Exercise sheet 1. Prerequisites: sections 1-5. Week 4.

Q1. Let R be aring. Show that the Jacobson radical of R coincides with the set {x € R|1 — xy is a unit for all y € R}.

Solution. Suppose z lies in the Jacobson radical of R. Suppose for contradiction that 1 — zy is not a unit
for some y € R. Let m be a maximal ideal containing 1 — zy. We know that zy € m since z € m and thus

we conclude that 1 € m, a contradiction.

Suppose now that x € R and that 1 — xy is a unit for all y € R. Suppose for contradiction that there is a
maximal ideal m such that © ¢ m. Then z (modm) is a unit in R/m and hence there is a y € R such that
zy (modm) = 1 (modm). In other words, 1 — xy € m and so 1 — zy is not a unit.

Q2. Let R be a ring.

(i) Show that if P(z) = ag + a1z + --- + axz® € R[z] is a unit of R[z] then ag is a unit of R and a; is
nilpotent for all 7 > 1.

(if) Show that the Jacobson radical and the nilradical of R[z] coincide.
Solution.

(i) Let Q(z) = by + - -- + byzt € R[z] be an inverse of P(x). Then P(0)Q(0) = agby = 1 so that ag and by
are units. Let F,, be a prime ideal. Let 7 > 0 be the largest integer so that a; (modp) # 0 and let [ > 0 be
the largest integer so that b, (modyp) # 0. If j > 0 we have a;b; = 0(modp) (since P(x)Q(x) = 1), which
is not possible because R/p is a domain. Hence j = 0 and in particular a; € p for all i > 0. Since p was

arbitrary, we see that a; lies in the nilradical of R for all i > 0.

(ii): We only have to show that any element of the Jacobson radical if R[z] is nilpotent. So let P(z) €
ap+a1r+---+apz® € R[x] be an element of the Jacobson radical. By Q1, we know that for any T'(z) € R|x],

the element 1 — P(z)T(x) is a unit. In particular,
1+ zP(z) =1+ apx + a1z + - + apa!
is a unit. By (i), a; is thus nilpotent for all i > 0. In particular ag + a1z + - - - + azx* is nilpotent (since the
radical of a ring is an ideal).
Q3. Let R be a ring and let N C R be its nilradical. Show that the following are equivalent:
(i) R has exactly one prime ideal.
(ii) Every element of R is either a unit or is nilpotent.
(iii) B/N is a field.

Solution. (i)=-(ii): Let p be the unique prime ideal. Suppose that » € R is not a unit. Then 7 is a
contained in a maximal ideal, which must coincide with p. Since p is the only prime ideal, the ideal p is the
nilradical N of R and hence r is nilpotent.

(ii)=-(iii): Suppose that R/N is not a field. Then either R/N is the zero ring or there is an element
x € (R/N)*, which is not a unit. If R/N is the zero ring, then every element of R is nilpotent (and in fact
R is the zero ring). If there is an element x € (R/N)*, let x1 € R be a preimage of x. Then x; is not a unit

and is not nilpotent. So we have proven the contraposition of (ii)=-(iii).

(iii)=-(i): We prove the contraposition. If R has more than one prime ideal then R/N has a non zero prime
ideal (since any prime ideal contains N). But this contradicts the fact that R/N is a field.
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Q4. Let R be aring and let I C R be an ideal. Let S:={1+r|r € I}.

(i) Show that S is a multiplicative set.

(ii) Show that the ideal generated by the image of I in Rg is contained in the Jacobson radical of Rg.
(iii) Prove the following generalisation of Nakayama’s lemma:

Lemma. Let M be a finitely generated R-module and suppose that IM = M. Then there exists r € R, such
that r —1 € I and such rM = 0.

Solution. (i): This is clear.

(ii): The ideal Is generated generated by I in Rg consists of the elements a/b such that a € I and b € S.
By Q1, we thus only have to show that if a/b is such that a € I and b € S, then 1 — (a/b)(¢/d) is a unit
for all c € R and d € S. Now 1/b and 1/d are units of Rg, hence we only have to show that bd — ac
is a unit for a,b,c,d as in the previous sentence. Now bd = (1 + b1)(1 +dy) = 1+ by + dy + bidy for
some by,dy € I, and thus bd — ac = 1 + by + dy + bidy — ac. Since by + di + bydy — ac € I we see that
bd —ac =1+ by +di + bidi — ac € S and hence is a unit of Rg.

(iii) If IM = M we clearly have IgMg = Mg. Hence by (ii) and the form of Nakayama’s lemma proven in
the course, we have Mg = 0. Now my,...,my be generators of M. Since M is the kernel of the natural
map M — Mg (since Mg = 0), there is an element s; € S such that s;m; = 0 for all ¢ (see the beginning of
section 5). Let s =[], s;. Then s annihilates all the m; and hence M. By construction, s — 1 € I so we are
done.

Q5. Let R be a ring and let M be a finitely generated R-module. Let ¢ : M — M be a surjective
homomorphism of R-modules. Prove that ¢ is injective, and is thus an automorphism. [Hint: use ¢ to

construct a structure of R[z]-module on M and use the previous question.]

Solution. View M as an R[z]-module by setting P(z)-m = P(¢)(m). We have (z)M = M by construction
and hence by Q4 (iii), there is a polynomial Q(x) € R[z] such that Q(z) — 1 € (x) and Q(x)M = 0. Let
mo € ker(¢). Then Q(z)(mg) = mo and hence my = 0. Thus ¢ is injective.

Q6. Let R be aring. Let S be the subset of the set of ideals of R defined as follows: an ideal I is in S iff all
the elements of I are zero-divisors. Show that S has maximal elements (for the relation of inclusion) and
that every maximal element is a prime ideal. Show that the set of zero divisors of R is a union of prime
ideals.

Solution. If T is a totally ordered subset of S, then the union of its elements is an ideal, and it clearly
consists of zero divisors. So every totally ordered subset of 7 has upper bounds and thus by Zorn’s lemma,
the ordered set 7 has maximal elements. Note that we may refine this reasoning as follows. Let I € S.
Consider the subset Sy of S, which consists of ideals containing I. By a completely similar reasoning, the
subset S; has maximal elements for the relation of inclusion. We contend that if J € Sy is a maximal
element, then it is also maximal in S. Indeed, suppose that J' O J for some ideal J' € S. Then J' € S;
and hence J' = J. Now note that

{zero-divisors of R} = UrcR, r a zero-div.(T) C UreR, r a zero-div.J (T

where J(r) a maximal element of S containing the ideal (r). Since J(r) also consists of zero-divisors, we
conclude that

{zero-divisors of R} = U,cR, s a sero-div.J ()
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Hence we only have to prove that the maximal elements of S are prime ideals.

Let I be a maximal element of S. Let x,y € R\I and suppose for contradiction that zy € I. Then we have
(@) + D) +1) I

By maximality of I, there are elements a € ()+ I and b € (y)+ I, which are not zero divisors. Hence ab € T
so that ab is a zero divisor, which is contradiction (note that the set of non zero divisors is a multiplicative

set). So we must have z € I or y € I, so I is prime.

Q7. Let R be a ring. Consider the inclusion relation on the set Spec(R). Show that there are minimal

elements in Spec(R).

Solution. Let 7 be a totally ordered subset of Spec(R) for the relation D. Note that the maximal elements
for the relation D are the minimal elements for the inclusion relation (which is C). Let [ := Npe7. Then I

is an ideal. We claim that I is prime.

To see this, let 2,y € R and suppose for contradiction that x,y € R\I and that xy € I. By assumption
there are prime ideals p,,p, € T such that x € p, and y ¢ p,. Suppose without restriction of generality
that p, O p, (recall that 7 is totally ordered). We have xy € p, and thus either = or y lies in p,. This
contradicts the fact that x,y & p,. The ideal I thus lies in Spec(R) and it is a lower bound for 7. We may
thus apply Zorn’s lemma to conclude that there are minimal elements in Spec(R).
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