
Exercise sheet 1. Prerequisites: sections 1-5. Week 4.

Q1. LetR be a ring. Show that the Jacobson radical ofR coincides with the set {x 2 R | 1� xy is a unit for all y 2 R}.

Solution. Suppose x lies in the Jacobson radical of R. Suppose for contradiction that 1� xy is not a unit

for some y 2 R. Let m be a maximal ideal containing 1� xy. We know that xy 2 m since x 2 m and thus

we conclude that 1 2 m, a contradiction.

Suppose now that x 2 R and that 1� xy is a unit for all y 2 R. Suppose for contradiction that there is a

maximal ideal m such that x 62 m. Then x (modm) is a unit in R/m and hence there is a y 2 R such that

xy (modm) = 1 (modm). In other words, 1� xy 2 m and so 1� xy is not a unit.

Q2. Let R be a ring.

(i) Show that if P (x) = a0 + a1x + · · · + akx
k 2 R[x] is a unit of R[x] then a0 is a unit of R and ai is

nilpotent for all i � 1.

(ii) Show that the Jacobson radical and the nilradical of R[x] coincide.

Solution.

(i) Let Q(x) = b0 + · · · + btx
t 2 R[x] be an inverse of P (x). Then P (0)Q(0) = a0b0 = 1 so that a0 and b0

are units. Let Fp be a prime ideal. Let j � 0 be the largest integer so that aj (mod p) 6= 0 and let l � 0 be

the largest integer so that bl (mod p) 6= 0. If j > 0 we have ajbl = 0 (mod p) (since P (x)Q(x) = 1), which

is not possible because R/p is a domain. Hence j = 0 and in particular ai 2 p for all i > 0. Since p was

arbitrary, we see that ai lies in the nilradical of R for all i > 0.

(ii): We only have to show that any element of the Jacobson radical if R[x] is nilpotent. So let P (x) 2
a0+a1x+· · ·+akx

k 2 R[x] be an element of the Jacobson radical. By Q1, we know that for any T (x) 2 R[x],

the element 1� P (x)T (x) is a unit. In particular,

1 + xP (x) = 1 + a0x+ a1x
2 + · · ·+ akx

k+1

is a unit. By (i), ai is thus nilpotent for all i > 0. In particular a0 + a1x+ · · ·+ akx
k is nilpotent (since the

radical of a ring is an ideal).

Q3. Let R be a ring and let N ✓ R be its nilradical. Show that the following are equivalent:

(i) R has exactly one prime ideal.

(ii) Every element of R is either a unit or is nilpotent.

(iii) R/N is a field.

Solution. (i))(ii): Let p be the unique prime ideal. Suppose that r 2 R is not a unit. Then r is a

contained in a maximal ideal, which must coincide with p. Since p is the only prime ideal, the ideal p is the

nilradical N of R and hence r is nilpotent.

(ii))(iii): Suppose that R/N is not a field. Then either R/N is the zero ring or there is an element

x 2 (R/N)⇤, which is not a unit. If R/N is the zero ring, then every element of R is nilpotent (and in fact

R is the zero ring). If there is an element x 2 (R/N)⇤, let x1 2 R be a preimage of x. Then x1 is not a unit

and is not nilpotent. So we have proven the contraposition of (ii))(iii).

(iii))(i): We prove the contraposition. If R has more than one prime ideal then R/N has a non zero prime

ideal (since any prime ideal contains N). But this contradicts the fact that R/N is a field.
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Q4. Let R be a ring and let I ✓ R be an ideal. Let S := {1 + r | r 2 I}.

(i) Show that S is a multiplicative set.

(ii) Show that the ideal generated by the image of I in RS is contained in the Jacobson radical of RS .

(iii) Prove the following generalisation of Nakayama’s lemma:

Lemma. Let M be a finitely generated R-module and suppose that IM = M . Then there exists r 2 R, such

that r � 1 2 I and such rM = 0.

Solution. (i): This is clear.

(ii): The ideal IS generated generated by I in RS consists of the elements a/b such that a 2 I and b 2 S.

By Q1, we thus only have to show that if a/b is such that a 2 I and b 2 S, then 1 � (a/b)(c/d) is a unit

for all c 2 R and d 2 S. Now 1/b and 1/d are units of RS , hence we only have to show that bd � ac

is a unit for a, b, c, d as in the previous sentence. Now bd = (1 + b1)(1 + d1) = 1 + b1 + d1 + b1d1 for

some b1, d1 2 I, and thus bd � ac = 1 + b1 + d1 + b1d1 � ac. Since b1 + d1 + b1d1 � ac 2 I we see that

bd� ac = 1 + b1 + d1 + b1d1 � ac 2 S and hence is a unit of RS .

(iii) If IM = M we clearly have ISMS = MS . Hence by (ii) and the form of Nakayama’s lemma proven in

the course, we have MS = 0. Now m1, . . . ,mk be generators of M . Since M is the kernel of the natural

map M ! MS (since MS = 0), there is an element si 2 S such that simi = 0 for all i (see the beginning of

section 5). Let s =
Q

i
si. Then s annihilates all the mi and hence M . By construction, s� 1 2 I so we are

done.

Q5. Let R be a ring and let M be a finitely generated R-module. Let � : M ! M be a surjective

homomorphism of R-modules. Prove that � is injective, and is thus an automorphism. [Hint: use � to

construct a structure of R[x]-module on M and use the previous question.]

Solution. View M as an R[x]-module by setting P (x) ·m = P (�)(m). We have (x)M = M by construction

and hence by Q4 (iii), there is a polynomial Q(x) 2 R[x] such that Q(x) � 1 2 (x) and Q(x)M = 0. Let

m0 2 ker(�). Then Q(x)(m0) = m0 and hence m0 = 0. Thus � is injective.

Q6. Let R be a ring. Let S be the subset of the set of ideals of R defined as follows: an ideal I is in S i↵ all

the elements of I are zero-divisors. Show that S has maximal elements (for the relation of inclusion) and

that every maximal element is a prime ideal. Show that the set of zero divisors of R is a union of prime

ideals.

Solution. If T is a totally ordered subset of S, then the union of its elements is an ideal, and it clearly

consists of zero divisors. So every totally ordered subset of T has upper bounds and thus by Zorn’s lemma,

the ordered set T has maximal elements. Note that we may refine this reasoning as follows. Let I 2 S.
Consider the subset SI of S, which consists of ideals containing I. By a completely similar reasoning, the

subset SI has maximal elements for the relation of inclusion. We contend that if J 2 SI is a maximal

element, then it is also maximal in S. Indeed, suppose that J
0 ◆ J for some ideal J 0 2 S. Then J

0 2 SI

and hence J
0 = J . Now note that

{zero-divisors of R} = [r2R, r a zero-div.(r) ✓ [r2R, r a zero-div.J(r)

where J(r) a maximal element of S containing the ideal (r). Since J(r) also consists of zero-divisors, we

conclude that

{zero-divisors of R} = [r2R, r a zero-div.J(r)
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Hence we only have to prove that the maximal elements of S are prime ideals.

Let I be a maximal element of S. Let x, y 2 R\I and suppose for contradiction that xy 2 I. Then we have

((x) + I)((y) + I) ✓ I

By maximality of I, there are elements a 2 (x)+I and b 2 (y)+I, which are not zero divisors. Hence ab 2 I

so that ab is a zero divisor, which is contradiction (note that the set of non zero divisors is a multiplicative

set). So we must have x 2 I or y 2 I, so I is prime.

Q7. Let R be a ring. Consider the inclusion relation on the set Spec(R). Show that there are minimal

elements in Spec(R).

Solution. Let T be a totally ordered subset of Spec(R) for the relation ◆. Note that the maximal elements

for the relation ◆ are the minimal elements for the inclusion relation (which is ✓). Let I := \p2T . Then I

is an ideal. We claim that I is prime.

To see this, let x, y 2 R and suppose for contradiction that x, y 2 R\I and that xy 2 I. By assumption

there are prime ideals px, py 2 T such that x 62 px and y 62 py. Suppose without restriction of generality

that px ◆ py (recall that T is totally ordered). We have xy 2 py and thus either x or y lies in py. This

contradicts the fact that x, y 62 py. The ideal I thus lies in Spec(R) and it is a lower bound for T . We may

thus apply Zorn’s lemma to conclude that there are minimal elements in Spec(R).
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