
Exercise sheet 3. Prerequisites: sections 1-10. Week 8

Q1. Let R be a subring of a ring T . Suppose that T is integral over R. Let p be a prime ideal of R and

let q1, q2 be prime ideals of T such that q1 \R = q2 \R = p and q1 6= q2. Show that we have q1 6✓ q2 and

q2 6✓ q1.

Solution. By symmetry, we only have to show that q1 6✓ q2. Suppose for contradiction that q1 ✓ q2. The

ring R/p is can be viewed as a subring of T/q1 and by assumption we have q2 (mod q1)\R/p = (0). We may

thus assume wrog that R and T to be domains and that q1 and p are zero ideals. Now let e 2 q2\{0} and

let P (x) 2 R[x] be a non zero monic polynomial such that P (e) = 0. Since T is a domain, we may assume

that the constant coe�cient of P (x) is non zero (otherwise replace P (x) by P (x)/xk for a suitable k � 1).

But then P (0) is a linear combination of positive powers of e (since P (e) = 0), so P (0) 2 R\ q2 = (0). This

is a contradiction, since P (0) 6= 0.

Q2. Let R be a ring. Show that the two following conditions are equivalent:

(i) R is a Jacobson ring.

(ii) If p 2 Spec(R) and R/p contains an element b such that (R/p)[b�1] is a field, then R/p is a field.

Here we write (R/p)[b�1] for the localisation of R/p at the multiplicative subset 1, b, b2, . . . .

Solution.

(i) ) (ii) : If R is a Jacobson, then so is R/p for any p 2 Spec(R). Hence (ii) follows from Lemma 10.2.

(ii) ) (i) : Note first that R is a Jacobson ring i↵ any prime ideal of R is the intersection of the maximal

ideals containing it (this is straightforward). Now suppose that R is not Jacobson. Then there is a prime

ideal p of R and an element e 62 p such that e is in the Jacobson radical of p. In other words, e (mod p) 6= 0

and e (mod p) lies in the Jacobson radical of R/p. Now let q be an ideal maximal among the prime ideals

of R/p, which do not contain e (mod p). The ideal q is prime, because it corresponds to a maximal ideal

of (R/p)[(e (mod p))�1] by Lemma 5.6, and it is not maximal, since e (mod p) lies in the intersection of all

the maximal ideals of R/p. The ring (R/p)/q has by construction the property that any of its non zero

prime ideals contains (e (mod p)) (mod q). In particular, the ring ((R/p)/q)[((e (mod p)) (mod q))�1] is a

field, because it is a domain and its only prime ideal is the zero ideal. On other hand, ((R/p)/q) is a not

field, since q is not maximal. Now if we let q : R ! R/p be the quotient map, we have ((R/p)/q) ' R/q
�1(q)

and thus this contradicts (ii). We have thus proven the contraposition of the implication (ii) ) (i).

Q3. Let k be field and let R be a finitely generated algebra over k. Show that the two following conditions

are equivalent:

(i) Spec(R) is finite.

(ii) R is finite over k.

Solution. (i) ) (ii) : Suppose that Spec(R) is finite. By Noether’s normalisation lemma, there is an

injection k[x1, . . . , xd] ! R, which makes R into a finite k[x1, . . . , xd]-algebra. Since the corresponding map

of spectra Spec(R) ! Spec(k[x1, . . . , xd]) is surjective by Theorem 8.8, this implies that Spec(k[x1, . . . , xd]) is

finite. In particular, k[x1, . . . , xd] has only finitely many maximal ideals, say m1, . . . ,mt. Since k[x1, . . . , xd]

is a Jacobson ring by Theorem 10.5, we have \imi = r((0)) = 0 and so we may deduce from the Chinese

remainder theorem that k[x1, . . . , xd] ' �iR/mi. Since k[x1, . . . , xd] is a domain, this implies that t = 1.

In particular, k[x1, . . . , xd] is field, which is only possible if d = 0 (otherwise, x1 is a non unit). Hence R is

63



finite over k.

(ii) ) (i) : This follows from Proposition 8.12.

Q4. Let k be an algebraically closed field. Let P1, . . . , Pd 2 k[x1, . . . , xd]. Suppose that the set

{(y1, . . . , yd) 2 k
d |Pi(y1, . . . , yd) = 08i 2 {1, . . . , d}}

is finite. Show that

Spec(k[x1, . . . , xd]/(P1, . . . , Pd))

is finite.

Solution. From Corollary 9.5 and Corollary 9.3, we deduce that r(((P1, . . . , Pd)) is the intersection of

finitely many maximal ideals of k[x1, . . . , xd], say m1, . . .mt. From the Chinese remainder theorem, we

deduce that

k[x1, . . . , xd]/r((P1, . . . , Pd)) '
Y

i

k[x1, . . . , xd]/mi '
Y

i

k,

In particular, Spec(k[x1, . . . , xd]/r((P1, . . . , Pd))) is finite. Now we have

Spec(k[x1, . . . , xd]/r((P1, . . . , Pd))) ' Spec(k[x1, . . . , xd]/(P1, . . . , Pd))

(see the remark after Lemma 4.4) so the conclusion follows.

Q5. Let R be a ring and let R0 be the prime ring of R (see the preamble of the notes for the definition).

Suppose that R is a finitely generated R0-algebra. Suppose also that R is a field. Prove that R is a finite

field.

Solution. Since R0 is contained in a field, it is a domain and so R0 is either a finite field or it is isomorphic

to Z. Suppose first that R0 is a finite field. Then R is a finite field extension of a finite field by the weak

Nullstellensatz and hence R is a finite field. Now suppose that R ' Z. Then R contains the fraction field

Q of Z and R is a finitely generated Q-algebra, which is a field. By the weak Nullstellensatz again, we

conclude that R is a finite field extension of Q. From Corollary 10.3, we deduce that Z ' Q (note that Z is

a Jacobson ring), which is a contradiction. So R0 must be finite field and so R is a finite field.

Q6. Let k be a field and let m be a maximal ideal of k[x1, . . . , xd]. Show that there are polynomials

P1(x1), P2(x1, x2), P3(x1, x2, x3), . . . , Pd(x1, . . . , xd) such that m = (P1, . . . , Pd).

Solution. By induction on d � 1. If d = 1 then this follows from the fact that k[x1] is a PID. We suppose

that the statement holds for d � 1. Let K = k[x1, . . . , xd]/m. By the weak Nullstellensatz, this is a finite

field extension of k. Let � : k[x1, . . . , xd] ! K be the natural surjective homomorphism of k-algebras. Let

L = �(k[x1, . . . , xd�1]). This is a domain and by Lemma 8.9, L is a field, since it contains k and is contained

inside an integral extension of k. Let  : k[x1, . . . , xd�1] ! L be the surjective homomorphism of k-algebras

arising by restricting �. The map  induces a surjective homomorphism of k-algebras

 : k[x1, . . . , xd] ' (k[x1, . . . , xd�1])[xd] ! L[xd]

and there is a surjective homomorphism of L-algebras

⇤ : L[xd] ! K,

which sends xd to �(xd). By construction, we have � = ⇤ �  . In particular, we have m :=  �1(⇤�1(0)).

Since L[xd] is a PID and �(xd) is algebraic over k, we have ⇤�1(0) = (P (xd)) for some non zero polynomial

P (xd) 2 L[xd]. Now let Pd(x1, . . . , xd) 2 (k[x1, . . . , xd�1])[xd] be a preimage by  of P (xd).
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We claim that m = (ker( ), Pd). To see this, note that  ((ker( ), Pd)) = (P (xd)) and so we have

(ker( ), Pd) ✓ m. On the other hand, if e 2 m then  (e) 2 (P (xd)) and thus there is an element e0 2 (Pd)

such that  (e) =  (e0) (since  is surjective). In particular, we have e�e
0 2 ker( ), so that e 2 (ker( ), Pd).

Now by the inductive assumption, ker( ) is generated by polynomials

P1(x1), P2(x1, x2), P3(x1, x2, x3), . . . , Pd�1(x1, . . . , xd�1)

and so m is generated by P1(x1), P2(x1, x2), P3(x1, x2, x3), . . . , Pd(x1, . . . , xd).

Q7. Let R be a domain. Show R[x] is integrally closed if R is integrally closed.

Here are some hints for this exercise. Let K be the fraction field of R.

(i) Show first that it su�ces to show that R[x] is integrally closed in K[x] (ie that the integral closure of

R[x] in K[x] is R[x]).

(ii) Consider Q(x) 2 K[x] and suppose that Q(x) is integral over R[x]. Show that Q(x) + x
t satisfies an

integral equation with coe�cients in R[x], whose constant coe�cient is a monic polynomial, if t is su�ciently

large.

(iii) Conclude.

Solution.

Suppose that R is integrally closed in its fraction field K. The fraction field of R[x] is K(x) = Frac(K[x]).

Let Q(x) 2 K(x) and suppose that Q(x) is integral over R[x]. Then Q(x) is in particular integral over K[x]

and we saw that in the solution of Q4 that K[x] is integrally closed, since it is a PID. So we deduce that

Q(x) 2 K[x].

Now let

Q
n + Pn�1Q

n�1 + · · ·+ P0 = 0

be a non trivial integral equation for Q over R[x] (so that Pi 2 R[x] and n � 1). Let t be a natural number,

which is strictly larger than the degrees of all the Pi and of Q. Let T = Q� x
t. The polynomial T is monic

by construction and we have

(T + x
t)n + Pn�1(T + x

t)n�1 + · · ·+ P0 = 0

so that T satisfies an integral equation of the type

T
n +Hn�1T

n�1 + · · ·+H0 = 0

where

H0 = P0 + x
t
P1 + x

2t
P2 + · · ·+ x

tn
.

Now note that H0 is a monic polynomial, because tn > ti+ deg(Pi) for all i 2 {0, . . . , n� 1}. Finally, note
that in view of the penultimate equation, we have

T (Tn�1 +Hn�1T
n�2 + · · ·+H1) = �H0

and by Q5 of sheet 2, we have T 2 R[x] (because H0 2 R[x] and H0 and T are monic). Since x
t 2 R[x] we

see that we also have Q 2 R[x], which is what was to be proven.
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