...,a; € K. A polynomial Q(x1,...,x¢) € K[x1,..., 4]

lies in (x1 —aq,...,x¢ — ag) iff Qay,...,a;) =0.

Proof. We first prove the first statement.

7<": Note that the ideal (1 —ayq, ..., z; —a) is the image of the ideal (21, ..., z;) under the automorphism
of K[x1,...,x] sending x; to x; — a; for all i € {1,...,t}. Now the ideal (x1,...,2;) is maximal since
Klzq,...,2¢]/(21,...,2¢) ~ K. Hence (1 — ay,...,z; — a;) is also maximal.

”=": Suppose that I is maximal. Note that K[x1,...,2:]/] is a field, which is also a finitely generated
K-algebra. Hence, by Corollary 9.2, K{xz1,...,2]/I is finite, and it particular algebraic over K. Since
K is algebraically closed, this implies that Klz1,...,2¢]/I is isomorphic to K as a K-algebra. Let ¢ :
K[z1,...,2¢] = K be the induced homomorphism of K-algebras (obtained by composing the isomorphism
with the quotient map Klz1, ...,z = K|x1,...,2¢]/I). By construction, the ideal I contains the ideal

(1 = P(x1), .., 00 — ().

Since the ideal (21 — ¢(z1),..., 2+ — ¢(x¢)) is also maximal by the first part, we must have

I=(x1—¢(x1),. ..., 2t — p(xy)).

For the second statement, note that the homomorphism of K-algebras ¢ : K[xy,...,2¢] = K, such that
Y(P(x1,...,2¢)) = P(ay,...,at), is surjective and ker(¢)) D (1 — ay,..., 2+ — az). In particular, ker(t)) is
maximal, and we must have ker(¢)) = (1 — a1,...,2t — at), since (1 — a1, ...,2: — a¢) is maximal by the
first part. [

Corollary 9.4. Let K be a field. Let R be a finitely generated K-algebra. Then R is a Jacobson ring.

Proof. Let I C R be an ideal. We need to show that the Jacobson radical of I of R coincides with the
radical of I. In other words, we need to show that the nilradical of R/T coincides with the Jacobson radical
of the zero ideal in R/I. Since R/I is also finitely generated over K, we may thus replace R by R/I and
suppose that I = 0.

Let f € R and suppose that f is not nilpotent. We need to show that there exists a maximal ideal m in R,
such that f ¢ m. Let S = {1, f, f2,...}. Since f is not nilpotent, we have f* - f # 0 for all k > 0 (setting
f¥ =1if k = 0) and thus the localisation Rg is not the zero ring. Let q be a maximal ideal of Rg (this
exists by Lemma 2.4). Since Rg is a finitely generated K-algebra (see Lemma 5.3), the quotient Rg/q is
also finitely generated over K. Thus, by Corollary 9.2, the canonical homomorphism of rings K — Rg/q
(giving the K-algebra structure) makes Rg/q into a finite field extension of K. Let ¢ : R — Rg/q be
the homomorphism of K-algebras obtained by composing the natural homomorphism R — Rg with the
homomorphism Rg — Rg/q. The image Im(¢) of ¢ is a domain (since Rg/q is a domain, being a field),
which is integral over K (since Rg/q is integral over K, being finite over K - see after Corollary 8.5) and
thus Im(¢) is a field by Lemma 8.9. Thus ker(¢) is a maximal ideal of R. On the other hand, ker(¢) is by
construction the inverse image of q by the natural homomorphism R — Rg. Since f/1 is a unit in Rg, we
have f/1 ¢ q and thus f & ker(¢). Thus we may set m := ker(¢). O
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The following Corollary also contains a definition.

Corollary 9.5 (strong Nullstellensatz). Let K be an algebraically closed field. Lett > 1 andlet I C K[xq,. .., x4
be an ideal. Let
Z(I) ={(c1,...,ct) € K" | P(cy,...,cn) =0for all P € I}

Let Q(x1,...,z¢) € Klx1,...,x¢). Then Q € v(I) iff Q(ca,...,ct) =0 for all (c1,...,¢) € Z(I).

The strong Nullstellensatz implies that the set of simultaneous roots of a set of polynomials determines the

radical of the ideal generated by the set of polynomials.
Proof. Let R := Klz1,...,2¢]. The implication ”=" is straightforward.

We prove the implication <. Let Q(z1,...,2:) € K[z1,...,z:] and suppose that Q(c1,...,¢:) = 0 for
all (¢1,...,¢) € Z(I). Suppose for contradiction that @ ¢ v(I). Since R is Jacobson ring (by Corollary
9.4), there exists a maximal ideal m in R, such that m O I and @ ¢ m. By Corollary 9.3, we have
m = (z1 —ag,...,x — a¢) for some a; (where ¢ € {1,...,t}). By construction, we have P(ay,...,a;) =0
for all P € m and hence for all P € I. In other words, (ai,...,a;) € Z(I). By the second statement in
Corollary 9.3, we see that Q(aq,...,a;) # 0. This is a contradiction, so @ € v(I). O

10 Jacobson rings

In this section, we collect more consequences of the weak Nullstellensatz and we show that the property
of being a Jacobson ring is a very stable property. See Theorem 10.5 below. We also give an alternative
proof of the weak Nullstellensatz, based of the theorem of Artin-Tate 7.7, which does not depend on
Noether’s normalisation lemma. This shows in particular that the proof of Theorem 10.5 below can be
made independent of Noether’s normalisation lemma. In the situation where the ring is noetherian, it can
even be made independent of the more difficult results of the theory of integral extensions (like Theorem
8.8).

New proof of the weak Nullstellensatz (Corollary 9.2).

For this, we shall need the following lemma.

Lemma 10.1. Let K be a field. Let t > 1 and let P(x1,...,2¢) € K[x1,...,2] be a non-zero polynomial.

Then there exists a non zero prime ideal in K[1,..., x|, which does not contain P(x1,...,x¢).

Proof. (of Lemma 10.1). Let L := K(x1,...,2:—1) be the quotient field of K[x1,...,z:—1] (where we set
L:=Kift=1). Let¢: Klzy,...,2¢] = K[z1,...,2¢—1][x:] = L[x¢] be the natural injective map. If we
can find a prime ideal p in L[z;] such that «(P) ¢ p, then the prime ideal :~!(p) will not contain P, so we
may assume that t = 1.

Let us write z; = x1 = z so that K[z1,...,2¢] = K[z]. We may assume without restriction of generality
that P(z) is monic (why?). We may also assume that P(x) is not constant (otherwise, any maximal ideal
of K[z] will do).

Let P = P/" ... P'* be the decomposition of P into irreducible factors, where all the P; are monic (and
irreducible). Let @ be an irreducible factor of 1 + P. Then the ideal (@) does not contain P because
otherwise there would be polynomials Ry, Ry € KJz]| such that QR; = 1+ P and QRy = P, so that
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Q(R; — Ry) = 1, which is impossible, since @ is not constant. Since @ is irreducible, the ideal (Q) is prime

and therefore the ideal (@) satisfies the requirements of the lemma. [

Now to the proof of the weak Nullstellensatz. Let K be a field and let R be a finitely generated K-algebra.
Suppose that R is a field. We want to show that R is finite over K. Let r1,...,7; be generators of R
over K. Suppose that the r; are numbered in such a way that the elements rq,...,r; are algebraically
independent over K for some ! € {0,...k} (in particular, the set r1,...,r; might be empty) and so that
Tr4i 18 algebraic over K (rq,...,r;) for all i € {1,...k —I}. Recall that to say that the generators r1,...,7;
are algebraically independent means that the homomorphism of K-algebras from K|z, ..., 2] to R, which
sends z; to r; for all ¢ € {1,...,1}, is injective. This renumbering can be carried out as in the proof of
Noether’s normalisation lemma. We may assume that [ > 1, for otherwise R is a finite field extension of K
(since R would be then an integral and finitely generated K-algebra) and there is nothing to prove. Since
R is a field, the quotient field L ~ K(x1,...,2;) of K[x1,...,2;] ~ K]r1,...,r;] can be viewed as a subfield
of R (ie, the subfield K(r1,...,7;)). Now note that R is generated by 711, ...,7 as an L-algebra and that
the ri4; (i € {1,...,k —1}) are algebraic over L, since they are algebraic over K(r1,...,7;). Since L is a
field, the r;4; are actually integral over L and hence R is a finite field extension of L. We deduce from the
Theorem of Artin-Tate 7.7 that L is finitely generated over K. In particular, K(z1,...,z;) ~ L is finitely
generated as a K[xy,...,2]-algebra. Let Pi(z)/Q1(x),..., Pu(x)/Qu(z) be generators of K(z1,...,2;) as
a Kziy,...,x]-algebra. Let Q(z) := [[_, Qi(x) and let S := {1,Q(z), Q*(x),...}. Since K[z1,...,z;] is a
domain, the localised ring K|z1,...,2;]s can be viewed as a subring of K(x1,...,z;). Furthermore, since
every element of K(z1,...,7;) can now be written as a quotient R(z)/Q"(x) for some b > 0, we see that
Klzy,...,21)s = K(21,...,2;). Since K(z1,...,2;) has only one prime ideal, namely the zero ideal, we
conclude from Lemma 5.6 that every non zero prime ideal of K[xz1,...,2;] contains Q(z). This contradicts
Lemma 10.1. We conclude that [ = 0, so that R is finite over K. [

The Jacobson property enters the proof of Theorem 10.5 via the following lemma.

Lemma 10.2. Let R be a Jacobson ring. Suppose that R is a domain. Letb € R and let S := {1,b,b%,...}.
Suppose that Rg is a field. Then R is a field.

Proof. We know from Lemma 5.6 that the prime ideals of R, which do not meet b are in one to one
correspondence with the prime ideals of Rg. Since Rg is a field, there is only one such ideal in R, namely
the 0 ideal. Hence every non zero prime ideal of R meets b. Now suppose for a moment that (0) is not a
maximal ideal of R. Since (0) is its own radical (since R is a domain) and since R is Jacobson, the ideal
(0) is the intersection of all the non zero maximal ideals of R. However, we just saw that this intersection

contains b, which is a contradiction. So (0) must be a maximal ideal of R. Hence R is a field (why?). O

Corollary 10.3. Let T be a field and let R C T be a subring. Suppose that R is a Jacobson ring. Suppose
that T is finitely generated over R. Then R is a field. In particular, T is finite over R.

Proof. Let K C T be the fraction field of R. Note that by Corollary 9.2, T' is a finite extension of K. Let
t1,...,tx € T be generators of T as a R-algebra. Let

Pl(x) =% + (ai,di—l/bi,di—l)xdi71 + -+ ai,O/bi,O S K[x]

be a monic polynomial with coefficients in K, which annihilates ¢; (this exists since T is integral over K).
Let b := Hle szl big;—j. Let S := {1,b,b%,...}. Then there is a natural injective homomorphism of
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R-algebras from Rg into K, because R is a domain (check) and we view Rg as a sub-R-algebra of K. By
construction, T is generated by the ¢; as a Rg-algebra and the elements ¢; are integral over Rg. Hence T is
finite over Rg. Lemma 8.9 now implies that Rg is a field. Finally, Lemma 10.2 implies that R is a field.

Second proof of Corollary 10.3 in the noetherian situation. Suppose that R is noetherian. Let
K C T be the fraction field of R. By Corollary 9.2, T is a finite extension of K. Then K is finitely
generated over R by Theorem 7.7. But then K has the form Rg/ for a multiplicative set S’ generated by
an element of R (which can be taken to be the product of the denominators of a finite set of generators of
K over R - we leave the details to the reader). Hence R is a field by Lemma 10.2. O

Corollary 10.4. Let i : R — T be a homomorphism of rings. Suppose that R is Jacobson and that T is a
finitely generated R-algebra. Let m be a maximal ideal of T. Then v~ (m) is a mazimal ideal of R and the
induced map R/¢y~1(m) — T/m makes T/m into a finite field extension of R/¢p~1(m).

Proof. Note that T//m is a field which is finitely generated over R/v~1(m). Also, R/¢~!(m) is a Jacobson

ring, since it is the quotient of a Jacobson ring. Thus Corollary 10.3 implies the result. O

Theorem 10.5. A finitely generated algebra over a Jacobson ring is Jacobson.

Proof. The beginning of the proof is similar to the proof of Corollary 9.4.
Let R be a Jacobson ring and let T be a finitely generated R-algebra.

Let I C T be an ideal. We need to show that the Jacobson radical of I of T' coincides with the radical of I.
In other words, we need to show that the nilradical of T'/T coincides with the Jacobson radical of the zero
ideal in T/I. Since T/I is also finitely generated over R, we may thus replace T by T'/I and suppose that
I1=0.

Let f € T and suppose that f is not nilpotent. We need to show that there exists a maximal ideal m in T,
such that f ¢ m. Let S = {1, f, f2,...}. Since f is not nilpotent, we have f* . f # 0 for all k > 0 (setting
f¥ =1if k = 0) and thus the localisation Ts is not the zero ring. Let q be a maximal ideal of T (this
exists by Lemma 2.4). Since T is a finitely generated R-algebra (see Lemma 5.3), the quotient Ts/q is also
finitely generated over R. Let ¢ : R — Tgs/q be the canonical ring homomorphism. From Corollary 10.4,
we deduce that ker(¢) is a maximal ideal and that Ts/q is a finite field extension of R/ker(¢).

Now consider the map ® : T — T/q which is the composition of the natural map T' — Ts with the quotient
map. The image Im(®) of ¢ is a R-subalgebra, and hence R/ker(¢)-subalgebra, of Ts/q. Since Ts/q is
integral over R/ker(¢), we see that Im(®) is integral over R/ker(¢) and hence Im(®) is a field by Lemma
8.9. In other words, ker(®) is a maximal ideal of T'. Finally, note that ker(®) is by construction the inverse
image of q by the natural homomorphism T — Tgs and that f/1 & q, since f/1 is a unit in Tg. Thus we
have f ¢ ker(®). We conclude that we may set m := ker(®). 0O

Examples. The ring Z is Jacobson (prove this). Hence any finitely generated algebra over Z is a Jacobson

ring.

END OF LECTURE 11
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11 Dimension

The dimension of a ring R is an invariant of a ring, whose definition is inspired by algebraic geometry. If R
is the coordinate ring of an affine algebraic variety over an algebraically closed field, the dimension of R is
the ordinary dimension of the variety.

Here is the formal definition.
Definition 11.1. Let R be a ring. The dimension of R is
dim(R) :=sup{n|po 291 2 - 2 Pn, Po,---,Pn € Spec(R)}.

Let p be a prime ideal of R. The codimension (also called height) of p is
ht(p) = sup{n|p 2 p1 2 -~ 2 Pn, P1,...,Pn € Spec(R)}.

Note that the dimension of R as well as the codimension of p might be infinite. From the definitions, we
see that if q is a prime ideal and q C p then we have ht(p) > ht(q), provided ht(p) < oco.

Let R be a ring. If N is the nilradical of R, then IV is contained in every prime ideal of R and thus
dim(R) = dim(R/N)

and
he(p (mod N)) = ht(p)

for any prime ideal p of R (where p (mod N) is the image of p in R/N).

Note finally that from the definitions, we have
dim(R) = sup{ht(p) |p € Spec(R)}
More generally, for any ideal I C R, we clearly have dim(R) > dim(R/I).
Lemma 11.2. Let R be a ring and let p € Spec(R). Then ht(p) = dim(R,). Also, we have

dim(R) = sup{ht(p) | p @ mazimal ideal of R}.

Proof. Recall that the prime ideals of R, are in one to one correspondence with the prime ideals contained
in p by Lemma 5.6. Furthermore this correspondence preserves inclusion. The first equality follows directly
from this. For the second one, note that by definition, we have

dim(R) > sup{ht(p) |p a maximal ideal of R}

so we only have to establish the reverse inequality. To establish this, let p be a prime ideal, which is not

maximal. Consider a chain of prime ideals
P2p12 2P0,
and let m be a maximal ideal containing p. We then have a chain

m2p2p2- 2 Pa

=
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Hence ht(m) > ht(p) and thus we clearly have
sup{ht(p) | p a maximal ideal of R} > sup{ht(p) |p a prime ideal of R} = dim(R).

O

Note that Lemma 11.2 has in particular the following consequence. Let R be a ring and let S be a multi-
plicative subset of R. Let p be a prime ideal of Rg and let A : R — Rg be the natural ring homomorphism.
Then ht(p) = ht(A~1(p)) (use the second remark after Lemma 5.6).

If Ris aring and I C R is an ideal, we define the codimension or height ht(I) of I as follows:
ht(I) := min{ht(p) | p € Spec(R), p 2 I}.

(this generalises the definition of the height of a prime ideal given above).
From the definition, we see that if J is another ideal and J C I, then ht(J) < ht(I).

If ht(I) < oo, there is a prime ideal p, which is minimal among all the prime ideals containing I, and such
that ht(p) = ht(I). This follows directly from the definitions.

The next two subsections contain some preliminary results (which are also of independent interest) that we

shall need before we resume the study of dimension in subsection 11.3 below.

11.1 Transcendence bases

Let k be a field and let K be a field containing k. If S C K is a finite subset of K, we shall write k(S) for
the smallest subfield of K containing k and S. By construction, k(S) is isomorphic to the field of fractions
of the k-algebra k[S] C K (recall that k[S] is the smallest k-subalgebra of K containing k and S). If
S ={aq,...,an} then we shall as usual use the shorthand k(aq,...,ap) for k({aq,...,an}).

If Sq,S2 C K are two finite subsets, we have k(S7 U Sa) = k(S1)(S2) (this follows from the definitions).

Also, recall that if the elements of S are all algebraic (equivalently, integral) over k, then we actually have
kE(S) = E[S]. To see this, note that we only have to verify this in the situation where S = {s} in view of
the compatibility mentioned in the previous paragraph. Now notice that if an element s € K is algebraic
over k, then we have a homomorphism of k-algebras k[t] — K, which sends ¢ to s. Since the image of this
homomorphism is a domain and s is algebraic, the kernel of this homomorphism is a non zero prime ideal
of k[t], which is thus maximal (why?). Hence k[s] is actually field (all this should be familiar from Rings
and Modules and/or the Galois Theory course). Finally note that if all the elements of S are algebraic over

k then k(S) is a finite extension of k. This follows from Corollary 8.4 and Proposition 8.2.
If there is a finite subset S of K such that K = k(S) we say that K is finitely generated over k as a field.

This is a weaker condition than finitely generated as a k-algebra but by the previous paragraph it coincides

with it if all the elements of S are algebraic over k.

We say that the set S C K is a finite transcendence basis of K over k if
- S is finite;

- the elements of S are algebraically independent over k;

- K is algebraic (equivalently, integral) over the field k(S).
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It is easy to see that if K is finitely generated over k as a field, then K has a transcendence basis over
k. To obtain such a basis, start with a finite set S such that K = k(S). Take a subset S’ C S, which is
algebraically independent and has maximal cardinality among such subsets (note that S’ might be empty).
Then each of the elements of S\S’ is by construction algebraic over k£(S’) and thus K is algebraic over k(S’).

This subset will be a transcendence basis of K over k.

Proposition 11.3. Let K be a field and k C K a subfield. Suppose that K is finitely generated over k as
a field. Let S and T be two finite transcendence bases of K over k. Then #S = #T.

Proof. For convenience, write S := {y1,...,v,} and T := {p1,..., pm}, where n = #S and m = #T.

We shall prove that m = n by induction on min(m,n). The statement is true if min(m,n) = 0 (so that

either S or T is empty), for in that case K is algebraic over k and then both S and T' must be empty.

We may assume without restriction of generality that S NT = (). To see this, suppose that SNT = U and
that U # (. Then S\U and T\U are transcendence bases for K over k(U). We have

min(#(S\U), #(T\U)) = min(m,n) — #U

and thus by induction, we have #(S\U) = #(T\U) so that #S =n = #T =m.

We also contend that m or n is minimal among the cardinalities of all possible transcendence bases of K
over k. To see this, suppose that m < n (say) so that m = min(m, n). Suppose that m = #7T is not minimal.
Choose a transcendence basis T” of K over k such that #7T” < m and such that #7” is minimal. We have
min(#7T, #T") < min(m, n) and so by induction we have #7" = #T = m, which a contradiction. Hence m
is minimal.

We now start the proof. Suppose without restriction of generality that m is minimal among the cardinalities

of all possible transcendence bases of K over k (swap S and T if necessary).

By assumption there is a non zero polynomial P(xz,...,Zn) € k[zg, ..., %], such that

P(y1,p15--+,pm) =0

(to obtain this polynomial, start with a non zero polynomial with coefficients in k(p1, . . ., prm) =~ Frac(k[zq, ...
which annihilates 71, and clear denominators). We suppose that P(xg, ..., Z;) has minimal degree among

all non zero polynomials with this property.

By assumption, P(xg, ..., %) contains monomials with positive powers of xj for some k > 1 (otherwise v,

is algebraic over k). Renumbering, we may suppose that this variable is ;.

We may thus write

P(ﬂfo,...,xm) :ZP]‘(J;(LJIQ,..-,xm)l{
J

where Pj(zg,z2,...,Tm) € k[To, T2, ..., ZTm]. Since P(xo,...,Ty) is a non constant polynomial in the vari-
able z1, we know that Pj, (o, z2,...,Zm) # 0 for some jo > 0. Also, we cannot have P, (y1,p2,...,pm) =0,
because that would violate the assumption that the degree of P(xy,...,2,,) is minimal.

Thus, since P(y1,p1,- -+, pm) = 225 Pi(71,p2, - .-  pm) P = 0, we see that py is algebraic over k(y1, pa, - - ., pm).

Hence k(y1, 01, p2, - - -, Pm) 1s algebraic over k(v1, p2,. .., pm) and thus K is algebraic over k(v1, p2, ..., pm)

(again use Corollary 8.4 and Proposition 8.2). Since m is minimal, we conclude that {y1, p2,...,pm} is &
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transcendence basis of K. In particular {ve,...,v,} and {pa,...,pm} are transcendence bases of K over
k(y1). By induction, we thus have m — 1 =n — 1, ie m = n and the proof is complete. [J

Let k£ be a subfield of a field K and suppose that K is finitely generated over k£ as a field. In view of
the last proposition, we may define the transcendence degree tr(K|k) of k over K as the cardinality of any

transcendence basis of K over k. As a basic example, we have tr(k(z1,...,2,)|k) = n for any field k.

END OF LECTURE 12

11.2 The lemma of Artin-Rees and Krull’s theorem

Let R be a ring. A ring grading on R is the datum of a sequence Ry, Rq,... of additive subgroups of R,
such that R = &;>0R; (where & refers to an internal direct sum of additive subgroups) and such that
R;-R; C Ry for any i,j > 0 (ieif r € R; and t € R; then rt € R,1;). One can see from the definition
that Ry is then a subring of R and that &;>;,R; is an ideal of R for any iy > 0. Each R; naturally carries
a structure of Rp-module. Finally, the natural map Ry — R/(®;>1R;) is an isomorphism of rings and we

have natural isomorphism of Ro-modules R;, =~ (®;>i, Ri)/(Pi>io+1Ri) for any ig > 0 (why?).
If r € R, we shall often write [r]; for the projection of r to R; and we call it the i-th graded component of r.

For example, if k is a field, the ring k[z] has a natural grading given by (k[z]); = {a-2*|a € k}. Any ring
carries a trivial grading, such that Ry = R and R; = 0 for all ¢ > 0.

Suppose that R is a graded ring. Let M be an R-module. A grading on M (relative to the grading on R) is
the datum of a sequence My, M1, ... of additive subgroups of M, such that M = @;>oM; (where & refers
to an internal direct sum) and such that R; - M; C M;4; for any 4,5 > 0 (ie if r € R; and ¢ € M, then
rt € M;y;). In this situation, we say that M is a graded R-module (this is slight abuse of language because
the reference to the grading of R is only implicit).

There is an obvious notion of homomorphism of graded R-modules.

Lemma 11.4. Let R be a graded ring with grading R; (i > 0). The following are equivalent:
(i) The ring R is noetherian.

(ii) The ring Ry is noetherian and R is finitely generated as a Ry-algebra.

Proof. The implication (ii)=-(i) is a consequence of Hilbert’s basis theorem and Lemma 7.2.

We prove the implication (i)=-(ii). The ring Ry is noetherian since it is a quotient of a noetherian ring (by
Lemma 7.2).

To show that R is finitely generated as a Rp-module, let aq,...,a; be generators of §;5gR; viewed as an
ideal of R (this exists, since R is noetherian). We claim that the graded components of a1, ..., ax generate
R as a Rp-algebra (more concretely: the elements [a1]1, [a1]2 .. ., [a2]1, [az]s, ... generate R as a Ry-algebra).

This will prove the lemma, since each a; only has finitely many graded components.

We shall prove by induction on ¢ > 0 that R; lies inside the sub-Rj-algebra generated by the graded
components of a1, ...,a,. Since R is generated by all the R;, this will prove the claim. For i = 0, there is
nothing to prove. So suppose that ¢ > 0 and that the subgroups Ry, ..., R;_1 lie inside the sub-Ry-algebra
generated by the graded components of ay, ..., ak.
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Let r € R;. By assumption, there are elements t1,...,t; € R such that r = tya; + - - - + tyar. We deduce
that

Z Z 1—u a]

j=lu=1
Now, in this sum, we have [t;];—, € Ro®@R1®---®R;_1 and thus [t;];_, lies in the sub-Ry-algebra generated
by the graded components of a1, ..., a; by the inductive hypothesis. Thus r lies in this sub-Ry-algebra also,
which proves the claim and the lemma. [

Let R be aring and let M be an R-module. A (descending) filtration M, of M is a sequence of R-submodules
M =My 2 My 2 My 2

of M. If I is an ideal of R, then M, is said to be a I-filtration if IM; C M;,, for all i > 0. A [-filtration
M, is said to be stable if IM; = M; 1 for all i larger than some fixed natural number.

Now suppose given a ring R, an ideal I C R, a R-module M and a [-filtration M, on M.

Note that the direct sum of R-modules R¥ := @;>0l® (where I° = R) carries a natural structure of graded
ring, with the grading given by the presentation R* = @;>01° (if « € I' and 8 € I/, then the product of «
and 3 in R* is given by the product of a and 8 in R, viewed as an element of I**7). The ring R¥ is often
called the blow-up algebra associated with R and I (this terminology comes from algebraic geometry). The
direct sum M# := @i>0M; of R-modules then carries a natural structure of graded R#-module (ifael i
and 8 € Mj, then the multiplication of 8 by « in M# is given by the multiplication of 8 by « in M, viewed
as an element of M;,;, in which it lies since M, is a I-filtration). Note that R# is naturally a R-algebra,
since there is an natural injective homomorphism of rings R — R#, sending r» € R to the corresponding
element of degree 0. The corresponding R-module structure on M7# is then simply M#* = = @;>0M; viewed

as a direct sum of R-modules.

Lemma 11.5. Let R be a ring and let I C R be an ideal. Suppose that R is noetherian. Then the ring R¥
associated with R and I s also noetherian.

Proof. Let r1,...,7, € I be generators of I (this exists because R is noetherian). There is a homomorphism
of rings ¢ : R[z1,...,x] — R¥, given by the formula P(xy,...,zx) +— P(ry,...,7). Here rq,... 7 are
viewed as elements of degree 1 in R* and the coefficients of P(x1,...,x;) are viewed as elements of degree

0 (so that ¢ is a homomorphism of R-algebras). By construction, ¢ is surjective and hence R* is also

noetherian by the Hilbert basis theorem and Lemma 7.2. [

Note that in this context there is a slight inaccuracy in AT, p. 107, before Lemma 10.8.

Lemma 11.6. Let R be a ring. Let I C R be an ideal. Let M, be a I-filtration on M. Suppose that M; is
finitely generated as a R-module for all j > 0. Let R¥ be the corresponding graded ring and let M7 be the

corresponding graded R¥ -module. The following are equivalent:
(i) The R*-module M* is finitely generated.
(ii) The filtration M, is stable.

Proof. Let n > 0 and consider the graded subgroup

M = ( @M @g FM,)
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of M#. Note that M(#Z ) is a sub-R#-module of M# by construction. Note also that each M; with j €
0,...,n} is finitely generated as a R-module by assumption and thus M, # s finitely generated as a R¥-
(n)
module (it is generated by @?:0 Mj). We have inclusions

C M C M% C

#
M 1 2 S

(0)

and by construction we have M# = U M (#).

Note that saying that the I-filtration M, is stable is equivalent to saying that M(ﬁ oth) = Mgi .
k > 0 and some ng > 0. We claim that M(ﬁﬁk) = M(ﬁo) for all k > 0 and some ng > 0 iff M# is finitely
generated as a R7-module. Indeed, if M# is finitely generated as a R*-module, then M, (ﬁ otk) = M (i .
all £ > 0 as soon as M(ﬁo) contains a given finite set of generators for M# = Ug’iOM(?). On the other hand,
it M7 = MZ | for all k> 0 then M# = M},

(no)’
generated. [J

) for all
) for

and M7 is finitely generated since M (#; o) is finitely

Proposition 11.7 (lemma of Artin-Rees). Let R be a noetherian ring. Let I C R be an ideal. Let M be
a finitely generated R-module and let Mo be a stable I-filtration on M. Let N C M be a submodule. Then
the filtration N N M, is a stable I-filtration of N.

Proof. By construction, there is a natural inclusion of R#-modules N#* C M#. By Lemma 11.6, the
R#-module M# is finitely generated. The module N# is thus also finitely generated by Lemma 11.5 and
by Lemma 7.4. Hence N N M, is a stable I-filtration by Lemma 11.6. O

Corollary 11.8. Let R be a noetherian ring. Let I C R be an ideal and let M be a finitely generated
R-module. Let N C M be a submodule. Then there exists a natural number ng > 0 such that

I"(I"M N N) = I"*""MnN.
for alln > 0.
Proof. Apply the lemma of Artin-Rees to the filtration I°*M of M. O

Corollary 11.9 (Krull’s theorem). Let R be a noetherian ring. Let I C R be an ideal and let M be a
finitely generated R-module. Then we have

Np>ol" M = Urer4rker(rar)
where ray : M — M is the map such that rpr(m) =7 -m for allm € M.
Proof. Let N :=N,>0l"M. By Corollary 11.8, there exists a natural number ng > 0 such that
I(I"™MNN)=IN=I"""MAN=N

We deduce from Q4 of sheet 1 (the general form of Nakayama’s lemma) that there exists r € R such that
r € 14+ I and such that rN = 0. Hence N = Ny>0l" M C Upeci4rker(rar). On the other hand, if r € 14 1,
y € M and ry =0, then (1+a)y = y+ay =0 for some a € T and so y € IM. Since y+ ay = 0, we conclude
that y € I?M. Continuing in this way, we conclude that y € N. [
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Corollary 11.10 (of Krull’s theorem). Let R be a noetherian domain. Let I be a proper ideal of R. Then
ﬁnzofn =0.

Proof. This is clear. [

Corollary 11.11 (of Krull’s theorem). Let R be a noetherian ring and let I be an ideal of R. Let M be a
finitely generated R-module. Suppose that I is contained in the Jacobson radical of R. Then Nyp>ol™M = 0.

Proof. If r € 1+ I then r is a unit (a similar reasoning was made during the proof of Nakayama’s lemma).
Indeed, if r is not a unit, then r is contained in some maximal ideal m. But then 1 is also contained in m,
since I C m, which is a contradiction. Hence ker(r,s) = 0 and the result follows from Krull’s theorem. [

Corollary 11.11 is especially useful when R is a local ring (in which case I is always contained in the Jacobson

radical if I # R).

END OF LECTURE 13

11.3 Dimension theory of noetherian rings

We first examine the case of dimension 0. We will call a ring Artinian if whenever we have a descending
sequence of ideals
L2 2I32...

in R, there exists an n > 1 such that I,,, = I,, for all £ > 0. We then say that the sequence I, stabilises

(compare with Lemma 7.1).

Lemma 11.12. Let R be a noetherian local ring with mazximal ideal m. The following are equivalent:

(i) dim(R) = 0;

(ii) m is the nilradical of R;

(iii) m™ = 0 for some n > 1;

(iv) R is Artinian.

Proof. (i)=(ii): If dim(R) = 0 then every prime ideal of R coincides with m. Hence m is the nilradical of
R.

(ii)=-(iii): This follows from Lemma 7.5.

(ii)=-(iv): Let
LD, D2I3D...

be a descending sequence of ideals in R. Let & > 0 be the minimal natural number such that the sequence
mkll :_) mkIQ :_> mkfg :_) N

stabilises. The number k exists since m* = 0 for some k > 0 by (iii). Suppose for contradiction that k > 0.
Let ng > 1 be such that m*I,, = m*I,,, for all n > ng. Consider the descending sequence

mF L OmF L DwF Tl DL
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By construction we have m¥=11,, D m*I,,  for all n > 1. There are thus natural inclusions
w1 L /P, D wb T L /mP L, D wmP T I /mP L, DL

and furthermore, for all n > ng, we have m(m*~11,/m*I, ) = 0. Hence m*~1I,,/m*I,,  has a natural

structure of R/m-module if n > ng. In particular, the sequence
whr, /wk L, D wmkn, L /mE L, D mP L, e /mPLL, DL

is a decreasing sequence of R/m-modules. Also, all these R/m-modules are finitely generated because R is
a noetherian ring. Since R/m is a field, one thus obtains a decreasing sequence of finite-dimensional vector
spaces and such a sequence must stabilise. Let ngg > ng be such that 111’“*1]”/11'1’“1'”O = mk*IIHOO /mklno for
all n > ngo. Then we have by construction m*=11,, = m*~17,  for all n > ngo. In particular, the sequence
mF~1], also stabilises. This contradicts the minimality of k so we must have k = 0, ie the sequence
I, DI, D I3 D ... stabilises.

(iv)=-(i): Suppose for contradiction that dim(R) # 0. Then there are two prime ideals pg,p; of R such that
po 2 p1. In particular, we have m 2 p;. This implies that m is not the nilradical of R (since the nilradical is
contained in p; by Proposition 3.2). On the other hand, since R is Artinian, we know that there is a natural
number ng > 0 such that m™ = N m’. By Corollary 11.11, we have N2 m’ = 0 so we have m™ = (.
In particular, every element of m is nilpotent and m is the nilradical of R. This is a contradiction, so we
cannot have dim(R) #0. O

Theorem 11.13 (Krull’s principal ideal theorem). Let R be a noetherian ring. Let f € R be an element

which is not a unit. Let p be minimal among the prime ideals containing f. Then we have ht(p) < 1.

Proof. Note that the maximal ideal of R, is minimal among the prime ideals of R, containing f/1 € R,
(use Lemma 5.6 and Lemma 5.7). Furthermore, the height of p is the same as the height of the maximal
ideal of R, (again, use Lemma 5.6 and Lemma 5.7). Since R, is also noetherian by Lemma 7.3, we may

thus suppose that R is a local ring and that p is a maximal ideal.

Let
pP2P12P22 2 Pr

be a chain of prime ideals starting with p. We want to show that ky < 1. We may suppose that ky > 0
(because if there is no chain as above with kg > 0 there is nothing to prove).

Write q := p;. By assumption, we then have f ¢ q.

Write A : R — Rq for the natural map (sending r to r/1). For n > 1, write A(q") for the ideal of R,
generated by A(q™). We know that A(q™) consists of the elements of the form r /¢, where r € g™ and ¢t € R\q
(see Lemma 5.6). Also, it is easily checked that A(q?) = (A(q))".

Now consider the ideal I,, :== A=1(\(q")) (this ideal is called the n-th symbolic power of q). By construction,
we have I, O q". Furthermore, we have I; = q by Lemma 5.6. The ideal I,, has the advantage over q"
that if fr € I,, for some r € R, then we must have r € I,, (because A(fr)(1/f) = A(r) € A(q"), noting that
[ € R\q).

Now consider the ring R/(f). The ring R/(f) is also local (because if R/(f) had more than one maximal
ideal, then so would R) and it is noetherian (by Lemma 7.2). The ring R/(f) has dimension 0, since its

only maximal ideal (given by p (mod (f))) is a minimal prime ideal of R/(f) by construction.
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Now we are given a descending sequence of ideals
LD 2D1;... (6)

We conclude from Lemma 11.12 that the image of this sequence in R/(f) must stabilise (note that the
image of an ideal by a surjective homomorphism is an ideal). In other words, there is an ng > 1 with the
property that for any n > ng, we have I, C I,,11 + (f). Furthermore, in this situation, if r € I,, t € I,, 11
and r = t + hf for some h € R, then we have r —t € I,, so that h € I,, (see above). This means that
we actually have I,, C I,41 + (f)I., and in particular I,, C I, 41 + pI,,. In particular, the natural map
Iny1/plns1 — I,/pl, is surjective. By Corollary 3.7 we conclude that I,,;1 — I, is surjective, so that
I,+1 = I,,. So the sequence (6) stabilises at ng.

Now note that since I,, 2 g* for all n > 1, we have A(I,,) = A(q") = (A(q))". Hence the descending sequence
of ideals of Ry

Aa) 2 (A@)* 2 (M@)? 2.

also stabilises at ng. But now (this is the crucial step of the proof), Corollary 11.11 implies that

Nizo(A(9))" =0,

so that we have (A(q))™ = 0. Since A(q) is the maximal ideal of R, (by Lemma 5.6), we conclude from
Lemma 11.12 that R, has dimension 0. In particular, we have ht(q) = 0 (by Lemma 11.2). In other words,
q cannot contain any prime ideal other than itself. Hence k = 1. [

Lemma 11.14. Let R be a noetherian ring. Let p,p’ be prime ideals of R and suppose that p C p’. There
exists a prime ideal q such that p C q C p’ with the following property: if q' is a prime ideal such that
qCq Cp, then either ¢ =q or q =p.

Proof. Suppose that the conclusion does not hold. Let q; be any prime ideal such that p C q; C p (we
might eg take q; = p). By assumption, there exists a prime ideal g such that q1 € g2 € p. Applying the
assumption again to qs, we obtain a prime ideal q3 such that q2 C q3 € p. Continuing in this way we obtain

an ascending sequence of ideals
S aCas...

However, this sequence must stop since R is noetherian. This is a contradiction, so one of the ¢; must have
the property mentioned in the lemma. [

Corollary 11.15. Let R be a noetherian ring. Let f1,..., fx € R. Let p be a prime ideal minimal among
those containing (f1,..., fx). Then ht(p) < k.

Proof. By induction on k. The case k = 1 is Krull’s principal ideal theorem. We suppose that £ > 1 and
that the statement is true for £ — 1 in place of k.

Just as at the beginning of the proof of Krull’s principal ideal theorem, we may suppose that R is a local

ring with maximal ideal p.

Let
PQPlQ"‘QPhtp (*)

be a (possibly infinite) chain of prime ideals beginning with p and of length ht(p). We also assume that there

are no prime ideals between p and p;, other than p and p;. Note that this last condition is automatically
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satisfied if ht(p) < oo, because the chain then has maximal (finite) length). If ht(p) = co we can create a

chain satisfying this condition using 11.14.

We want to show that that ht(p) < k. We may suppose that ht(p) > 0, otherwise there is nothing to prove.
Let q := p;. We claim that ht(q) < k — 1 (so that in particular, we cannot have ht(p) = 00).

We prove the claim. From the assumptions, there is an f; such that f; € ¢ (otherwise p is not minimal
among the prime ideals containing (f1,..., fx)). Up to renumbering, we may assume that f; € q. Since
there are no prime ideals between p and q other than p and q, we see that p is minimal among the prime
ideals containing (q, f1). Hence the ring R/(q, f1) has dimension 0. We conclude from Lemma 11.12 (iii)
that the image of all the f; are nilpotent in R/(q, f1). In other words there are elements b; € q,a; € R and
integers n; > 2 such that
[ =aifi + b
Note that
) (fla ;7/2’ gga"'v l?k) = (f1,b2,...,bk)

and that p is also minimal among all the prime ideals containing (f1,0bs, ..., bx), since

t((fla ;2, '3’:13,“'7 ]?k)):t((flaf27"',fk))~

Write J := (ba,...,b;). Note that J C g. Since p is minimal among all the prime ideals containing f;
and J, we see that p (mod.J) is minimal among all the prime ideals of R/J containing f; (mod.J). Hence
ht(p (mod J)) < 1 by Krull’s principal ideal theorem. On the other hand, we have

p (mod J) 2 q (mod J)

(since J C q C p and q € p) so that ht(p (mod J)) = 1 and ht(q (mod J)) = 0. In particular, ¢ is minimal
among all the prime ideals containing J. Applying the inductive hypothesis, we see that ht(q) < k¥ — 1. In

particular, the chain (x) is finite.

Finally, we see from the assumptions that ht(p) = ht(q) + 1 < k and so the corollary is proven. [

In particular, in a noetherian ring, the height of any prime ideal is finite. Together with Lemma 11.2, this
shows that the dimension of a noetherian local ring is finite.

It is not true however that any noetherian ring has finite dimension. For an example of a noetherian ring

of infinite dimension, see Ex. 3 of chap. 11, p. 126 of AT.

Note also that Corollary 11.15 implies that ht((f1,..., fx)) < k. If we have ht((f1,..., fx)) = k, then any
minimal prime ideal associated with (f1,..., fr) has height k& (because any such ideal has height > k by
assumption, and height < k by Corollary 11.15).

Corollary 11.16. Let R be a noetherian ring. Let

Po2p12p22 ...

be a descending chain of prime ideals of R. Then there is i9g > 0 such that p;,+i = ps, for all ¢ > 0.

Moreover, if pg is generated by ¢ elements, we have ig < c.

The proof follows directly from Corollary 11.15 and the definition of the height.
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Corollary 11.17. Let R be a noetherian ring. Let p be a prime ideal of height c. Suppose that 0 < k < ¢ and
that we have elements ty, ..., t; € p such that ht((t1,...,t)) = k. Then there are elements tgy1,...,tc € P,
such that ht(tq,...,t.) = c.

Note that the assumptions imply that we have k < ¢. Here we set (¢1,...,tx) = (0) (resp. (t1,...,t.) =0)
if k=0 (resp. if ¢ =0). Note also that if ht(¢1,...,t.) = ¢ then p is a minimal prime ideal associated with
the ideal (t1,...,t.). Indeed, if there were a prime ideal q such that ¢ C p and q D (¢1,...,t.), then we
would have ht(p) = ¢ > ht(q) > ht(ty,...,t.) = ¢, which is a contradiction.

Proof. If ¢ = 0 then p is a minimal prime ideal of R and then ht((0)) = ¢ = 0 so there is nothing to prove.
So we suppose that ¢ > 0. We may obviously assume that k < c.

By induction on k < ¢, it is sufficient to construct an element ¢ € p so that ht((¢y,...,tx,t)) = k+ 1. Since
by Corollary 11.15, we have ht((t1,...,tk,t)) < k+1 for any t € R, we actually only have to find an element
t € p such that ht((¢1, ..., ¢k, t)) > k. Suppose for contradiction that such an element does not exist. Since
ht((¢1,...,tg,t)) > k for any t € R, this implies that ht((¢1,...,tk,t)) = k for all ¢ € p. In particular, for
any t € p, there is a prime ideal ¢, which contains (t1,...,tk,t) and which has height k; now ¢ contains a
minimal prime ideal q; associated with (¢,...,tx) by Lemma 6.9 and we have ht(qy) > k by assumption;
hence we must have q = g, so that q is a minimal prime ideal associated with (¢1,...,tx), which has height
k. We conclude that for all ¢t € p, t is contained in a minimal prime ideal of height k associated with
(t1,...,tx). In other words, p is contained in the union of the minimal prime ideals of height k associated
with (t1,...,t). By Proposition 6.1 (1), we conclude that p is contained in, and hence equal to, one of

these minimal prime ideals. Since ht(p) = ¢ > k, this contradicts Corollary 11.15. O

END OF LECTURE 14

11.4 The dimension of polynomial rings

We now turn to the computation of the dimension of polynomial rings. The main result is

Theorem 11.18. Let R be a noetherian ring. Suppose that dim(R) < co. Then dim(R[z]) = dim(R) + 1.

Before we start with the proof, we prove a few intermediate results.

Lemma 11.19. Let K be a field and let p be a non zero prime ideal of K[x]. Then ht(p) = 1. In particular,
we have dim(K|x]) = 1.

Proof. Exercise. This follows from the fact that non zero prime ideals of K[z] are maximal and from the

fact that the zero ideal in K[z] is prime, since K[z] is a domain. [

If R is a ring and a is an ideal of R, we shall write a[z] for the ideal generated by a in R[x]. The ideal az]
can easily be seen to consist of the polynomials with coefficients in a (hence the notation). If the ideal a is
also prime, then so is a[z], since

R[z]/a[z] ~ (R/a)[z]

and (R/a)[z] is a domain, if R/a is a domain.

The construction of the following Lemma already appears in Proposition 8.12.
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Lemma 11.20. Let ¢ : R — T be a ring homomorphism.

Let p € Spec(R) and let I be the ideal generated by ¢(p) in T

Write ¢ : R/p — T/1 for the ring homomorphism induced by ¢ and let S := (R/p)*.
Write s : Frac(R/p) — (T/I)y(s) for the induced ring homomorphism.

Finally, write p : T — (T/1)y(s) for the natural ring homomorphism.

Then Spec(p)(Spec((T/1)y(s))) consists precisely of the prime ideals q of T, such that ¢~*(q) = p.

Proof. We have a commutative diagram of rings

P
T T/I (T/1)y(s)
dW w] 11)51\
R —— R/p —— Frac(R/p)
leading to a commutative diagram of spectra
Spec(p)

Spec(T) «+—— Spec(T/I) +—— Spec((T/I)¢(s))
JSPGC(@ lSPeC(dJ) lspecws)
Spec(R) «—— Spec(R/p) «—— Spec(Frac(R/p))
The lemma is saying that the fibre of Spec(¢) above p is precisely the image of Spec(p).

Note first that Spec(Frac(R/p)) consists of one point, since Frac(R/p) is a field. The image of Spec(Frac(R/p))
in Spec(R/p) is the ideal (0) C R/p and the preimage of the ideal (0) C R/p in R is p. Thus the image of
Spec(p) is contained in the fibre of Spec(¢) above p, since the diagram is commutative.

Now suppose that q € Spec(T) and that ¢~1(q) = p (ie q lies inside the fibre of Spec(¢) above p).

Then q D I and there is thus an ideal q’ € Spec(T/I), such that g is the image of q' in Spec(7"). On the
other hand, we know that 1 ~!(q’) is the 0 ideal, since $~1(q) = p and the diagram of rings is commutative.
In other words, we have ¢’ N(S) = 0. We conclude from Lemma 5.6 that ¢’ lies in the image of the map
Spec((T'/1)y(s)) — Spec(T/I).

This concludes the proof of the lemma. [

Note that the correspondence between

- prime ideals q such that ¢=1(q) = p

and

- prime ideals of (T'/1)y(s)

described by the lemma respects the inclusion relation in both directions (ie an inclusion of prime ideals
holds on one side iff it holds on the other side). (why?)
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The previous lemma will be applied below in the situation where T'= R[z]. In this situation, we have
(T/1) sy = (R[z]/p[z])y(s) = (R/p)[*](r/p)~ = Frac(R/p)[x].
Here we used the fact that if A is a domain, we have a natural identification
(Ala])a- = Frac(A)[a]
(exercise).

Lemma 11.21. We keep the notation of Lemma 11.20. Suppose that we have a chain of prime ideals

in T, such that ¢~ (q;) = p for all i € {0,...,k}. Then k < dim((T/1)y(s))-
Proof. This is an immediate consequence of Lemma 11.20 and the following remark. [

Lemma 11.22. Let R be a ring and let N be the nilradical of R. Then the nilradical of R[z] is N|x].

Proof. Any element of N|z] is a polynomial with nilpotent coefficients and is thus clearly nilpotent (check).
On the other hand, let P(z) = ag + a1z + - -+ + aqgz? € R[x] be an element of the nilradical of R[z] (ie
a nilpotent polynomial). Suppose for contradiction that P(x) has a coefficient a;, which is not nilpotent.
Let p € Spec(R) be a prime ideal, such that a; € p. Then P(z) (modp) € (R/p)[z] is a non zero nilpotent
polynomial. This is contradiction, since (R/p)[x] is a domain. O

Lemma 11.23. Let R be a noetherian ring and let p1,...,pr be the minimal prime ideals of R. Then
the minimal prime ideals of R[x] are the ideals pi[x],...,prlz]. More generally, if a is an ideal of R and
P1,...,Pr are the minimal prime ideals associated with a, then the ideals p1[x],...,pr[z] are the minimal

prime ideals associated with a[z].

Proof. We first prove the first statement. Note that we have (), p; = ©((0)), because the nilradical ¢((0))
of R is decomposable by the Lasker-Noether theorem. We deduce from this that (), p;[x] = ©((0))[x]. Thus
(), pilx] is a minimal primary decomposition of t((0))[x] (use Proposition 6.1 (ii)). In view of Lemma 11.22,
this implies that the minimal prime ideals of R[x] are precisely the ideals py[z],...,pr[x] (use Theorem 6.7

and Lemma 6.8), which is what we wanted to prove.
For the second statement, apply the first statement to p; (mod a), noting that (R/a)[x] ~ R[z]/a[z] (or

provide a direct proof, similar to the proof for a = (0)). O

Lemma 11.24. Let R be a noetherian ring and let a be an ideal of R. Then ht(a) = ht(a[z]).

Proof. Suppose first that the lemma is proven if a is a prime ideal.

We know that there is a minimal prime ideal p associated with a, such that ht(p) = ht(a). We conclude
from this that ht(a[z]) < ht(p[z]) = ht(p) = ht(a). On the other hand there is a minimal prime ideal
q associated with a[z] such that ht(q) = ht(a[z]). By Lemma 11.23 we have q = (q N R)[z] so that
ht(a[z]) = ht(q N R) > ht(a[z] N R) = ht(a). Hence ht(a) = ht(a[z]).

So we only need to prove the statement if a = p, where p is a prime ideal of R.
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Let ¢ := ht(p) and let aq,...,a. € p be such that ht((a1,...,a.)) = ¢, so that p is a minimal prime ideal
associated with (aq,...,a.). This exists by Corollary 11.17. Let J := (aq,...,a.). By the previous lemma,
p[z] is a minimal prime ideal associated with J[z]. We conclude from Corollary 11.15 that ht(p[z]) < ¢

(since the elements aq, ..., a. generate J[z] in R[z]). On the other hand, if

is a descending chain of prime ideals in R[z], so that ht(p[z]) > ¢. Hence ht(p[z]) =c. O

Lemma 11.25. Let q be a prime ideal of R[x] and let a be an ideal of R such that a C qN R. Suppose that
q N R is a minimal prime ideal associated with a. Let q' C q be a prime ideal of R[x], which is a minimal
prime ideal associated with a[z]. Then q' = (q N R)[z].

Proof. We have
gNR2OazlNnR=a

and thus
(@' N R)[z] 2 ala].

Hence
a2 (@' NR)z] 2 alz].

By minimality, we thus have q' = (¢’ N R)[z]. On the other hand, we have q’ C ¢, so that
0 =(a'NR)z] € (qN R)[z].

Now by Lemma 11.23, we know that (q N R)[z] is a minimal prime ideal associated with afz] and thus we
must have ¢’ = (N R)[z]. O

Proposition 11.26. Let R be a noetherian ring and m be a prime ideal of R[x]. Then
ht(m) <14 ht(mNR).

If m is mazximal, we even have
ht(m) = 1 4+ ht(m N R).

Proof. Let ¢ := ht(m N R) and let ¢ := ht(m). Note that since (m N R)[z] € m, we have § < ¢ by
Lemma 11.24. Let ayq,...,a. € m be such that ht((ai,...,a;)) =i for all ¢ € {1,...,¢}. This exists by
Corollary 11.17 (or rather, its proof). Using Lemma 11.24 again, we may suppose that a1,...,a5 € mN R.

In particular, (m N R)[z] is a minimal prime ideal associated with (as,...,as).

We shall now inductively define a chain of prime ideals
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such that q; is a minimal prime ideal associated with (a1,...,a.—;). We let qo := m and we suppose
that ¢ > 0 and that the ideals qq,...,...q;—1 are given. We then let g; be a (arbitrary) minimal prime
ideal associated with (aq,...,a.—;), which is contained in g;—;. This exists by Lemma 6.9 and so we have

constructed our chain of prime ideals.

Note that we have by construction ht(q;) = ¢ — ¢ (see after Corollary 11.15).

Now note the key fact that both q._s and (m N R)[z] are minimal prime ideals associated with (ay,...,as).
Applying Lemma 11.25, we find that we actually have

Je—s = (mN R)[x].

We thus see that for all i € {0,...,¢— ¢}, we have
m 2 q; 2 (mN R)[x]
and thus
mNRODgGNROMmNR

so that q; N R = mN R. We now conclude from Lemma 11.21 and Lemma 11.19 that
c— 6 < dim((R[z]/(m N R)[z])(r/(mnr))+) = dim(Frac(R/(m N R))[z]) < 1.

This proves the first statement. For the second one, note that if m is maximal then m # (m N R)[z] = qc—s
(because (m N R)[z] is not maximal), so that ¢ — ¢ > 1. In particular, we then have that ¢ = § + 1, as
required. [

Proof of Theorem 11.18.

Let m be a maximal ideal of R[z] so that ht(m) = dim(R[z]). This exists by Lemma 11.2. We then have
ht(m) = 1 4+ ht(m N R) by the last proposition.

We must then have ht(mN R) = dim(R). Indeed, suppose for contradiction that ht(mNR) < dim(R). Then
there is a maximal ideal p in R, so that ht(p) > ht(mN R). Let n be a maximal ideal of R[z], which contains
p[z]. By maximality, we have nN R = p, so that ht(n) = 1+ht(p) > 1 +ht(mN R) = ht(m), a contradiction.

So we conclude that ht(m) = dim(R[z]) = dim(R) + 1, as required. [

Remarks. Let R be a noetherian ring and let p C q be prime ideals of R.

We then obviously have
ht(p) + ht(q (mod p)) < ht(q)

(where q (modp) is an ideal of R/p). However it is not true that ht(p) + ht(q (modp)) = ht(q) in general.
One class of rings, where equality holds is the class of so called catenary domains. One can show that
finitely generated algebras over fields are catenary. So equality will hold if R is a domain, which is finitely

generated over a field (we will not prove this however).

Note that in the proof of Proposition 11.26, we showed that ht((m N R)[z]) + ht(m/(m N R)[z]) = ht(m)
(why?) and the fact that equality holds in this situation was crucial in the proof.

Corollary 11.27. Let R be a noetherian ring. Suppose that dim(R) < oo. Then dim(R[z1,...,x¢]) =
dim(R) + t.
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Proof. This follows from Theorem 11.18 and Hilbert’s basis theorem. [

Corollary 11.28. Let k be a field and let R be a finitely generated k-algebra. Suppose that R is a domain
and let K := Frac(R). Then dim(R) and tr(K|k) are finite and dim(R) = tr(K|k).

For the proof of the corollary, we shall need the

Lemma 11.29. Let R be a subring of a ring T. Suppose that T is integral over R. Then dim(T) = dim(R).

Note that the lemma also holds if R or T" has infinite dimension (in which case it says that the other ring

also has infinite dimension).

Proof. Suppose first that dim(R), dim(T") < co. Let

Po 2 P12 2 Pdim(R)

be a descending chain of prime ideals in R, which is of maximal length. By Theorem 8.8, there is a prime
ideal qqim(r) in 7" such that qqimr) VR = Pdim(r) and by Q6 of sheet 2, there are prime ideals q; in T, such
that q; N R = p; and such that

qo 2 91 2 - 2 ddim(R)-

Hence dim(T") > dim(R).
Now, resetting terminology, let
do 2 91 2 - 2 dim(T)-
be a descending chain of prime ideals in 7', which is of maximal length. Then we have

GgoNR2q1NR 2D 2 qdim) N R

by Q1 of sheet 3. Hence dim(T") < dim(R) and thus dim(7") = dim(R).

The argument in the situation where either dim(R) = oo or dim(7") = oo proceeds along the same lines and
is left to the reader. [

Proof of Corollary 11.28. By Noether’s normalisation lemma, there is for some d > 0 an injection of

rings k[z1,...,24] < R, which makes R into an integral k[z1,...,x4]-algebra. From the previous lemma
and Corollary 11.27, we deduce that dim(R) = d. On the other hand, the fraction field k(z1,...,zq) of
klxy1,...,z4) is naturally a subfield of K and since every element of R is integral over k[z1,...,x4], we see
that every element of K is algebraic over k(z1,...,24) (why?). Hence

tr(K|k) = tr(k(z1,...,zq)|k) = d = dim(R).

END OF LECTURE 15
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12 Dedekind rings [NOT EXAMINABLE]

A Dedekind domain is a noetherian ring of dimension one, which is integrally closed. Examples of Dedekind
domains include Z, and polynomial rings in one variable over a field, which are domains and are integrally
closed. We will see that in a Dedekind domain, every ideal can be written in unique fashion as a product of
powers of distinct prime ideals. This unique decomposability generalises to ideals the decomposability into
irreducibles of an element that exists in a UFD (and in fact a Dedekind domain is a UFD iff it is a PID -
see Sheet 4). We will also see below that the integral closure of Z in a finite extension of Q is a Dedekind

domain. This last kind of ring is much studied in algebraic number theory.

We first note a couple of simple facts:

Lemma 12.1. Let R be a Dedekind domain.
(i) All the non-zero prime ideals of R are mazimal.

(ii) If q1, 92 are primary ideals and v(q1) # t(q2) then q1 and g are coprime.

Note that the lemma, together with the Chinese remainder theorem, shows that if q,...,q; are primary

ideals with distinct radicals in a Dedekind domain, we have
Mo =]1a

Proof. (of Lemma 12.1). (i) If p is a non-zero prime ideal, then we have the chain p D (0) of prime ideals
(note that (0) is a prime ideal since R is a domain). This chain is of maximal length, since R is of dimension

one. Now let m O p be a maximal ideal containing p. We must have m = p, otherwise
m 2 p 2 (0)

would be a chain of prime ideals of length 2, which is impossible by the above.

(ii) Since t(q1) # t(qz2), the ideals t(q1) and v(q2) are coprime, since they are prime, and hence maximal by

(i). Thus the conclusion follows from Lemma 12.2 below. [

Lemma 12.2. Let R be a ring. Suppose that the ideals t(I) and v(J) of R are coprime. Then I and J are

coprime.

Proof. Note that we have t(I 4+ J) C v(v(I) + ¢(J)), since I + J C t(I) + v(J). On the other hand, we
also have t(I) + ¢(J) C v(I + J), and thus we have t(¢(I) + v(J)) C t(x({ + J)) = (I + J). So we have
t(I 4+ J) =r+(t() +t(J)) (this equality holds without any assumptions on the ideals t(I) and ¢(J)). In our
situation, we have v(I) + v(J) = (1), so that v( + J) = (1). In particular, 1 € I + J, so that I + J = (1),
as required. [J

Lemma 12.3. Let R be an integrally closed domain. Then R, is also integrally closed for all p € Spec(R).
Proof. Exercise. Use Lemma 8.7. [

Proposition 12.4. Let R be a noetherian local domain of dimension one with maximal ideal m. The

following conditions are equivalent:
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(1) R is integrally closed;
(2) m is a principal ideal;

(3) for any non-zero ideal I of R, we have I =m"™ for a uniquely determined n > 0.

Proof. Let K be the fraction field of R.
(1)=(2): Let a € m\{0}. Note that the ring R/(a) is local with maximal ideal m (mod (a)) and noethe-

rian (see the beginning of the proof of Krull’s principal ideal theorem for details). Furthermore, we have
ht(m (mod (a))) = dim(R/(a)) = 0, because if there were a prime ideal properly contained in m (mod (a)),
this would lead to a descending chain m 2 p 2 (0) of prime ideals in R, which contradicts the assumption
that ht(m) = 1. By Lemma 11.12, the ideal m (mod (a)) is thus nilpotent. Let n > 0 be the minimal integer
such that (m (mod (a)))” = (m" (mod (a))) = (0) and let b € m"~! be such that b(mod (a)) # 0. Now let
x=a/be K. We have bm C m" C (a) so that x~'m C R. Furthermore, we have x~! ¢ R, for otherwise we
would have b = 7! - a € (a), which is excluded by assumption.

We claim that we cannot have 2~ 'm C m. Indeed, suppose that 27 'm C m. Then 2~ ! induces a homomor-
phism of R-modules m — m (given by multiplication by ') and such a homomorphism is annihilated by
a monic polynomial P(z) with coefficients in R by Proposition 8.1 (because m is finitely generated, as R is
noetherian). We then have P(z~1)(h) = 0 for any non zero element h € m and since R is a domain this

implies that P(z~!) = 0. Since R is integrally closed, this implies that 2= € R, which is a contradiction.
Hence z7'm € m and since R is local, we thus must have z7'm = R. In other words, * € R and m = (z).

(2)=(3): We first prove that I is a power of m. We may suppose without restriction of generality that
I # R (otherwise I = m®). Suppose for contradiction that I is not a power of m. Let b € R be such that
m = (b). The ring R/I is Artinian (reason as at the beginning of the proof of the implication (1)=-(2)) and
thus the ideal m (mod I) is nilpotent. Let n > 0 be the largest integer such that I C m™. This exists by
assumption and because some power of m is contained in I, since m (mod I) is nilpotent. Let a € I be an
element such that a ¢ m"*! (this exists by construction). By construction, we may write a = tb" for some
t € R. We cannot have ¢ € m because otherwise we would have ¢ € m™*! which is excluded. Hence t is
a unit of R (since R is local) and thus m™ = (¢t~!a) = (a) C I. This is a contradiction, so we must have

I = m™ for some n > 0.

Secondly, n is uniquely determined. Indeed, suppose that (b"™1) = (b"2) for ny < ny. Then thereisa u € R
such that "™t = b™2u. Since R is a domain, "2~ ™y = 1, 80 b is a unit if ny # ny. Since b is not a unit, we

thus have n; = no.

(3)=>(1): The R-module m/m? is not zero (if it were zero, the ideal m would be zero by Corollary 3.6, which
is not possible, since R has dimension 1). So we may choose an element z € m\m?. By assumption () is
equal to some power of m, which must be 1 by construction. Hence m = (z). We conclude that R is a PID
and thus a UFD. We saw in the solution to Q4 of sheet 2 that any UFD is integrally closed and thus R is
integrally closed. [J

Corollary 12.5. The localisation of a Dedekind domain at a non zero prime ideal is a PID.

The proof is immediate.

Corollary 12.6. Let R be a Dedekind domain. Then any primary ideal is equal to a power of its radical.

52



Proof. Let p be a prime ideal and let a be a p-primary ideal. Let A : R — R, be the natural homomorphism
from R to its localisation at p. Let m = p, be the maximal ideal of R, (recall that this is also the ideal
generated by A(p)).

We claim that A~!(a,) = a. Indeed, consider the exact sequence
0—a—A"(ay) = A ap)/a — 0.
The localisation at p of this sequence is
0= ap = (A (ap))p = ap = (A (ap))p/ap =00
By Lemma 5.4, there is a natural isomorphism of R,-modules

(A Hap)/a)p = (A" (ap))p/ap = 0.

Now note that t(a) = p by assumption and that for any element a € R\p, we have (a,p) = (1), since
p is maximal by Lemma 12.1 (i). Hence, by Lemma 12.2, we have (a,a) = (1) if a € R\p and in that
case the image of a in R/a is a unit. Since A7!(ay)/a is naturally an R/a-module, we conclude that
(A Y(ap)/a), = A"!(ap)/a and we thus see that A~ (a,)/a = 0. In other words, A™*(a,) = a, and the claim
is proved.

Now notice that by Proposition 12.4 (3), we have a, = m* = p’; for some k > 1. Also we have p¥ = A’l(p’g),

since p* is also p-primary by Lemma 6.4. We conclude that
a=A"(ap) = A" (py) = p*
as required. [

Proposition 12.7. Let R be a Dedekind domain. Let I be an ideal in R. Then all the minimal primary

decompositions of I are equal up to reindexing.

Note that I has primary decompositions by the Lasker-Noether theorem, since R is noetherian.

Proof. Let ()]_, a; = I be a minimal primary decomposition of I. By Corollary 12.6, we have a; = p}* for

some distinct prime ideals p; and some integers n; > 1. Furthermore, we have

(see after Lemma 12.1). We thus have to show that if I = H;nzl q;-nj is another representation of I as a prod-
uct of powers of distinct prime ideals, then we have n = m and there is some bijection o : {1,...,n} = {1,...,n}
such that p; = q,(;) and n; = my(; for all i € {1,...,n}. So suppose that

m

’ﬂlj
H 4;
Jj=1

where the g; (resp. the p;) are distinct prime ideals. It will be sufficient to show that if some prime ideal

n

I =

i=1

appears with some multiplicity on the left of (x) then it will appear with the same multiplicity on the right
of (x). So consider eg q;. Localising (x) at q;, we obtain

n

H(qj,ql)mj = H(Pi,ql)m

j=1 i=1
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Now note that if q; # qi, we have q; 4, = (1) = Rq,, because q; Z q; (since q; is maximal). Similarly, if
p; # q1, we have p; o, = (1). Hence we obtain the equality

(ql,cu)ml = (piqul)nil

for some i; € {1,...,n} such that p;, = qi. On the other hand qi 4, = p;, q, is the maximal ideal of Ry,
and every ideal in Rg, is a uniquely determined power of this maximal ideal by Proposition 12.4 (3). Hence
my = n;,. This concludes the proof. O

We conclude from Proposition 12.7 that in a Dedekind domain, every ideal can be written in a unique way

(up to reindexing) as a product of powers of distinct prime ideals.

The next three results require some knowledge of Galois Theory.

Proposition 12.8. Let R be an integrally closed domain and let K be its fraction field. Let L|K be a finite

separable extension. Then
(1) the fraction field of the integral closure of R in L is L;
(2) the integral closure of R in L is finite over R.

Proof. Omitted. See AT, Th. 5.17, p. 64. The proof of (1) is easy (prove it). The proof of (2) exploits

the fact that the so-called ”trace form” associated with a finite separable extensions is non-degenerate. [J

Remark. The previous proposition is also true if R is a domain, which is finitely generated over a field
(without the requirement that R is integrally closed) and L|K is any finite extension of fields (in particular
one could take L = K). This is a theorem of E. Noether. See D. Eisenbud, Commutative Algebra with a
view toward algebraic geometry, par. 13.3, Cor. 13.13, p. 297. Note that if R is domain, it is in general

difficult to show that the integral closure of R in its own fraction field is finite over R.

Corollary 12.9. Let R be Dedekind domain with fraction field K. Let L be a finite separable extension of
K. Let T be the integral closure of R in L. Then T is also a Dedekind domain.

Proof. The ring T is clearly a domain, and it is integrally closed by Lemma 8.6 and Proposition 12.8 (1).
Also, the ring T is of dimension 1 by Lemma 11.29. Finally, by the Hilbert basis theorem, T is noetherian.

Indeed, T is finite, and in particular finitely generated over R, and R is noetherian by assumption. [

Proposition 12.10. Let R be an integrally closed domain and let K be its fraction field. Let LIK be a finite
Galois extension of K. Let T be the integral closure of R in L. Let p € Spec(R) and let q1,q2 € Spec(T)
be prime ideals of T such that q1 N R = q2 N R = p. Then there exists an element o € Gal(L|K) such that

o(q1) = da-

Note that o(T) C T for all 0 € Gal(L|K) (why?). In particular, each o € Gal(L|K) induces an automor-
phism o|7 : T = T of R-algebras, with inverse (o~ 1)|z.

Proof. Suppose first that

e J o)

o€Gal(L|K)
In this situation, Proposition 6.1 (i) implies that g2 C 7(q1) for a particular 7 € Gal(L|K). According to

Q1 of sheet 3, this is only possible if g2 = 7(q1) and hence we are done in this situation.
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Now suppose that

©Z |J o)

o€Cal(L|K)
In particular, there is an element e € ¢ such that e ¢ o(qq) for all ¢ € Gal(L|K), or in other words such
that o(e) € ¢y for all o € Gal(L|K).

Now consider that the element f := [],cqai(zr) o(€) is invariant under Gal(L|K) by construction. Hence
f lies in K NT, since L|K is a Galois extension. Since R is integrally closed, we have K N T = R, so
f € R. On the other hand, since e € g2 and g5 is an ideal, we also have f € g2, so that f € RNga =p. In
particular, f € RN q; = p. Now since ¢y is a prime ideal, this implies that one of the elements o(e) (for

some o € Gal(L|K)) lies in g1, which is a contradiction.

Hence we must have gy C UUeGal( LIK) o(q1) and we can conclude using the argument given above. [J
The following lemma (and the complement that follows) plays a key role in Algebraic Number Theory.

Lemma 12.11. Let R be a Dedekind domain with fraction field K. Let L|K be a finite separable extension
of K and let T be the integral closure of R in L (recall that T is also a Dedekind domain by Corollary 12.9).
Let p be a non-zero prime ideal in R. Let p = pT be the ideal generated by p in T. Let

ni ngk
... q

p=uq
be the minimal primary decomposition of p. Then the q; are precisely the prime ideals q of T which have
the property that g N R = p.
Proof. We have already seen that q7* ---q;* = q7* N---Nq,*. Hence q; N R D p and thus q; N R = p, since
p is maximal. Thus the q; are among the prime ideals q of T, with the property that ¢ N R = p.

Conversely, let q be a prime ideal of T, such that ¢ " R = p. Then

ng?lm...quk

Uz
]

and thus by Proposition 6.1 (ii), we have q D ¢ for some 4; since g; is the radical of g;*, we thus have

q 2 q; and thus q = gq; (again because q; is maximal). O

Complement. We keep the notation of the last lemma. If F5|F} is a finite field extension, recall that one
writes [Fy : Fi] for the dimension of F» as a Fj-vector space. Write f; := [T'/q; : R/p]. One can show that

i
See S. Lang, Algebraic Number Theory, I, par. 7, Prop. 21, p. 24 for a proof. The integer n; is called the

ramification degree of q; over p. Finally, note that it follows from Proposition 12.7 and Proposition 12.10

that the integers n; and f; are independent of 4 if L|K is a Galois extension (why?).

END OF LECTURE 16
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Exercise sheet 1. Prerequisites: sections 1-5. Week 4.

Part A
Q1. Let R be aring. Show that the Jacobson radical of R coincides with the set {x € R|1 — xy is a unit for all y € R}.

Part B

Solution. Suppose z lies in the Jacobson radical of R. Suppose for contradiction that 1 — zy is not a unit
for some y € R. Let m be a maximal ideal containing 1 — zy. We know that zy € m since x € m and thus

we conclude that 1 € m, a contradiction.

Suppose now that x € R and that 1 — xy is a unit for all y € R. Suppose for contradiction that there is a
maximal ideal m such that z € m. Then z (modm) is a unit in R/m and hence there is a y € R such that

zy (modm) =1 (modm). In other words, 1 — xy € m and so 1 — xy is not a unit.
Q2. Let R be a ring.

(i) Show that if P(x) = ag + a1x + --- + apx® € R[z] is a unit of R[z] then ag is a unit of R and a; is
nilpotent for all 7 > 1.

(ii) Show that the Jacobson radical and the nilradical of R[z] coincide.
Solution.

(i) Let Q(z) =bo + - -+ + byz' € R[z] be an inverse of P(x). Then P(0)Q(0) = apby = 1 so that ag and b
are units. Let p be a prime ideal. Let j > 0 be the largest integer so that a; (modp) # 0 and let [ > 0 be
the largest integer so that b; (modp) # 0. If j > 0 we have a;b; = 0 (modp) (since P(z)Q(x) = 1), which
is not possible because R/p is a domain. Hence j = 0 and in particular a; € p for all ¢ > 0. Since p was
arbitrary, we see that a; lies in the nilradical of R for all ¢+ > 0.

(ii): We only have to show that any element of the Jacobson radical if R[z] is nilpotent. So let P(z) €
ag+a;x+---+apxr® € R[x] be an element of the Jacobson radical. By Q1, we know that for any 7'(z) € R|z],
the element 1 — P(z)T'(z) is a unit. In particular,

1+2P(z) =1+ apr + a12? + o4 aprtt

k

is a unit. By (i), a; is thus nilpotent for all ¢ > 0. In particular ag + a;x + - - - + arz” is nilpotent (since the

radical of a ring is an ideal).

Q3. Let R be a ring and let N C R be its nilradical. Show that the following are equivalent:
(i) R has exactly one prime ideal.

(ii) Every element of R is either a unit or is nilpotent.

(iii) R/N is a field.

Solution. (i)=-(ii): Let p be the unique prime ideal. Suppose that r € R is not a unit. Then r is a
contained in a maximal ideal, which must coincide with p. Since p is the only prime ideal, the ideal p is the

nilradical N of R and hence r is nilpotent.

(ii)=-(iii): Suppose that R/N is not a field. Then either R/N is the zero ring or there is an element
x € (R/N)*, which is not a unit. If R/N is the zero ring, then every element of R is nilpotent (and in fact
R is the zero ring). If there is an element « € (R/N)*, let 1 € R be a preimage of x. Then z; is not a unit

and is not nilpotent. So we have proven the contraposition of (ii)=>(iii).
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(iii)=-(i): We prove the contraposition. If R has more than one prime ideal then R/N has a non zero prime
ideal (since any prime ideal contains N). But this contradicts the fact that R/N is a field.

Q4. Let R be aring and let T C R be an ideal. Let S := {1+ r|r € I}.

(i) Show that S is a multiplicative set.

(ii) Show that the ideal generated by the image of I in Rg is contained in the Jacobson radical of Rg.
(iii) Prove the following generalisation of Nakayama’s lemma:

Lemma. Let M be a finitely generated R-module and suppose that IM = M. Then there exists r € R, such
that r — 1 € I and such rM = 0.

Solution. (i): This is clear.

(ii): The ideal Is generated generated by I in Rg consists of the elements a/b such that ¢ € I and b € S.
By Q1, we thus only have to show that if a/b is such that a« € I and b € S, then 1 — (a/b)(¢/d) is a unit
for all c € R and d € S. Now 1/b and 1/d are units of Rg, hence we only have to show that bd — ac
is a unit for a,b,c¢,d as in the previous sentence. Now bd = (1 + b1)(1 +di) = 1+ by + dy + bidy for
some by,dy € I, and thus bd — ac = 1 + by + di + bidy — ac. Since by + di + bidi — ac € I we see that
bd —ac =1+ by +dy + b1d; — ac € S and hence is a unit of Rg.

(iii) If IM = M we clearly have I¢Mg = Mg. Hence by (ii) and the form of Nakayama’s lemma proven in
the course, we have Mg = 0. Now my, ..., my be generators of M. Since M is the kernel of the natural
map M — Mg (since Mg = 0), there is an element s; € S such that s;m; = 0 for all i (see the beginning of
section 5). Let s =[], s;. Then s annihilates all the m; and hence M. By construction, s —1 € I so we are

done.

Q5. Let R be a ring and let M be a finitely generated R-module. Let ¢ : M — M be a surjective
homomorphism of R-modules. Prove that ¢ is injective, and is thus an automorphism. [Hint: use ¢ to

construct a structure of R[z]-module on M and use the previous question.]

Solution. View M as an R[z]-module by setting P(z)-m = P(¢)(m). We have (z)M = M by construction
and hence by Q4 (iii), there is a polynomial Q(z) € R[z] such that Q(z) — 1 € (x) and Q(x)M = 0. Let
mg € ker(¢). Then Q(z)(mg) = mo and hence mg = 0. Thus ¢ is injective.

Q6. Let R be aring. Let S be the subset of the set of ideals of R defined as follows: an ideal I is in S iff all
the elements of I are zero-divisors. Show that S has maximal elements (for the relation of inclusion) and
that every maximal element is a prime ideal. Show that the set of zero divisors of R is a union of prime

ideals.

Solution. If T is a totally ordered subset of S, then the union of its elements is an ideal, and it clearly
consists of zero divisors. So every totally ordered subset of 7 has upper bounds and thus by Zorn’s lemma,
the ordered set 7 has maximal elements. Note that we may refine this reasoning as follows. Let I € S.
Consider the subset S; of S, which consists of ideals containing I. By a completely similar reasoning, the
subset Sy has maximal elements for the relation of inclusion. We contend that if J € Sy is a maximal
element, then it is also maximal in S. Indeed, suppose that J' O J for some ideal J' € S. Then J' € S;
and hence J' = J. Now note that

{zero—divisors of R} = U’I”GR, ra zero—div.(r) g UTER, ra zero—div.J(T)

where J(r) a maximal element of S containing the ideal (r). Since J(r) also consists of zero-divisors, we
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conclude that
{zero-divisors of R} = U,cR, r a zero-div.J (T")

Hence we only have to prove that the maximal elements of S are prime ideals.

Let I be a maximal element of S. Let x,y € R\I and suppose for contradiction that xy € I. Then we have
(@) +D(y)+1) I

By maximality of I, there are elements a € ()41 and b € (y)+ I, which are not zero divisors. Hence ab € I
so that ab is a zero divisor, which is contradiction (note that the set of non zero divisors is a multiplicative

set). So we must have z € I or y € I, so I is prime.
Part C

Q7. (optional) Let R be a ring. Consider the inclusion relation on the set Spec(R). Show that there are

minimal elements in Spec(R).

Solution. Let T be a totally ordered subset of Spec(R) for the relation D. Note that the maximal elements
for the relation D are the minimal elements for the inclusion relation (which is C). Let I := Npe7. Then I
is an ideal. We claim that [ is prime.

To see this, let z,y € R and suppose for contradiction that x,y € R\I and that xy € I. By assumption
there are prime ideals p,,p, € 7 such that x € p, and y € p,. Suppose without restriction of generality
that p, D p, (recall that 7 is totally ordered). We have zy € p, and thus either = or y lies in p,. This
contradicts the fact that z,y ¢ p,. The ideal I thus lies in Spec(R) and it is a lower bound for 7. We may

thus apply Zorn’s lemma to conclude that there are minimal elements in Spec(R).
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Exercise sheet 2. Prerequisites: sections 1-8. Week 6
Part A

Q1. Consider the ideals py := (x,y), p2 := (z,2) and m := (z,y, 2) of K[z,y, 2], where K is a field. Show
that p1 N po N m? is a minimal primary decomposition of p; - po. Determine the isolated and the embedded

prime ideals of p; - pa.
Solution. For future reference, note that we have

m? = ((z) + () + (2))* = (2%,%, 2%, 2y, 22, y2)

and
p1-pa = ((2) + ()((2) + (2)) = (2%, 22, y2,y2).

We have p; - po C p; N ps and we also clearly have p; - pa C m? since p1,p2 € m. Thus we have p; - pa C
p1 N pa Nm2. Note that p; and po are prime since the rings Klx,y,2]/p1 ~ K[z] and K|x,y, 2]/p2 ~ K[y]
are domains. Note also that m is a maximal ideal, since K|[x,y,2]/m ~ K is a field. Thus p1, p2 and m? are
primary (see after Lemma 6.4 for the latter). The radicals of the ideals p;, po and m? are p;, po and m (see
again Lemma 6.4 for the latter). These three ideals are distinct. Finally, we have p; 2 p2 N m? (because
22 & p1 but 22 € poNm?), po 2 p1 Nm? (because y? & po but y? € p; Nm?) and m? 2 p; N ps (because
x ¢ m? but € pa Npg). Hence if p; - p2 = p1 N p2 N m? then this decomposition is indeed primary and

minimal. Thus we only have to show that p; - po 2 p1 N p2 N m2. From the above, we have to show that
(z,y) N (z,2) N (22,92, 2%, 2y, 22,y2) C (a®, 22,92, y2)

Now note that we have P(x,y,2) € (x,y) iff P(0,0,z) = 0 (because a polynomial lies in (x,y) iff it has no
monomial containing only the variable z). Similarly, we have P(x,y, z) € (z,2) iff P(0,y,0) = 0. Thus we
have P(z,y, 2) € (z,y) N (z,2) iff P(0,y,0) = P(0,0,z) = 0.

Now an element Q(z,v,2) of (22,42, 2%, xy, vz, y2) has the form
Q(z,y,2) = Py(x,y,2)x® + Py(x,y, 2)y* + Ps(x,y, 2)2> + Py(z,y, 2)zy + Ps(x,y, 2)xz + Ps(x,y, 2)yz.
and Q(z,y, z) will thus lie in (z,y) N (x, 2) iff
Q(0,y,0) = Q(0,0,2) = P»(0,y,0) = P5(0,0,2) = 0.

In other words, the element Q(z,y, z) € (22,2, 2%, 2y, x2,y2) = m? will lie in (z,y) N (z, 2) iff Py(z,y,2) €
(x,2) and Ps3(z,y,2) € (z,y). Consequently, if Q(x,y,2) € p1 Npz Nm? then

Q(z,y,2) € (2°)+(z, 2) (y?)+ (2, ) (z°) +(ay) +(22)+(y2) = (2%, 2y, 2%, 222, y2°, 2wy, w2, y2) = (2, 2y, 22,y2) = p1-p2
as required.

The prime ideals associated with the decomposition are p; = t(py), p2 = t(p2) and m = t(m?). The ideal m
contains p; and ps and there are no other inclusions between the prime ideals. So m is an embedded ideal
and p; and po are isolated ideals.

Part B

Q2. Let K be a field. Show that the ideal (22, 7y, y?) C K|x,y] is a primary ideal, which is not irreducible.
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Solution. We first show that (22, zy, ?) is primary. This simply follows from the fact that (x,y) is maximal
ideal and from the fact that (22, ry, y?) = (z,y)? (see after Lemma 6.4).

Now note that (22, zy,y?) = (22,y) N (x,%?). Indeed, we clearly have (2%, 2y,3?) C (2%,y) N (z,y?). On
the other hand, if P(x,y) € (2%,y) then P(z,y) has the form P;(x,y)z? + Py(x,y)y. Since Pi(z,y)x? is
already in (22, 2y,y?), we thus only have to show that a polynomial of the form P,(z,y)y, which lies in
(x,42), necessarily lies in (22, ry,y?). A polynomial in (z,3?) is of the form Q1 (z,y)y* + Q2(x,y)x. Now if
we have Py(z,y)y = Q1(z,v)y? + Q2(z, y)x then Qa(x,y) is divisible by y and hence Qa(x,y)x = Q4 (z,y)ry
for some polynomial Q%(x,y) so that Ps(x,y)y € (y?,zy) C (22, 2y, y?), as required.

Q3. Let R be a noetherian ring and let 7" be a finitely generated R-algebra. Let G be a finite subgroup of
the group of automorphisms of 7" as a R-algebra. Let T be the fixed point set of G (ie the subset of T,
which is fixed by all the elements of G).

- Show that T is integral over TC.
- Show that T'¢ is a subring of T, which contains the image of R and that T'¢ is finitely generated over R.

Solution. It is clear from the definitions that T is a subring which contains the image of R. Let t € T.
Then ¢ satisfies the polynomial equation

[[¢=9@)=0

geG
The polynomial M;(z) := [[,cq(2z — g(t)) has coefficients in TS, because the coefficients are symmetric
functions in the g(¢), which are invariant under G. Hence ¢ is integral over T¢. Since t was arbitrary, T
is integral over T“. Since T is also finitely generated as a T-algebra (because it is finitely generated as a
R-algebra), we thus see that T is finite over T¢ (see after Lemma 6.6). Hence T'¢ is finitely generated over
R by the Theorem of Artin-Tate.

Q4. Show that Z is integrally closed and that the integral closure of Z in Q(i) is Z[i].

Solution. We first prove that Z is integrally closed. Let p/q € Q, where p and ¢ are coprime integers, and
let P(z) = 2™ + a,_12" ' + --- + ag € Z[z] be a monic polynomial. Suppose that P(p/q) = 0. Then we
have

"P(p/q) =p" + an—1p""'q+ an—op" 2> + -+ apq" = 0.

Since ap_1p" " g+ an_op" " 2¢% +- - - +apq™ is divisible by ¢ and p™ is coprime to g, this implies that ¢ = £1,

so p/q € Z.

To prove that the integral closure of Z in Q(¢) is Z[i], note first that Z[i] is part of the integral closure of
7 in Q(i). Indeed we have (a + ib)? — 2a(a + ib) + a® + b*> = 0 for any a,b € Z. So we only have to prove
that Z[i] is integrally closed in Q(7) (see Lemma 8.6). Note furthermore that Q(7) is the fraction field of
Z[i]. To see this, write let r + it € Q(i), where r,t € Q (any element of Q(¢) can be written in this form
because Q(i) ~ Q[z]/(2% + 1)). Let r = p/q and t = u/v. We then have r + it = (vp + uqi)/(vq), which is a
fraction of elements of Z[i], proving our claim. Finally, recall that we know from Rings and Modules that
Zli] is a Euclidean domain, where the Euclidean function is given by the norm (the norm of ¢+ id is ¢? + d?
if ¢+ 1id € Z[i]). In particular, Z[i] is a PID and every ideal in Z[i] is generated by an element of smallest

norm.

To prove that Z[i] is integrally closed in Q(¢), we may now proceed as for Z. Let

P(z) ="+ ap—12" "' + -+ +ag € Z[i](x)
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and let r 4+ it = B/A, where A, B € Z[i]. Since Z[i] is a PID, it is factorial and we may thus assume that
(A, B) = Z[i]. We can now write as before

A"P(BJ/A) = B" 4 a,_ 1B" "A+a, oB" ?A% 4+ .- 4 qpA" = 0.

Since ap_1B" 'A + a,_9B"2A% 4+ ... + qgA" is divisible by A and B™ is coprime to A, this implies that
A is a unit, so B/A € Z[i].

Note that the proof above actually shows that any UFD (Unique Factorisation Domain) is integrally closed.

Q5. Let S be a ring and let R C S be a subring of S. Suppose that R is integrally closed in S. Let P(z) €
R[z] and suppose that P(z) = Q(x)J(z), where Q(z), J(x) € S[z] and Q(x) and J(z) are monic. Show
that Q(z), J(z) € R[z]. Use this to give a new proof of the fact that if T'(z) € Z[z] and T(x) = Ty (x)T(z),
where T3 (z), T2(z) € Q[z] are monic polynomials, then 71 (z), T2(x) € Z[z].

Solution. We first prove the

Lemma. Let A be a ring and let U(z) € Alx] be a non zero monic polynomial. Then there exists a ring B

containing A, which is integral over A and such that

deg(U)

U)= ][] (@-b)

i=1
for some b; € B, where we set H;izgl(U) (x —b;) =1 if deg(U) = 0.

Proof of the lemma. By induction on the degree d = deg(U) of U(x). If d = 0,1, there is nothing to
prove. So suppose that d > 1 and that the result holds for any smaller value of d. The ring C := A[y]/(U(y))
is integral over A by Proposition 8.2. The element y of C satisfies the equation U(y) = 0 by construction.
By Euclidean division (see Preamble), we thus have U(z) = (x — y)Z(z) for some Z(x) € C[z]. Since Z(z)
has degree < d, we may apply the inductive hypothesis and we obtain a ring B, which contains C' and where

Z(x) splits. The polynomial U(z) also splits in B, so we are done. [J

We now apply the lemma to Q(z) and J(x) successively and we obtain a ring B, which contains S, such
that B is integral over S and such that

deg(Q)

Q)= ][] (=—b)

=1

and
deg(J)

J(x) = H (x —¢)

i=1
where b;,¢; € B. Now we have P(b;) = P(c¢;) = 0 by construction, so the b; and ¢; are actually integral
over R. Since the integral closure of R in B is a subring, we conclude that the coefficients of Q(z) and J(z)
are integral over R (and in S, by assumption). But since R is integrally closed in S, this means that these

coefficients lie in R.
Note that we did not actually use the fact that B was integral over S in the proof.

Q6. Let R be a subring of a ring T and suppose that T is integral over R. Let p be prime ideal of R and
let q be a prime ideal of T. Suppose that gN R = p. Let p; C ps C -+ C pi be primes ideal of R and
suppose that p; = p. Show that there are prime ideals q; C g2 C --- C g of T such that q; = q and such
that ¢, N R =p; for all i € {1,...,k}.
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Solution. By induction on k, we only need to treat the case k = 2. Consider the extension of rings
R/p C T/q. This is also an integral extension. Furthermore, there is a unique prime ideal p} in R/p, which
corresponds to ps via the quotient map. By Theorem 8.8, there is a prime ideal g/, in T'/q, which is such that

g5 N R/p = p,. The prime ideal gy corresponding to g via the quotient map has the required properties.
Q7. Let R be a ring. Let S be the set of ideals in R, which are not finitely generated.

(i) Let T be maximal element of S (with respect to the relation of inclusion). Show that I is prime.

(ii) Suppose that all the prime ideals of R are finitely generated. Prove that R is noetherian.

[Hint: exploit the fact that R/I is noetherian.]

Solution.

(i): Let x,y ¢ I and suppose for contradiction that zy € I. Let I, := (z) + I and I, = (y) + 1. Write
J = I, - I,. By assumption I,, I, and hence J are finitely generated, and we have J C I. Consider the
image I (mod J) of I in the R/I,-module I,/J. Note that I,/.J is finitely generated as a R/I,-module since
I, is finitely generated as a R-module. Note also that the ring R/I, is noetherian, since every ideal of R/I,
is the image of either the zero ideal or of an ideal of R strictly containing I. Hence I (mod J) is also finitely
generated as a R/I,-module by Lemma 7.4. Let my,...,my be preimages in I of a finite set of generators
of I (modJ) as a R/I,-module and let y1,...,y; be generators of J. Then mq,...,mg,y1,...,y; is a finite
set of generators of I, which is a contradiction.

(ii): If 7 is a totally ordered subset of S then the ideal J := UpgecsH also lies in S (because if J were
finitely generated then a finite set of generators of J would lie in one of the ideals in 7, and thus generate
it, which is a contradiction). The ideal J is an upper bound for 7 and thus we may apply Zorn’s lemma
to conclude that there are maximal elements in S, if § is not empty. By definition, S is empty iff R is
noetherian. Hence, by (i), if R is not noetherian, there is a prime ideal, which is not finitely generated. The

contraposition of this implication gives (i).
Part C

Q8. (optional). Let R be a ring. Let S be the set of non-principal ideals in R. Let I be a maximal element
of §. Prove that I is a prime ideal.

Solution.

Let 2,y ¢ I and suppose for contradiction that zy € I. Let I, := (z) 4 I. By assumption, we have I, = (g.)
for some g, € R. Let ¢ : R — I, be the surjection of R-modules given by the formula ¢(r) = rg,. We then
have I C ¢~ 1(1).

Suppose first that I = ¢~1(I). In other words, for all r € R, we have rg, € I iff r € I. This contradicts the
fact that yg, € I. So we conclude that I C ¢~1(I). From the definition of I, we then see that ¢=1(I) is a
principal ideal of R, and hence so is I = ¢(¢~1(I)). This is a contradiction, so we cannot have zy € I if

xz,y ¢ I. In other words, I is prime.
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Exercise sheet 3. Prerequisites: sections 1-10. Week 8
Part A

Q1. Let R be a subring of a ring T. Suppose that T is integral over R. Let p be a prime ideal of R and
let q1,q2 be prime ideals of T" such that gy N R = q2 N R = p and g1 # q2. Show that we have q1 Z q2 and

q2 Z q1.

Solution. By symmetry, we only have to show that q; Z q2. Suppose for contradiction that q; C q2. The
ring R/p is can be viewed as a subring of T'/q; and by assumption we have g3 (mod q;) N R/p = (0). We may
thus assume wrog that R and T to be domains and that q; and p are zero ideals. Now let e € q2\{0} and
let P(xz) € R[z] be a non zero monic polynomial such that P(e) = 0. Since T is a domain, we may assume
that the constant coefficient of P(z) is non zero (otherwise replace P(z) by P(z)/x* for a suitable k > 1).
But then P(0) is a linear combination of positive powers of e (since P(e) = 0), so P(0) € RNqgz = (0). This

is a contradiction, since P(0) # 0.
Part B

Q2. Let R be a ring. Show that the two following conditions are equivalent:

(i) R is a Jacobson ring.

(ii) If p € Spec(R) and R/p contains an element b such that (R/p)[b~}] is a field, then R/p is a field.
Here we write (R/p)[b~!] for the localisation of R/p at the multiplicative subset 1,b,b%,. ...

Solution.

(i) = (ii) : If R is a Jacobson, then so is R/p for any p € Spec(R). Hence (ii) follows from Lemma 10.2.

(ii) = (i) : Note first that R is a Jacobson ring iff any prime ideal of R is the intersection of the maximal
ideals containing it (this is straightforward). Now suppose that R is not Jacobson. Then there is a prime
ideal p of R and an element e ¢ p such that e is in the Jacobson radical of p. In other words, e (modp) # 0
and e (mod p) lies in the Jacobson radical of R/p. Now let q be an ideal maximal among the prime ideals
of R/p, which do not contain e (modp). The ideal ¢ is prime, because it corresponds to a maximal ideal
of (R/p)[(e (modp))~!] by Lemma 5.6, and it is not maximal, since e (mod p) lies in the intersection of all
the maximal ideals of R/p. The ring (R/p)/q has by construction the property that any of its non zero
prime ideals contains (e (modp)) (modq). In particular, the ring ((R/p)/q)[((e (modp)) (modq))~!] is a
field, because it is a domain and its only prime ideal is the zero ideal. On other hand, ((R/p)/q) is a not
field, since q is not maximal. Now if we let ¢ : R — R/p be the quotient map, we have ((R/p)/q) ~ R/q~'(q)
and thus this contradicts (ii). We have thus proven the contraposition of the implication (ii) = (i).

Q3. Let k be field and let R be a finitely generated algebra over k. Show that the two following conditions

are equivalent:
(i) Spec(R) is finite.
(ii) R is finite over k.

Solution. (i) = (ii) : Suppose that Spec(R) is finite. By Noether’s normalisation lemma, there is an
injection k[z1,...,24] — R, which makes R into a finite k[z1, ..., x4]-algebra. Since the corresponding map
of spectra Spec(R) — Spec(k[z1,. .., x4]) is surjective by Theorem 8.8, this implies that Spec(k[x1, ..., z4]) is
finite. In particular, k[z1,. .., x4] has only finitely many maximal ideals, say my, ..., m;. Since k[z1,. .., 24]
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is a Jacobson ring by Theorem 10.5, we have N;m; = t((0)) = 0 and so we may deduce from the Chinese
remainder theorem that k[zq,...,z4] ~ ®;R/m;. Since k[z1,...,z4] is a domain, this implies that ¢t = 1.
In particular, K[z, ..., x4] is field, which is only possible if d = 0 (otherwise, x; is a non unit). Hence R is
finite over k.

(if) = (i) : This follows from Proposition 8.12.

Q4. Let k be an algebraically closed field. Let Py,..., P; € k[z1,...,24]. Suppose that the set

{(y1,. - ya) €KY Pi(yr,...,yq) =0Vie {1,...,d}}

is finite. Show that
Spec(klx1, ..., z4]/(P1,..., Pa))

is finite.

Solution. From Corollary 9.5 and Corollary 9.3, we deduce that v(((P1,...,Py)) is the intersection of
finitely many maximal ideals of k[xy,...,24], say my,...m;. From the Chinese remainder theorem, we
deduce that

k[zla"'axd]/t((Plv"de)) 2I_Ik[l'la"'axd]/rni 21_[‘14:7
In particular, Spec(k[z1,...,xq]/t((P1,..., Ps))) is finite. Now we have

Spec(k[x1, ..., z4]/e((Py, ..., Pq))) =~ Spec(k[z1,...,z4]/(P1,..., Pi))
(see the remark after Lemma 4.4) so the conclusion follows.

Q5. Let R be a ring and let Ry be the prime ring of R (see the preamble of the notes for the definition).
Suppose that R is a finitely generated Rgp-algebra. Suppose also that R is a field. Prove that R is a finite
field.

Solution. Since Ry is contained in a field, it is a domain and so Ry is either a finite field or it is isomorphic
to Z. Suppose first that Ry is a finite field. Then R is a finite field extension of a finite field by the weak
Nullstellensatz and hence R is a finite field. Now suppose that R ~ Z. Then R contains the fraction field
Q of Z and R is a finitely generated Q-algebra, which is a field. By the weak Nullstellensatz again, we
conclude that R is a finite field extension of Q. From Corollary 10.3, we deduce that Z ~ Q (note that Z is

a Jacobson ring), which is a contradiction. So Ry must be a finite field and so R is a finite field.

Q6. Let k be a field and let m be a maximal ideal of k[z1,...,24]. Show that there are polynomials
Pl(xl),Pg(l'l,l‘g),Pg(xl,l'g,ﬂfg), R an(xla R 7xd) such that m = (P17 B an)'

Solution. By induction on d > 1. If d = 1 then this follows from the fact that k[z1] is a PID. We suppose
that the statement holds for d — 1. Let K = k[z1,...,z4]/m. By the weak Nullstellensatz, this is a finite
field extension of k. Let ¢ : k[z1,...,24] — K be the natural surjective homomorphism of k-algebras. Let
L = ¢(k[x1,...,24-1]). This is a domain and by Lemma 8.9, L is a field, since it contains k and is contained
inside an integral extension of k. Let ¢ : k[x1,...,24-1] — L be the surjective homomorphism of k-algebras

arising by restricting ¢. The map @ induces a surjective homomorphism of k-algebras
U klxy,...,xq) = (K[z1,...,24-1])[xa] = L]xg]
and there is a surjective homomorphism of L-algebras

A L[xd] — K,
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which sends z4 to ¢(z4). By construction, we have ¢ = A o ¥. In particular, we have m := U=1(A71(0)).
Since L[xy) is a PID and ¢(x4) is algebraic over k, we have A~1(0) = (P(z4)) for some non zero polynomial
P(z4) € L[z4). Now let Py(x1,...,24) € (E[z1,...,24-1])[x4] be a preimage by ¥ of P(zg).

We claim that m = (ker(¥), P;). To see this, note that ¥((ker(¥),P;)) = (P(xq)) and so we have
(ker(¥), P;) € m. On the other hand, if e € m then ¥(e) € (P(z4)) and thus there is an element ¢’ € (Py)
such that ¥(e) = ¥(e’) (since VU is surjective). In particular, we have e—e’ € ker(¥), so that e € (ker(¥), Py).

Now by the inductive assumption, ker(¥) is generated by polynomials

Py (1), Po(x1, 22), Ps(x1,22,23), ..., Pa—1(x1, ..., 24-1)
and so m is generated by P (z1), Pa(z1,22), P3(21, 22, 23), ..., Pi(z1,...,24).
Part C

Q7. (optional) Let R be a domain. Show R[z] is integrally closed if R is integrally closed.

Here are some hints for this exercise. Let K be the fraction field of R.

(i) Show first that it suffices to show that R[z] is integrally closed in K[z] (ie that the integral closure of
R[z] in K|[z] is R[x]).

(i) Consider Q(z) € K[z] and suppose that Q(z) is integral over R[z]. Show that Q(z) + x' satisfies an
integral equation with coefficients in R[z], whose constant coefficient is a monic polynomial, if ¢ is sufficiently
large.

(iii) Conclude.
Solution.

Suppose that R is integrally closed in its fraction field K. The fraction field of R[x] is K (x) = Frac(K|[x]).
Let Q(z) € K(x) and suppose that Q(x) is integral over R[z]. Then Q(z) is in particular integral over K [z]
and we saw that in the solution of Q4 that K[z| is integrally closed, since it is a PID. So we deduce that
Q(x) € K|z].
Now let

Q"+ PaQ M4+ P =0

be a non trivial integral equation for @ over R[x] (so that P; € R[z] and n > 1). Let ¢ be a natural number,
which is strictly larger than the degrees of all the P; and of ). Let T' = Q — z*. The polynomial 7" is monic

by construction and we have
(T+ 2"+ Py (T+2")" 4+ + Py =0
so that T satisfies an integral equation of the type
T+ H, . T" '+ .+ Hy=0

where
HO=P0+ItP1—|—$2tP2—|—"'—|—thn.

Now note that Hy is a monic polynomial, because tn > ti + deg(F;) for all i € {0,...,n — 1}. Finally, note
that in view of the penultimate equation, we have

T(T" '+ Hy, \T" 2+ -+ Hy) = —Hy
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and by Q5 of sheet 2, we have T' € R[z] (because Hy € R[z] and Hy and T are monic). Since z' € R[z] we

see that we also have @ € R[z], which is what was to be proven.
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Exercise sheet 4. Prerequisites: all lectures. W1 of Trinity Term
Part A

Q1. Let R be a noetherian domain. Let m be a maximal ideal in R. Let r € R\{0} and suppose that (r)
is a m-primary ideal. Show that ht((r)) = 1.

Solution. By assumption, the nilradical of () is m. Since the nilradical is the intersection of all the prime
ideals containing (r), we see that every prime ideal containing (r) also contains m. On the other hand, a
prime ideal containing m must be equal to m. We conclude that m is the only prime ideal containing (7).
In particular, m is minimal among the prime ideals containing (r) and thus ht((r)) = ht(m) < 1 by Krull’s
principal ideal theorem. On the other hand, ht(m) = 1, since we have the chain m 2 (0) (note that R is a

domain).
Part B

Q2. Let A, B be integral domains and suppose that A C B. Suppose that A is integrally closed and that
B is integral over A. Let

Po2p1 2 2Pn

be a descending chain of prime ideals in A. Let k € {0,...,n — 1} and let

Qo291 2 - 2 qk

be a descending chain of prime ideals in B, such that q; N A = p; for all i € {0,...,k}. Then there is a

descending chain of prime ideals
Gk 2 Gk+1 2 - 2 dn

such that ;N A =p,; foralli € {k+1,...,n}. This is the ”going-down theorem”. See AT, Th. 5.16, p. 64.
Let L (resp. K) be the fraction field of B (resp. A). Prove the going-down theorem when L is a (finite)
Galois extension of K.

Solution. One immediately reduces the question to n = 1 and k = 0. Let A be the integral closure of A in
L. Note that by assumption we have B C A and that A is integral over B (since it is integral over A). Let
q) be a prime ideal of A such that q) N B = qo (this exists by the (part of the) going-up theorem). Let a
be a prime ideal of A such that aN A = p; (again this exists by the going-up theorem). According to Q6 of
sheet 2, there is a prime ideal b in A such that b 2 a and such that b N A = py. According to Proposition
12.10, there is an element o € Gal(L|K) such that o(b) = q;. We have o(a)NA = p; and o(a) C o(b) = q;.
Hence o(a) N B C qyN B = qp and (o(a) N B)N A = o(a) N A = p;. Furthermore, we have o(a) N B C qo
because o(a) N A =p; C qoN A =py. So we may set q; := o(a) N B.

Q3. Let R be an integrally closed domain. Let K := Frac(R). Let L|K be an algebraic field extension.

Show that an element e € L is integral over R iff the minimal polynomial of e over K has coefficients in R.

Solution. Let P(z) € K|[z] be the minimal polynomial of e. If P(z) € R[z] then e is integral over R by the
definition of integrality. On other hand, suppose that e is integral over R and let Q(z) € R[x] be a monic
polynomial such that @Q(e) = 0. Then P(z) divides Q(x) by the definition of the minimal polynomial and
P(z) € R[z] by Qb of sheet 2.

Q4. Let R be a PID. Suppose that 2 = 1+ 1 is a unit in R. Let ¢1,...,¢; € R be distinct irreducible
elements and let ¢ := ¢; ---¢;. Show that the ring R[z]/(z? — ¢) is a Dedekind domain. Use this to show
that Rz, y]/(2% + y? — 1) is a Dedekind domain.
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Solution. Let K := Frac(R). Notice first that ¢ is not a square in K.

Indeed, suppose for contradiction that there is an element e € K such that e? = c¢. Write e = f/g, with
f,g € Rand f and g coprime. We then have f2/g? = c and hence f? = g2c. In particular, ¢; divides f and
thus ¢? divides g%c. Since (f,g) = 1, we deduce that ¢? divides ¢, which contradicts our assumptions.

We deduce that the polynomial 2 —c is irreducible over K, since it has no roots in K. Let L := K[y]/(y*—c).
Note that L is a field, since y? — ¢ is irreducible. Now let ¢ : R[x] — L be the homomorphism of R-algebras,
which sends = to y (mod (y? — ¢)). We have ¢(Q(z)) = Q(y) = 0 iff 2% — ¢ divides Q(z) in K[z]. On the
other hand, if 22 — ¢ divides Q(z) in K[z], then x? — ¢ divides Q(x) in R[x] by the unicity statement in
the Euclidean algorithm (see preamble). Hence ker(¢) = (22 — ¢). We thus see that R[z]/(x? — ¢) can be
identified with the sub- R-algebra of L generated by y. Under this identification, the elements of R[z]/(z*—c)
correspond to the elements of the form A + py, with A, 4 € R, whereas the elements of K can all be written
as A+ py, with A\, p € K.

We claim that that L is the fraction field of R[x]/(2? — ¢). Note first that the fraction field of R[x]/(z? — ¢)

naturally embeds in L, since L is field containing R[z]/(z? — ¢). To prove the claim, we only have to show

that every element of L can be written as a fraction in L of elements of R[z]/(z? — ¢). This simply follows
from the fact that if f,g,h,j € R and f/g+ (h/j)y € L, then
o+ () g)y = Y.

9J]

Now to prove that R[z]/(z? — ¢) is a Dedekind domain, we have to show that it is noetherian, that is has
dimension 1 and that it is integrally closed. The ring R[x]/(z% — ¢) is clearly noetherian (by the Hilbert
basis theorem and Lemma 7.2). Also, the ring R[x]/(x? — ¢) is integral over R by construction and R has
dimension one by Lemma 11.19. We deduce from Lemma 11.29 that R[z]/(z? — ¢) also has dimension 1. To
show that R[z]/(z? — c) is integrally closed, we have to show that the integral closure of R[z]/(z? —¢) in L
is R[x]/(z? — ¢). The integral closure of R[x]/(z% — ¢) in L is also the integral closure of R in L by Lemma
8.6 (since R[z]/(z? — c) consists of elements, which are integral over R). Furthermore, by Q3 an element
A+ py € L is integral iff its minimal polynomial P(t) € K[t] has coefficients in R. Thus we have to show
that if A + py € L has a minimal polynomial P(t) € R[t] then A, 4 € R. We prove this statement.

If 4 =0 then A\ 4+ py € R and thus the minimal polynomial of A + py is t — A. So the statement certainly
holds in this situation.

If 4 # 0, we note that the polynomial
(= A+ )t — A= py) =t =2A + N = p®y® =2 =20+ N> — cp®

annihilates A + py and has coeflicients in K. It must thus coincide with the minimal polynomial P(t) of
A+ py, since we know that deg(P(t)) > 1.

Thus we have to show that if —2)\ € R and A2 — cu? € R, then A, € R. So suppose that —2\ € R and
A2 —cu? € R. We have A € R, since —2 is a unit in R by assumption. Hence cu? € R. We claim that
u € R. Indeed, let u = f/g, where f,g € R and f and g are coprime. Then cf? = g?r for some r € R. Let
i € {1,...,t} and suppose first that ¢; divides g. Then ¢? divides rg® and since ¢; appears with multiplicity
one in ¢ by assumption, we thus see that ¢; divides f, which is a contradiction (because (f,g) = 1). Hence
¢; does not divide g and thus ¢; divides r. Since all the ¢; are distinct, we thus see that ¢ divides r and thus
(f/9)? =r/c =:d € R. Hence f? = g?d. Since f and g are coprime, we see that f? divides d and hence
d/f? € R. Since g*(d/f?) = 1, we conclude that g is a unit and hence u = f/g € R.
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To see that Rz, y] /(2% +y?—1) is a Dedekind domain, note that Rz, y]/(z%+y?—1) ~ (R[z])[y]/(v*—(1—2?))
and apply the first statement of the question with R = R[z] and ¢ =1 — 2% = (1 — z)(1 + ).

Q5. Let R be a PID. Suppose that 2 =1+ 1 is invertible in R. Let ¢1,co € R be two distinct irreducible
elements and let ¢ := c¢; - c3. Show that the decomposition of the ideal (¢) in R[z]/(2z? — ¢) into a product
of prime ideals is (¢) = (z,¢1)? - (z,¢2)? (noting that R[z]/(2? — ¢) is a Dedekind domain by Q4).

Solution. Note first that (z,¢;) (i = 1,2) is indeed a prime ideal of R[z]/(x? — ¢), because
(Rlz]/(2* = ¢)/(z,¢:) = R[z]/(2* — ¢,x,¢:) = R/ (—¢, i) = R/ (c:),

which is a domain, since ¢; is irreducible.

We only have to show that (¢;) = (z,¢;)?.

We first show that (¢;) C (,¢;)?. For this, note that ¢? € (z,¢;)? by definition and

(z—c)z+c)=2"—cl=c—c =ci(c; —¢;) € (z,¢)?,

where j = 1ifi=2and j =2if i = 1. But gedg(c?, ¢i(c; — ¢;)) = ¢; (because ¢; — ¢; is coprime to ¢; in R,
since ¢; is irreducible and distinct from ¢;), and in particular ¢; € (x,¢;)?, so that (¢;) C (z,¢;)?.

To show that (¢;) D (z,¢;)?, we only have to show that (x,¢;)? (mod (¢;)) = ((x,¢;) (mod (¢;)))? = 0 in
(R[z]/(z% — ¢))/(ci). Now we have (R[z]/(2? — ¢))/(c;) = R[z]/(z% — ¢,¢;) = (R/(¢;))[x]/2* . The image
(z,¢;) (mod (¢;)) of (z,¢;) in (R/(¢;))[z]/x? is generated by z, so that ((x,¢;) (mod (¢;)))? = 0.

Q6. Let R be a ring (not necessarily noetherian). Suppose that dim(R) < oo.
Show that dim(R[x]) < 1+ 2dim(R).
Solution. Let

Go2d1 2922 2da

be a descending chain of prime ideals in R[z], where d > 0. By restriction, we obtain a descending chain of
prime ideals
NR2GINRD2qNRD---2q4NR (%)

(possibly with repetitions) in R. For each i € {0,...,d}, let p(i) > 0 be the largest integer k such that
g NR=q;+1NR="-=(;4x N R. By Lemma 11.21 (and the remark before it) and Lemma 11.19 we have
p(i) < 1forallie{0,...,d}. Now let

Qip NR=qoNR22q;, NR2---2qi, N R

be an enumeration of all the prime ideals appearing in the chain (x), in decreasing order of inclusion. We
have

d+1=(1+p(io)) + (L + p(i1)) + -+ (1 + p(is)) <2(5 + 1)
so that d < 2§ + 1. Now we have § < dim(R) and the required inequality follows.

Q7. Let R be a Dedekind domain. Let a be a non zero ideal in R. Show that every ideal in R/a is principal.

Show that every ideal in a Dedekind domain can be generated by two elements.

Solution. We first prove the first statement. Since R is a Dedekind domain, we have a primary decompo-

sition

k
m;
a= (¥
i=1

69



for some prime ideals p;. Using Lemma 12.2 and the Chinese remainder theorem, we see that we have

k
Rfa~ P R/p}
1=1

Now an ideal I of @le R/p" is of the form @le I;, where I; is an ideal of R/p."". This follows from the
fact that if e € I and e = EBf:lei then e; = e- (0,...,1,...,0) € I, where 1 appears in the i-th place in
i, then (g1,...,9%)

can be generated by one element.

m

the expression (0,...,1,...,0). Hence, if we can find generators g; € I; for I; in R/p;

will be a generator of I. We proceed to show that any ideal in R/p}™"
Consider the exact sequence

0—p/" - R—R/p" —0

Localising this sequence at R\p;, we get the sequence of Ry,-modules

0— (p;ni)m - RPi - (R/p:nl)m —0
Now the R,-submodule (p;*?),, of R, is the ideal generated by the image of p;** in R, (see the beginning
of the proof of Lemma 5.6). If we let m be the maximal ideal of R, this is also m™:. On the other hand, p;

is contained in the nilradical of p;

7" and since p; is maximal (by Lemma 12.1) it coincides with the radical

of p™*. Hence R/p;" has only one maximal ideal, namely p; (mod p;"*). Since the image of R\p; in R/p;"
lies outside p; (mod p;™*), we see that this image consists of units. Hence (R/p;"),, ~ R/p;"*. All in all,
there is thus an isomorphism

Ry, /m™ =~ R/p™.
Now by Proposition 12.4, every ideal in R,, /m™ is principal, and so we have proven the first statement.
For the second one, let e € a be any non-zero element. Then the ideal a (mod (e)) C R/(e) is generated by
one element, say g. Let ¢’ € R be a preimage of g. Then a = (e, g’).

Q8. Let A (resp. B) be a noetherian local ring with maximal ideal m4 (resp. mp). Let ¢ : A — B be a
ring homomorphism and suppose that ¢(m4) € mp (such a homomorphism is said to be "local’).

Suppose that

(1) B is finite over A via ¢;

(2) the map my — mp/m% induced by ¢ is surjective;

(3) the map A/m4 — B/mp induced by ¢ is bijective.

Prove that ¢ is surjective. [Hint: use Nakayama’s lemma twice].

Solution. By Corollary 3.6, the image of of m4 in mp generates mp as a B-module. In other words,
¢(my)B = mp. On the other hand, since B is finitely generated as a A-module, the homomorphism ¢ is
surjective iff the induced map A/my — B/¢(m4)B is surjective, again by Corollary 3.6. Now B/¢(m4)B =
B/mp by the above and by (3) the map A/m4 — B/mp is surjective. The conclusion follows.
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Part C

Q9. (optional) Let R be a Dedekind domain. Show that R is a PID iff it is a UFD.

Solution. See https://planetmath.org/pidandufdareequivalentinadedekinddomain
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