Exercise sheet 2. Prerequisites: sections 1-8. Week 6

Q1. Consider the ideals p; := (z,¥), p2 := (x, 2) and m := (x,y, z) of K[x,y, z], where K is a field. Show
that p; N po N m? is a minimal primary decomposition of p; - po. Determine the isolated and the embedded

prime ideals of p; - po.
Solution. For future reference, note that we have

m? = ((2) + (y) + (2))* = (2%, 9%, 2%, 2y, 22, 2)

and
propz = ((2) + )((@) + (2)) = (2%, 22, yz,y2).

We have p; - pa C p1 Npo and that we also clearly have p; - po € m? since py, po € m. Thus we have p; -py C
p1 Np2 Nm? Note that p; and po are prime since the rings K[z, y, 2z]/p1 ~ K|[z] and K|z,y, z]/p2 ~ K|[y]
are domains. Note also that m is a maximal ideal, since K[z,y, 2]/m ~ K is a field. Thus p;, p2 and m? is
primary (see after Lemma 6.4 for the latter). The radicals of the ideals p;, p2 and m? are p1, p2 and m (see
again Lemma 6.4 for the latter). These three ideals are distinct. Finally, we have p; 2 p» N m? (because
22 ¢ p1 but 22 € poNm?), po 2 p; Nm? (because y? & po but > € p; Nm?) and m? 2 p; N ps (because
x & m? but € pa Npz2). Hence if p; - p2 = p1 N p2 N m? then this decomposition is indeed primary and
minimal. Thus we only have to show that p; - po O p; N py N m2. From the above, we have to show that

(z,y) N (z,2) N (2%, 9% 22, 2y, 22, y2) C (22,22, y2, y2)

Now note that we have P(z,y, z) € (z,y) iff P(0,0,z) = 0 (because a polynomial lies in (z,y) iff it has no
monomial containing only the variable z). Similarly, we have P(z,y, z) € (z, z) iff P(0,y,0) = 0. Thus we
have P(z,y,z) € (z,y) N (z, 2) iff P(0,y,0) = P(0,0,z) = 0.

Now an element Q(x,y,z) of (z2,2, 2%, vy, x2,y2) has the form
Q(z,y,2) = Py(x,y, 2)x® + Py(x,y, 2)y* + Ps(x,y, 2)2> + Py(z,y, 2)zy + Ps(x,y, 2)xz + Ps(x,y, 2)yz.
and Q(x,y, z) will thus lie in (z,y) N (x, 2) iff
Q(0,y,0) = Q(0,0, z) = P»(0,y,0) = P5(0,0,2) = 0.

In other words, the element Q(x,v, z) € (22,2, 2%, 2y, x2,y2) = m? will lie in (z,y) N (z, 2) iff Py (z,y,2) €
(x,2) and P3(z,y,z) € (z,y). Consequently, if Q(z,y, z) € p1 Np2 N m? then

Q(xvyvz) € (x2)+(x,z)(y2)+(:c,y)(22)+(xy)+(:vz)+(yz) = (x2,xy2,zy27xz2,yz{xy,:rz,yz) = ($2,:Ey,xz7yz) = P1-p2

as required.

The prime ideals associated with the decomposition are p; = t(p1), p2 = t(p2) and m = t(m?). The ideal m
contains p; and pe and there are no other inclusions between the prime ideals. So m is an embedded ideal

and p; and po are isolated ideals.
Q2. Let K be a field. Show that the ideal (22, xy,y?) C K|x,y] is a primary ideal, which is not irreducible.

Solution. We first show that (22, 2y, ) is primary. This simply follows from the fact that (x, %) is maximal
ideal and from the fact that (22, 2y, y?) = (7,y)? (see after Lemma 6.4).

Now note that (22, zy,y?) = (22, y) N (x,y?). Indeed, we clearly have (22, zy,y?) C (2%,y) N (x,7%). On
the other hand, if P(x,y) € (2%,y) then P(z,y) has the form P;(z,y)z? + Py(x,y)y. Since Pi(x,y)x? is
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already in (22, zy,y?), we thus only have to show that a polynomial of the form Py(z,y)y, which lies in
(x,9?), necessarily lies in (2%, xy,y?). A polynomial in (x,y?) is of the form Qi (z,y)y* + Qa(x,y)z. Now if
we have Py (z,y)y = Q1(z,y)y? + Q2(z, y)x then Q2 (x,y) is divisible by ¥ and hence Q2 (x,y)x = Q4 (x,y)zy
for some polynomial Q% (z,y) so that Py(z,y)y € (v?, 2y) C (22, 2y,y?), as required.

Q3. Let R be a noetherian ring and let T" be a finitely generated R-algebra. Let G be a finite subgroup of
the group of automorphisms of 7" as a R-algebra. Let T be the fixed point set of G (ie the subset of T,
which is fixed by all the elements of G).

- Show that T is integral over T¢.
- Show that T is a subring of T', which contains the image of R and that T is finitely generated over R.

Solution. It is clear from the definitions that T'“ is a subring which contains the image of R. Let t € T.
Then ¢ satisfies the polynomial equation

[T¢-9@)=0

geG
The polynomial M;(z) := [[,cq(z — g(t)) has coefficients in T, because the coefficients are symmetric
functions in the g(t), which are invariant under G. Hence t is integral over T¢. Since t was arbitrary, T
is integral over T¢. Since T is also finitely generated as a T%-algebra (because it is finitely generated as a
R-algebra), we thus see that T is finite over T¢ (see after Lemma 6.6). Hence T¢ is finitely generated over
R by the Theorem of Artin-Tate.

Q4. Show that Z is integrally closed and that the integral closure of Z in Q(z) is Z[i].

Solution. We first prove that Z is integrally closed. Let p/q € Q, where p and ¢ are coprime integers, and
let P(z) = 2" 4+ ap_12" "t + .-+ + ag € Z[z] be a monic polynomial. Suppose that P(p/q) = 0. Then we
have

q"P(p/q) = p" + an—1p" " 'q+ an—2p" ?¢* + -+ + agg” = 0.

Since ap_1p" g+ an_op™ 2¢%>+- - +apq” is divisible by ¢ and p™ is coprime to ¢, this implies that ¢ = +1,
so p/q € 7.

To prove that the integral closure of Z in Q(7) is Z[i], note first that Z[i] is part of the integral closure of
Z in Q(i). Indeed we have (a + ib)? — 2a(a + ib) + a® + b2 = 0 for any a,b € Z. So we only have to prove
that Z[i] is integrally closed in Q(i) (see Lemma 8.6). Note furthermore that Q(7) is the fraction field of
Z[i]). To see this, write let r + it € Q(i), where r,t € Q (any element of Q(7) can be written in this form
because Q(i) ~ Q[z]/(z% +1)). Let r = p/q and t = u/v. We then have r + it = (vp + uqi)/(vq), which is a
fraction of elements of Z[i], proving our claim. Finally, recall that we know from Rings and Modules that
Z[i] is a Euclidean domain, where the Euclidean function is given by the norm (the norm of ¢ +id is ¢? + d?
if ¢+ id € Z[i]). In particular, Z[i] is a PID and every ideal in Z[i] is generated by an element of smallest

norm.

To prove that Z[i] is integrally closed in Q(¢), we may now proceed as for Z. Let
P(z) = 2" + ap_12" ' 4+ -+ ag € Z[i](x)

and let r + it = B/A, where A, B € Z[i]. Since Z[i] is a PID, it is factorial and we may thus assume that
(A, B) = Z[i]. We can now write as before

A"P(B/A) = B" 4 a,_ 1B" "A+a, oB"?A% 4+ .- 4 qpA" = 0.
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Since ap_1B" YA+ a,_2B"2A% + ... 4 qoA™ is divisible by A and B™ is coprime to A, this implies that
A is a unit, so B/A € Z[i].

Note that the proof above actually shows that any UFD (Unique Factorisation Domain) is integrally closed.

Q5. Let S be a ring and let R C S be a subring of S. Suppose that R is integrally closed in S. Let P(x) €
R[z] and suppose that P(x) = Q(x)J(x), where Q(z), J(x) € S[z] and Q(x) and J(x) are monic. Show
that Q(x), J(z) € R[z]. Use this to give a new proof of the fact that if T'(x) € Z[z] and T'(x) = T (x)T2(x),
where T (z), Tz (x) € Q[z] are monic polynomials, then 7 (z), Tz (x) € Z[z].

Solution. We first prove the

Lemma. Let A be a ring and let U(z) € Alx] be a non zero monic polynomial. Then there exists a ring B
containing A, which is integral over A and such that

deg(U)

U(z) = H (x —b;)

i=1
for some b; € B, where we set [[25") (2 — b;) = 1 if deg(U) = 0.

Proof of the lemma. By induction on the degree d = deg(U) of U(x). If d = 0,1, there is nothing to
prove. So suppose that d > 1 and that the result holds for any smaller value of d. The ring C := A[y]/(P(y))
is integral over A by Proposition 8.2. The element y of C satisfies the equation P(y) = 0 by construction.
By Euclidean division (see Preamble), we thus have P(z) = (z — y)Z(z) for some Z(z) € C[z]. Since Z(z)
has degree < d, we may apply the inductive hypothesis and we obtain a ring B, which contains C' and where

Z(x) splits. The polynomial P(z) also splits in B, so we are done. [J

We now apply the lemma to Q(z) and J(x) successively and we obtain a ring B, which contains S, such
that B is integral over S and such that

and
deg(J)

J(z) = H (z —¢;)

i=1
where b;,¢; € B. Now we have P(b;) = P(c;) = 0 by construction, so the b; and ¢; are actually integral
over R. Since the integral closure of R in B is a subring, we conclude that the coefficients of Q(x) and J(z)
are integral over R (and in S, by assumption). But since R is integrally closed in S, this means that these

coefficients lie in R.
Note that we did not actually use the fact that B was integral over .S in the proof.

Q6. Let R be a subring of a ring T" and suppose that T is integral over R. Let p be prime ideal of R and
let q be a prime ideal of T. Suppose that gN R = p. Let p; C py C --- C pi be primes ideal of R and
suppose that p; = p. Show that there are prime ideals q; C q2 C -+ - C qg of T such that q; N R = p; for all
ie{l,...,k}.

Solution. By induction on k, we only need to treat the case k = 2. Consider the extension of rings
R/p C T/q. This is also an integral extension. Furthermore, there is a unique prime ideal p} in R/p, which
corresponds to py via the quotient map. By Theorem 8.8, there is a prime ideal g5 in T'/q, which is such that
g5 N R/p = p). The prime ideal gy corresponding to qf via the quotient map has the required properties.
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Q7. Let R be a ring. Let S be the set of ideals in R, which are not finitely generated.

(i) Let I be maximal element of S (with respect to the relation of inclusion). Show that I is prime.
(ii) Suppose that all the prime ideals of R are finitely generated. Prove that R is noetherian.

[Hint: exploit the fact that R/I is noetherian.

Solution.

(i): Let z,y ¢ I and suppose for contradiction that x,y € I. Let I, := () + I and I, = (y) + I. Write
J =1, - I,. By assumption I,,I, and hence J are finitely generated, and we have J C I. Consider the
image I (mod J) of I in the R/I,-module I, /J. Note that I,/J is finitely generated as a R/I,-module since
I, is finitely generated as a R-module. Note also that the ring R/I, is noetherian, since every ideal of R/I,
is the image of either the zero ideal or of an ideal of R strictly containing I. Hence I (mod J) is also finitely
generated as a R/I,-module by Lemma 7.4. Let m1,...,my be preimages in I of a finite set of generators
of I (mod J) as a R/I,-module and let yi,...,y; be generators of J. Then mq,...,mg,y1,...,y; is a finite
set of generators of I, which is a contradiction.

(ii): If T is a totally ordered subset of S then the ideal J := UgesH also lies in S (because if J were
finitely generated then a finite set of generators of J would lie in one of the ideals in T, and thus generate
it, which is a contradiction). The ideal J is an upper bound for 7 and thus we may apply Zorn’s lemma
to conclude that there are maximal elements in S, if S is not empty. By definition, S is empty iff R is
noetherian. Hence, by (i), if R is not noetherian, there is a prime ideal, which is not finitely generated. The

contraposition of this implication gives (i).
Q8. (optional). Let R be a ring. Let S be the set of non-principal ideals in R. Let I be a maximal element
of S. Prove that I is a prime ideal.

Solution.

Let z,y ¢ I and suppose for contradiction that zy € I. Let I, := (x)+ I. By assumption, we have I, = (gz)
for some g, € R. Let ¢ : R — I, be the surjection of R-modules given by the formula ¢(r) = rg,. We then
have I C ¢~ 1(1).

Suppose first that I = ¢~1(I). In other words, for all r € R, we have rg, € I iff r € I. This contradicts the
fact that yg, € I. So we conclude that I C ¢~1(I). From the definition of I, we then see that ¢~1(I) is a
principal ideal of R, and hence so is I = ¢(¢~1(I)). This is a contradiction, so we cannot have zy € I if

x,y ¢ I. In other words, I is prime.
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