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C4.4: Hyperbolic Equations

Lecturer: Professor Gui-Qiang G. Chen
Tutor: Dr. Immanuel Ben Porat

TA: Isaac Newell

Course Weight: 1.00 unit(s)

Level: M-level

Method of assessment: Written examination
Course Term: Hilary Term 2024
Time & Place:
Lectures: 4:00pm Tuesdays & Wednesdays (Ls)

Tutorial Sessions: To be announced



background in Multivariate Calculus and Lebesgue Integration
is expected (e.g. as covered in the Oxford Prelims & Part A Integration).
It would be useful to know some basic Functional Analysis and
Distribution Theory; however, this is not strictly necessary as the
presentation will be self-contained.

Course Overview:

We introduce analytical and geometric approaches to hyperbolic
equations, by discussing model problems from transport equations,
wave equations, and conservation laws. These approaches have been
applied/extended extensively in recent research and lie at the heart
of the Theory of Hyperbolic PDEs.

Learning Outcomes

You will learn the rigorous treatment of hyperbolic equations through
analytical and geometric approaches
as an introduction to the Theory of Hyperbolic PDEs.

You will see some model problems/methods for hyperbolic equations.




. Transport equations and nonlinear first order equations:
Method of characteristics, formation of singularities

. Introduction to nonlinear hyperbolic conservation laws:
Discontinuous solutions, Rankine-Hugoniot relation, Lax
entropy condition, shock waves, rarefaction waves, Riemann
problem, entropy solutions, Lax-Oleinik formula, uniqueness.

. Linear wave equations: The solution of Cauchy problem, energy
estimates, finite speed of propagation, domain of determination,
light cone and null frames, hyperbolic rotation and Lorentz
vector fields, Sobolev inequalities, Klainerman inequality.

4. Nonlinear wave equations: local well-posedness, weak solutions

If time permits, we might also discuss parabolic approximation
(viscosity method), compactness methods, Littlewood-Paley
theory, and harmonic analysis techniques for hyperbolic
equations/systems (off syllabus - not required for exam)



We refer to [1], [2, Chapters 2,3,5,7,11,12], and [3] for detailed
exposition.

1. Alinhac, S.: Hyperbolic Partial Differential Equations,
Springer-Verlag: New York, 2009.

2. Evans, L.: Partial Differential Equations. Second edition.
Graduate Studies in Mathematics, 19.
American Mathematical Society, 2010.

3. John, F.: Partial Differential Equations. Fourth edition.
Applied Mathematical Sciences, 1.
Springer-Verlag: New York, 1982

Please note that e-book versions of many books in the reading lists
can be found on and


http://solo.bodleian.ox.ac.uk/primo-explore/search?vid=SOLO
https://oxford.rl.talis.com/index.html

Analysis of Differential Equations can date back
as early as the period when Calculus was
invented.
1671: Newton called Fluxional Equations
1676: Leibniz introduced the term

Differential Equations

(Aequatio Differentialis, in Latin)
It is fair to say that every subject that uses
Calculus involves differential equations.
Many subjects revolve entirely around their
underlying PDEs: Euler equations, Navier-Stokes
equations, Maxwell’s equations, Boltzmann equation,
Schrodinger equation, Einstein equation,...



Conservation Laws: -

Rate of change of the total amount of certain .|
quantity contained in a fixed region O o\ ;
= Flux of this quantity across . o i

the boundary ¢Q of the region

» The amount of such a quantity in any region can be measured
by accounting for how much of it is currently present and how
much of it enters or leaves the region in any fixed period of time.

Examples: Three Fundamental Laws of Nature

- Conservation Laws of Mass and Energy: Mass and Energy can be
neither created nor destroyed.

- Conservation Law of Momentum: The total momentum of a
closed system of objects remains constant through time.
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Euler Equations for Compressible Fluids
(Ot p+ V- (pv) =0 (conservation of mass)
< Oe(pv) + Vi (pv@v) + Vyp =0 (conservation of momentum)
, 1 ,
Oe(=plv|® + pe) + V- ((zpv|® + pe + p)v) = 0 (conservation of energy)

\

-— L

Constitutive Relations: p — p(p.e)
@ p — density, v = (vq,Va,v3)" — fluid velocity
@ p — pressure, e — internal energy

*Govern the Flows when Convective Motions

Dominate Diffusion/Dispersion, ...
e.g., shockwaves in Gases, Elastic Fluids, Shallow Water,

Poisson, Challis, Stokes, Kelvin, Rayleigh, Airy, Earnshaw,
Riemann, Rankine, Christoffel, Mach, Clausius, Kirchhoff,
Gibbs, Hugoniot, Duhem, Hadamard, Jouguet, Zamplen,
Weber, Taylor, Becker, Bethe, Weyl, von Neumann,
Courant, Friedriches,......




v —1 1 92
0y D + 1|V O|? + _1 = 5= Poc +_i? "= (Bernoulli's law)

{ dip+ Vi - (pVx 'iI?') = (Conservation of mass)

for 7 > 1 or, equivalently, Nonlinear Wave Equations:
fi)tf_'?(l'jt[I}. V};{I]'. B};_) + V}; . (J{_'.'-'(fjt(I}* VK{I}. B:x,.)V}{{I)) — “

with
1
p(040, Vi@, Bo) = (Boo — (v — 1) (0@ + 3|V ®@|?)) 7T

o Aerodynamics/Gas Dynamics: Fundamental PDE

@ The potential flow equations and the full Euler equations
coincide or are close each other in many important physical
situations

J. Hadamard: Lecons sur la Propagation des Ondes,

Hermann: Paris 1903



I, — Stress-energy tensor (Energy-momentum tensor)
Gy, — Einstein tensor (Function of the metric)

These equations, with the geodesic equation,
form the core of the mathematical formulation

of General Relativity
Structure of the Einstein Equations

—— Conservation Laws of
Energy and Momentum:

V,T® —=T2, —0



CALCULUS OF VARIATIONS

A Field of Mathematics that deals with extremizing functionals, as
opposed to ordinary calculus which deals with functions:

I[w] —/E;L(wa(x).w(x).x)dx

* Energy or Action Functionals in Physics/Engineering/industry....
* Distance/Metric Functional in Optics (light),
Geometry (geodesics, minimal surfaces, ...), ....
* Cost Functionals in Optimization (controls, games, image processing, design,
finance, transportation, ...), ...

POINT: Seek a Minimizer or Critical Point U of |[:]:

I’[u]=0

Great Progress has been made in the recent four decades...



Conservation Laws
and Calculus of Variations

] Systems of Euler-Lagrange Equations

] Noether’s Theorem:

Any Differentiable Symmetry of
the Action of a Physical System Has
a Corresponding Conservation Law.

Any Invariance of the Variational
Integral I[w] leads to a corresponding
Conservation Law for the critical
point of I[-]




Scalar Conservation Laws -
Ohu+V - -f(luy=0, veR, xeR"
f: R — R" (1)

Nonlinear Wave Equations

O:A(u,uy, Vu) + V- B(u,u,, Vu) =0

In this course, we first focus on
Scalar Conservation Laws
Semilinear Wave Equations

Transport Equations:

f(u) = (b1, bz, e bn)u
with constant vector field (b, bz, ..., bn)
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I. Transport Equations
& Method of Characteristics
for Nonlinear First-Order Equations
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for Nonlinear First Order Equations

We develop the method of characteristics to solve the nonlinear

first order PDE
F(x,u,Du) =0 in U, u=g onl, (2)

wher_e UCR"isanopenset, xc U, [ CoU, g:T — R and
F:UxRxR" — R are given smooth functions. Writing

F = F(X,Z,p) — F(Xl,_"' v Xns £y P10 ,ﬁpn)a
we use the notation

DiF = (Fx.--- . Fx,), D.F=F;, DoF =(Fp.---.Fp).
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The basic idea of the method is as follows:

m Given x € U, find a curve within U connecting x with a point
xp €I,

m Determine v along this curve.

m [ his usually requires the knowledge of Du along this curve.

B Let x(s) be such a curve and set

z(s) = u(x(s)) and p(s) = Du(x(s)).

Then x(s),z(s), p(s) are determined by solving systems of
ODEs.

So, the key point is to derive the ODEs governing x(s), z(s), p(s).
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To derive these equations, first

n n

dz dx; dpi dx;
TS )T T =S e () S

In order to eliminate the second derivative Ux;x;, We differentiating
the PDE in (2) with respect to x; to get

n
ij—l_FzUX;—i_Zijuxr)g :0.
=1
Restricting this equation to the curve x(s), we obtain

FXJ.(X?Z,D) + FZ(X?Z? D)Pj T Z F E(X? Z, p)”xpg(x(s)) = 0.
=1
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Thus, if we set

dx;
ds — FPf(X?Zv p)?
then
% — _FX,-(X}Z? p) F. (X Z?p Pi s

We therefore obtain the system of ODEs

@ :DDF(X:Z:p):

% =P DpF(X:‘th)?
d_g — _DXF(X:Z: p) - DZF(X7Z7 p)p

which is called the characteristic ODEs for (2)

Zp;

(x.z.p).
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m We still need to determine appropriate initial conditions for
the characteristic ODEs (3) using u=gon I.

m We use local parametrizations of . Let [ be locally
parametrized by

Xf:Xf(Hlﬁ"'ﬁgn—l)ﬁ "::17"'?”

with parameters 61, - ,0,_1. We will write x = x(0) for
short.

m Let x := x(6°) be a point on . For the ODEs in (3) it is
natural to set x(0) = xY and z(0) = 2% := g(x%). We need to
determine p(0) = p® := (p}, -+, p?).

m By the PDE in (2) we have F(x°, 2% p°) = 0.



m Using u=gon T, we have u(x(0)) = g(0) = g(x(0)).
Differentiating with respect to 6; gives

! ox; . _
> u ()55 =B (6). j=1- -1
i=1

By setting § = 6° we obtain n equations on p°:

OX;
E: 09X 40y — &, (69), j=1,---,n—1
Pi =+ 89 gﬁj(ﬁ )& J : ,» N ’ (4)

F(xo,z .p ):0.

In many situations, p® can be obtained by solving (4).
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Consider the problem
uuy + uy, = 2, u(x, x) = x.

Here F = F(x.y.,z, p1,p2) = zp1 + p2 — 2. Since F, = F, =0,
F, = p1, Fp, = z, and F,, = 1, it follows from the characteristic
ODEs (3) that

ax dy dz

e il— . — 1-. _— = .
ds ‘3 ds " ds P1Z + P2

Recall that z = u(x, y), p1 = ux(x,y) and po = u,(x,y), we have

dz
— = 2.
ds
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To include the boundary condition u(x, x) = x, we fix any 7, let
(x(s), y(s)) be the characteristic curve with

(x(0), ¥(0)) = (7. 7).
Then z(0) = 7 and thus

? =z, x(0)=r71
=1 y0)=r
-

=2 z0)=r.

Solving these equations give

y(s)=s+T, z(s) =25+, x(s)=s*+Ts+T.
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Now for any (x, y) we determine s and 7 such that (x,y) =

(x(s),y(s))- It yields

y — X X —y°
s = and T = .
1—vy 1—vy
Therefore
2y — y? — x
u(x.y) = U(x(s)y(6)) = 7(s) = 25+ 7 = LEE
This solution makes sense only if y # 1. H

When the PDE in (2) has special structures, the characteristic
ODEs can be significantly simplified.
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m Consider the first order linear PDE

b(x) - Du(x) + c(x)u(x) = 0.

Here F(x,z,p) = b(x)-p+ c(x)z. Since D, F = b(x), we
have

dx dz

ds = b(x), Js = b(x) - p(s).

Since p(s) = Du(x(s)) = —c(x(s))u(x(s)) = —c(x(s))z(s),

we obtain the simplified characteristic ODEs

dx dz
&~ PN g =

—c(x)z.

The equations on p are not needed.
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m Consider the scalar Hamilton-Jacobi equation
ur + f(uy) =0,

where f € C1(R). Here F = F(t.x,z.q.p) = q + f(p) with

p = uy and g = u;. Consequently

Fo=1 F,=f(p). Fi=F=F,=0.

Therefore, it follows from the characteristic ODEs (3) that

dt dx dz

. : . (p). ° q + pf'(p),
dq dp

— =0 — = 0.

ds ” ds



Thus we may take s = t. Since g = uy = —f(ux) = —f(p),
we obtain the simplified characteristic ODEs

? — f"(p)?

82 = pf'(p) — f(p).
dr _

dt :

These equations imply that

e p are constants along characteristics by the last equation .

e Characteristics are straight lines with velocity f’(p) by the first
equation.

e By the second equation, u can be obtained along characteristic
lines.

We will use these facts to discuss Hamilton-Jacobi equation
later. H




! gcalar Conservation %

m Consider the initial value problem of the scalar conservation
law

us + f(u)x =0, (x,t) € R x (0, 00),
u(x,0) = up(x), x € R, ()

where f is a C! function. The equation can be write as
ug + f'(v)uy = 0. Here F = F(t,x,u,q,p) = q+ f'(u)p with

g = ur and p = uy. Since

Ft:szor Fq:]_? Fp—f’(U)? QU+p:0q
from the characteristic ODEs (3) we have

dt_l ax du
ds 7

RE— / R / —
. f'(u), q+ pf'(u) = 0.



P

We can take s = t. Thus for (5) the characteristic ODEs
become

dx /

= f'(u).

o/
From these equation we can conclude

e U are constants along characteristics.
e Characteristics are straight lines with velocity f'(u).

We will use these facts to show the following result.

The problem (5) cannot have a C! solution defined for all t > 0 if
there exist x1 < xp such that f'(up(x2)) < f'(uo(x1)).
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Proof.

m Assume (5) has a C! solution defined for all t > 0.

m [ hen u are constants along characteristics and characteristics
are straight lines. For characteristic line crossing x-axis at x,
its velocity is f'(up(x)).

m Let /1, b be the two characteristics lines starting from (x1.0)
and x,0). Their velocities are f'(up(x1)) and f/(up(x2))
respectively.

=y

FIgU €. The plots of /; and l» whose slopes are my = 1/f"(ug(x1)) and my = 1/f'(ug(x2)) respectively,



m Since f'(ug(x2)) < f'(up(x1)), these two lines must cross at
some point P in t > 0.

m Along f; we have u(xj, t) = up(x;), i = 1,2. Thus u must be
discontinuous at P. Contradiction! H

Conclusion:
m In general C! solutions of (5) can exits for only a finite time

no matter how smooth g is.

m In order to allow (5) to admit solutions defined for all t > 0,
the notion of solution should be generalized to include
solutions with “discontinuities” .
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II. Introduction to
Nonlinear Hyperbolic
Conservation Laws



1. Weak Solutions & Rankine-Hugoniot Condition

Consider again the initial value problem (5), i.e.
ur + f(u)x =0, u(x,0) = ug(x). (7)
To motivate the notion of weak solution, assume v is a C! solution

of (7). Multiplying (7) by any test function ¢ € C§(R x [0, 00)),
integrating over R x (0, 00), and using integration by parts, it gives

O/Om/i(urJrf(u)x)godxdt
- /O N / Z(u¢t+f(u)gﬂx)dxdt+ / z uo(x)0(x. 0)dx.



~ Since the last equation makes sense provided that v and ug are
merely bounded and measurable, it leads to the following definition.

Let up € L*(R). A function u € L*°(R x (0,00)) is called a weak
solution of (7) if

/ / (upr + f(u)px)dxdt +/ up(x)p(x,0)dx =0

for all ¢ € C5°(R x [0, 00)).

Remarks.

(i) If ue CHR x [0,00)) is a classical solution of (7), then u is
automatically a weak solution.
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(i) If uis a weak solution of (7) and if v is C! in a domain
Q C R x (0,00), then ut + f(u)x = 0 in . In fact, for any
p € C3(Q) we have by integration by parts that

0= /ODO /Z(ugor + f(u)py)dxdt = /OOO /Z(ur + f(u)x)pdxdt.

Since ¢ is arbitrary, it follows u; + f(u)x = 0 in 2.
(iii) If up € C(R) and u € C}(R x [0.0)) is a weak solution of

(7), then u is a classical solution. In fact, us + f(u)x = 0 in
R x (0,00) by (ii). Thus, by the definition of weak solution
and integration by parts, we have

0= /OO (u(x.0) — up(x))p(x.0)dx, Ve e C3(R x [0,00)).
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Therefore u(x,0) = up(x) for x € R. B

The notion of weak solution places restrictions on the curve of
discontinuity.

m Let [ be a smooth curve across which v has a jump
discontinuity, and u is smooth away from I.

mlLet PcTl and let D be a small ball in t > 0 centered at P.
Assume that the part of [ in D is given by x = x(t),

a<t<hb.
m [ splits D into two parts: the left part D; and the right part
D>. Let
u = lim u(x(t) — <, t), uy = lim u(x(t) + ¢, t).

e\,0 =\O



,‘

_ »

m For any ¢ € C}(D), we have

0= /D/(ugot—|—f(u)gox)dxdt = (4[4—/{;{[) (upe+f(u)py)dxdt.
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Since v is C! in Dy and D,, we have u; + f(u)x = 0 in Dy
and D>. Therefore it follows from the divergence theorem that

//(ucpr + f(u)px)dxdt = //((Ucp)t + (F(u))y)dxdt

:/d o(—udx + f(u)dt)
:/FQQ(—U!dX—F f(up)dt).

Similarly,

g(uw + f(u)px)dxdt = —/rtp(—urdx—l— F(uy)dt).
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T herefore

0 — /r o(—[uldx + [F(u)]dt).

| = f(u;) — f(u,) denote the

where [u] = v — u, and [f ( )
—X denote the speed of the curve of

jumps across [. Let s :=
discontinuities. Then

b
0= [ o(slul + [F(u)])e
By the arbitrariness of ¢, we can conclude that

slu] = [f(u)] (8)

at each point on [, which is called the Rankine-Hugoniot
condition.



e
Pomsiiont

Proposition 4

If u is a weak solution of (7), then on the curves of discontinuity
there must hold the Rankine-Hugoniot condition (8).

We give an example to indicate how to produce weak solutions by
the method of characteristics and the Rankine-Hugoniot condition .

Consider the initial value problem of Burgers equation

(

1, x < 0,
ur + (?/2), =0, u(x.0)=ug(x) = 1—x, 0<x<1,
0. x> 1.

\



P

m e first use the method of characteristics to find the solution
defined for a finite time.

m We know that all characteristics are straight lines and v are
constants along characteristics lines.

m Since the flux is f(u) = u?/2, the characteristic line crossing
x-axis at xg is given by

x(t) = xo + tup(xp). xo € R.

and on this line
u = up(xo).

Since all characteristics starting at (xp,0) with 0 < xp <1
cross at (1,1), u(x, t) can not be smooth for t > 1.
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m By the knowledge of characteristics, u(x,t) for t < 1 can be
determined as follows:

o u(x,t)=1forx <tandu(x,t)=0forx > 1
o For (x,t) satisfying 0 < t < x < 1, the characteristic through
it intersects x-axis at (xp,0) with xo = (x — t)/(1 —t). So
x—t 1-—x

) = —1-x=1- - |
u(x,t) = up(xo) Xo T,

m [ herefore, for t < 1 we have

1. x < t.
ux,t)=¢ (L—x)/(1—1t), t<x<1,
0. x> 1.
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m Next we use the Rankine-Hugoniot condition to define u(x, t)
for t > 1.

e By the knowledge of characteristics, a curve of discontinuities
starting at the point (1,1) is expected with u = 1 on the left
and u = 0 on the right.

e By the Rankine-Hugoniot condition, the speed of the curve of
discontinuities is

ur/2—uz/2 1 1

t) = = _ ) = =.
s(2) uy— uy, 2(u;+u) 2

So the curve is given by x(t) =1+ (t —1)/2, t > 1. Hence,
for t > 1 we have

1, x<1+(t-1)/2
“(X’t){o, x§1+%r—1%2.
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The solution v is depicted in the following figure.

t A - t — 1
x =1+ 3
=0
_________________________________ =1
k| u=~0
X = {-
»

e
Ky
7

1 —t
m By definition it is easy to check that the above v is a weak
solution.
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Example 6 (Nonuniqueness of weak solutions)

Consider the initial value problem of Burgers equation

0, x<0,
u + (u?/2), = 0. u(x,O){ L x>0

The method of characteristics determines the solution everywhere
in t > 0 except in the sector 0 < x < t. By defining v in
0 < x < t carefully, we obtain two functions

0, x < t/2 0, x<W,
ui(x.t) = ’ " and wm(x,t) =1 x/t, 0<x<t,
1, x>1t/2, 1 <=t

both turn out to be weak solutions. |



2. Entropy Conditions

m Example shows that weak solutions of conservation laws are
not necessarily unique.

m Criteria should be developed to pick out the “physically
relevant” solution.

m Such a criterion is called an entropy condition.

m We motivate the entropy condition for the scalar conservation
laws

ue + f(u)y =0, u(x,0) = up(x), (9)

where ug € C! and f is C? with f” > 0. Assume that (9) has
a smooth solution u (thus uj > 0 by Lemma 2).
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m Recall that all characteristics of (9) are straight lines given by

(xo + '(ug(x0))t, t), xo € R.

m For any (x, t) with t > 0O let xp be the crossing point of x-axis
and the characteristic through (x.t). Since u(x, t) = up(xp)
along the characteristic, we have

x=xp+ tf'(u(x,t)), ie xo=x—tf(u(x,t)).

So u satisfies the equation v = up(x — t f'(u)).
m [aking derivative with respect to x gives

up(x — tf'(u)) |
L+ up(x — tf'(u))f"(u)t

Uy (x, t) =



P e

m If uj(x — tf'(u)) =0, then uy(x.t) = 0; If uj(x — tf'(u)) > 0,
then

N

VAN

up(x — t f'(u)) 1 E
tf’

Ux(x. 1) < ug(x — tf'(u))f"(u)t - fi(u)t

where E = 1/inf{f"(u) : |u| < ||uo||s}, here we used |u(x, t)]
< [uo|oo-
m Consequently, we have for any t > 0, x € R and a > 0 that
u(x+a,t)—u(x,t) E

< —.
a t

m [ his last inequality requires no smoothness of v and thus can
be used as a criterion to pick out the “right” weak solution.
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Definition 7 (Oleinik)

A weak solution u of the scalar conservation laws is said to satisfy
the Oleinik entropy condition if there is a constant E such that

u(x+ a, t) —u(x,t)

E
< —
ot

for allt > 0 and x,a € R with a > 0.

We derive another entropy condition due to Lax which is easier to
extend for systems of conservation laws.

m Recall that the characteristics are given by

(XO -+ ff(UO(Xo))ﬂ t),_. xg € R.



m Assume that, at some point on a curve C of discontinuities, u
has distinct left and right limits u; and u, and that a
characteristic from left and a characteristic from the right hit
C at this point. Then

f'(u) > s> f'(u), (10)
where s denote the speed of the discontinuous curve at that

point. We call (10) the Lax entropy condition.

Remark. In case f” > 0, Lax entropy condition can be deduced
from Oleinik entropy condition:

m Indeed, by Oleinik entropy condition we always have u; > u,
and thus u; > u, on the curve of discontinuities.
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m Since f” > 0, ' is strictly increasing and thus f'(u;) > f'(u,).

m By Rankine-Hugoniot condition, the speed of discontinuous

curve Is f(u,,) B f(ur)

s = = 7'(¢)

Uf_Ur

for some ¢ € (u,, uy). Consequently f'(u;) > s > f'(u,) which
is the Lax entropy condition.

A curve of discontinuity for u is called a shock curve provided both
the Rankine-Hugoniot condition and the entropy condition hold.

Question: /s it possible to show existence and uniqueness of weak
solutions of conservation laws satisfying suitable entropy condition?
We will focus on scalar conservation laws with strictly convex flux.



niqueness of Entropy Solutions

We will prove the following uniqueness result.

Consider the initial value problem of the scalar conservation laws

ur + f(u)yx =0, xeR, t>0,
u(x,0) = up(x), x € R,

where f is a C? convex function. If u,v € [*°(R x (0,00)) are two
weak solutions satisfying the Oleinik entropy condition, then

u=v inR x(0,00)

except a set of measure zero.
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Proof. Since u,v € L*(R x (0, 00)), it suffices to show that
/OOC /m (1= v)pdxdt =0, Yoe CRx (0,00).  (11)
By the definition of weak solution, for any > € C}(R x [0, 00)) we have
/ N / " (wty + F(u)isy) ddt + / " o)t (x. 0)dx = 0.
0 J—oo —o0
/000 /m (vibe + f(v)iby) dxdt + /DO to(x)(x,0)dx = 0.

Therefore

o= [ [ (= + () - ()i} e
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By writing
d

1
f(u)—f(v):A E[f('ru%—(l—'r)v)]d'r:b(u—v)?

where

1
b(x,t) := /0 fl(tu(x,t) + (1 — 7)v(x,t))dT.

then it follows

0/ / u—v) (s + by) dxdt

for all v € G (R x [0, o0)

(12)
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m If we could solve the linear transport equation

e + by = ¢ (1 3)
for any © € C&(R X (0,00)) to obtain ¢ € CUI(R x [0, 00)),
then we would obtain (11) from (12).

m Unfortunately, (13) may not have a C} solution ) because b
Is not continuous in general.

m [o get around this difficulty, we need to use the mollification
technique.

m We take a mollifier, i.e. a function w € C5°(R?) with

w >0, // w(x, t)dxdt =1, supp(w) C {x* + t* < 1}.
R2
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m For any ¢ > 0 set w-(x,t) = e %w(x/e, t/2).
m [o regularize u and v, we set u(x,t) =v(x,t) =0 for t <0

and define
U = U % W-, Ve = V % W-

L —

where * denotes the convolution, i.e.

U we(Xx,t) = /f u(y,s)w:(x —y.t—s)dydt.
R2
It is well known that both u- and v. are smooth functions and
luz| <M and |v.| <M, inRx|0,00), (14)

where M > 0 is a constant such that |u|, |v| < M.
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m We use the Oleinik entropy condition to show for o > 0 that

Owu- < E/a and 0Oyv. < E/a, vVt > a. (15)

Let h(x,t) = u(x,t) — Ex/a. Then fora>0and t > «

h(x+a,t)—h(x,t) = u(x+a,t)—u(x, lt)—E < Eta B < 0.
o o

Thus x — (h* w:)(x,t) is decreasing for each t > «. Since

¥ @3

E E
(h*xw:)(x,t) = u(x,t) — = 4 f/ ywe(y,s)dyds.
R2

we obtain

0> 0«(h*w:)=0xu- —E/a, Vt=>a.
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m Next define

1
b. = / f'(tu- + (1 —7)v.)dT.
0

Because of (14) and f € C?, we have b. € C! and there is a
constant M; independent of £ such that

|b=(x.t)| < M1, (x.t) € R x[0,00). (16)
m Moreover, for any a > 0 there holds
O b- < CUE/&:, Vt > «. (17)

where Co := max{f” (&) : |£] < M}. In fact,

1
O b, = / ' (ru + (1 — 7)) (Oyue + (1 — 7)dv.) dr-
0
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Since f”7 > 0, we may use (15) and (14) to derive for t > a
that

E [! CoE
Oy b- < 5/ f"""('ruE + (1 —7)ve)dT < ==
0

Y

m We next prove that b. — b locally in L' as = — 0. To see
this, using f € C? we can write

b-(x.t) — b(x, t)
1
_ fo (F(rue + (1 — 7)) — F(ru + (1 — 7)v)) dr

1
~ / F7(€) (7 (ue — u) + (1= 7) (v — v)) dT,

where £ is between 7u- + (1 — 7)v: and Tu 4+ (1 — 7)v.



By (14) we have [£| < M. Therefore

b.(x.£) — b(x.t)] < 5 Co (e — u] + |v- —v]).

Thus for any compact set K C R x [0, 00) we have

//|b — bldxdt < - Co// (|us — u| + |ve — v|) dxdt

as ¢ — 0.
m For any fixed ¢ € CJ(R x (0,0)), we consider the problem
Uy + by, =, U (x, T) =0, (18)

where T > 0 is chosen such that p =0 for t > T.
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By the method of characteristics, the solution of (18) is given

by ,
0t = [ bl xt)s)ds, (19)

JT

where x-(s) := x:(s; x, t) is defined by

dx:
ds

= b.(x.,s), x(t)=x.

Since b. € C? satisfies (16), x. exists for all s and is C* with
respect to s,x and t. Thus ¢° € C}(R x [0,0)).

m We show that ¢° € C3(R x [0,00)) and supp(1°) are
contained in a compact region independent of ¢.
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To see this, let S := supp(p). By the choice of T, Sis a

compact set contained in {(x,t):0 <t < T}. In view of
(19), ¥°(x,t) =0fort > T.

Next let R be the region bounded by the linest =0, t =T
and two lines with slopes 1/M; and —1/Mj such that S C R.
For any (x,t) € R with t < T, from (16) it follows that

x-(s;x,t) & R, Vi<s<T
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Since

d g g EaXE A E £
Ew (XE(era t)?s) _w5+wx 85 _ws _‘_b&‘wx

= p(x:(s; x. t),s) =

fort <s< T, we have

Vo (x, t) =V (x(t; x, t), t) = (x(T; x,t), T) = 0.

Therefore supp(v°) C R.
m By using (12) with ¢ = 1)° and (18) we have

0= /00 /DO (u—v){v; + bt + (b — b-)yYL } dxdt.
0 —00



”

In view of (18) it follows

/ / u— v)pdxdt = / / u— v)(b: — b)g dxdt.

(20)

To prove (11), it suffices to show that the right hand side of
(20) goes to 0 as ¢ — 0.

m \We need to estimate ?);. We first show that for any a > 0
there exists C,, such that

Wil <G, Vi (21)

Since ¥ =0 for t > T, it suffices to show (21) for a < t
< T.
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By using (19) we obtain

S(x, t):/;tpx(xg(sﬁxj t). )2’;’:(5 x,t)ds.  (22)

Recall that x-(t; x;t) = x, we have @Xg(t x,t) = 1. Let

a-(s) := ?; (s; x, t).

Then a-(t) =1 and

02 _ 00k 00k 0,
Js  Os Ox Ox Os  Ox (elsix. 1), 5)

O X-
— 8){ b:: — 8}{ b;.— =
T 0x ( )2
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T herefore

a-(s) = exp (/ Db (x-(7; x. t);r)d'r) .

t

In view of (17), it follows a-(s) < eCoET/aforan<t<s<T.
Thus we have from (22) that

-
VL (x, t)| < /; lpx|az(s)ds < G, Va<t<T.

e \We next derive the total variation estimate on 1°: For each
t > 0 let

TV = [ i) dx

denote the total variation of the function ¥)°(-, t).
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ince the supports of 1)°) are contained in a compact region
independent of ¢, it follows from (21) that for any a > 0
there is a constant C, independent of ¢ such that

TVi(°) < Co,  Vt> o

We claim that
35 > 0 such that TV (¢") < E‘; forall 0 <t <p3. (23)

To see this, by using » € C}(R x (0.0)) we may take 3 > 0
such that ¢ =0 for 0 <t < /3. It then follows from (18) that

V: + b, =0 fort < 6. (24)



Fix 0 <t <3, let xg < xg < --- < x)y be any partition of R,
and set y; = x-(3;xj,t) for i =0,--- ,N. Then yp <y < ---
< yn. Since (24) implies that 1" is constant along the
characteristic curves s — x:(s; xj, t) for 0 < s < 3, we have

QZ)E(Xf&t):QZ)E(yf&B)a "-:0919"' &N'

T herefore
N—1 N—1
D [0 061, ) =006, O < 3 197 (i1, B) — (1 B)
i=0 i=0

< TVﬁ (‘lﬁr)g)

Taking the supremum over all such partitions gives TV;(1°) <
TVs(47) < Cp.



P

m Finally we complete the proof by estimating

/Om /_:(u — v)(b- — b)Y dxdt

h = / / |u — v||b- — bl|1|dxdt,
0 —00
12:/ / lu — v||b- — b||V%|dxdt.

By using (16) and (23) we obtain for 0 < o < 3 that

S Il+’2j

where

h <2M . 2M1/ TV, (¢%)dt < 4MM;aCs.
0



\\
| Thus, for any 7 > 0 we can take 0 < a < 3 such that

h <4MMyaCs < 1/2.

For this «, recall that the supports of 1) are contained in a
compact region independent of £, we may use (21) and the
local convergence of b. to b in L! to obtain

[, <n/2 for sufficiently small £ > 0.

Consequently, for small £ > 0 there holds

/ODO /_:(” — v)(b: — b)sdxdt| <.

Since 17 > 0 is arbitrary, we can conclude the proof. H



4. Riemann Problems

Before giving the general existence result, we consider the scalar
conservation law with simple initial values:

up,  x <0,

Urﬁ X > 0.*- (25)

ur + f(u)y =0, u(x,0) = up(x) = {

where u; and u, are constants. This problem is called Riemann
problem. We will determine the unique entropy solution explicitly

when " > ¢y > 0.

m Observing that if u(x, t) is a solution of (25), then, for any
A >0, uy(x, t) = u(Ax, At) is also a solution. It is natural to
determine the solution of the form u(x, t) = v(x/t).



We need to consider two cases: u; > u, and u) < u,.

m Case 1. u; > u,.

e Since " >0, we have f'(u;) > f'(u,;). Thus any characteristic
line starting from the negative x-axis intersects characteristic
lines starting from the positive x-axis.

o Assume that the curve of discontinuities is s(t). We expect
that s(0) = 0 and s’(t) = o by Rankine-Hugoniot condition,

where
f(ur) — f(ur)

up—u

f'(u,) < o= < f'(u).

So s(t) = ot.



e [ herefore we may define

- uy, X < ot,
ey ={ XS (26)

It is easy to check v is a weak solution. Since u; > u,, u thus
satisfies the Oleinik entropy condition. So, by Theorem 9, u is
the unique entropy solution which is called a shock wave.

xX=0*t

S

Shock wave solving Riemann’s problem for uy>ur
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m Case 2. u; < u,.

e In this case f'(u;) < f’(u,). By the method of characteristics,
u=u for x < f'(u))t and u = u, for x > f'(u,)t, but v is
undetermined in the region f'(u))t < x < f'(u,)t.

e In the region f'(u;)t < x < f'(u,)t, we expect u to be smooth
with u(x,t) = v(x/t). Then by u; + f(u), = 0 we have

vi(x/t) (F(v(x/t)) = x/t) =

Assuming v’ never vanishes, we find f'(v(x/t)) = x/t.
e Since f" > ¢y >0, G :=(f')"" : R — R exists and

)
G(x) =G =[x —yl/e

for x,y € R (see Lemma 14).
e Therefore v(x/t) = G(x/t) for f'(u;)t < x < f'(u,)t.



e [hus we can define

uy, X < f’(u;)t,
u(x.t) = 4 G(x/t), Fl(u)t < x < f(u)t, (27)
Uy, x > f'(u,)t.

Then v is continuous in R x (0, o0) and u; + f(u)x = 0 in each
of its region of definition. |t is easy to check that v is a weak

Y ////
i

Rarefaction wave solving Riemann’s problem for uy<ur

u=uj




e The Oleinik entropy condition can be directly checked case by
case; for instance, if f'(u))t < x < x+ a < f'(u,)t, then

u(x+a, t)—u(x, t) = (F) ((x+a)/t)—(f )1 (x/t) < a/(cot).

So, by Theorem 9, u is the unique entropy solution which is
called a rarefaction wave.

Summarizing the above discussion we obtain

Theorem 10

Consider the Riemann problem (25), where f"" > ¢y > 0.

(i) If uy > u,, the unique entropy solution is given by the shock
wave (26).

(it) If uy < uy, the unique entropy solution is given by the
rarefaction wave (27).



P

5. Existence of Entropy Solutions

Consider the initial value problem of the scalar conservation laws

{ ur + f(u)x =0, (x,t) € R x (0, 00).

u(x,0) = uo(x), x €R. (28)

We will prove the following existence result.

Theorem 11

Let ug € L°(R) and f € C%(R) with f"(€) > co > 0 on R. Then

(28) has a unique weak solution u € L>(R x [0, 00)) satisfying the
Oleinik entropy condition. Moreover

Ju(x, f)||LDO(R><(o,oo)) < ||uol| co-
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m [heorem 11 has several different proofs. We present the one
based on the theory of Hamilton-Jacobi equations.

m o motivate it, let h(x fo tup(y)dy and consider the initial
value problem of Hamllton Jacobi equation

{ we + f(wy) =0, (x,t) € R x (0, 00),

w(x.0) = h(x). «cR. (29)

If (29) has smooth solution, we set u = wy. Then u(x,0) =
wx(x,0) = up(x). Differentiating the equation in (29) gives

Up = Wy = (We)x = —F(wy)x = —F(U)x.

Thus u = wy is a solution of (28).
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m Unfortunately the solution of (29) is not necessarily smooth in
general.
m |t is necessary to introduce the notion of weak solution of

(29).

Definition 12

Consider the problem (29), where h is Lipschitz continuous. A
Lipschitz continuous function w : R x [0, 00) — R is called a weak

solution if
(i) w(x,0) = h(x) for all x € R;
(i) we(x,t)+ f(wy(x,t)) =0 for ace. (x,t) € R x (0,00).
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m When f € C? with 7 > ¢g > 0, we will show that the
solution of (29) is given by the Hopf-Lax formula.

m o motivate the formula, assuming (29) has a C! solution.
Along a characteristic curve x(t) we set z(t) := w(x(t), t)

and p(t) := wy(x(t),t). Then there hold

? = f'(p).
g—i = pf'(p) — f(p), (30)
£ =0.
dt

Thus along characteristics p are constants. So, characteristics
are straight lines with velocity f’(p). To understand the
second equation in (30), we introduce the Legendre-Fenchel
conjugate
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f*(q) = Sgﬂg{m - f(p)}, g€k

Since f is uniformly convex, the maximum is achieved at p
satisfying ¢ = f'(p). Thus

f*(q) _ pff(p) — f(p) with f’(P) = dq.

So % = 1*(q) with g = f'(p). Fix any (x, t) with t > 0. For
a characteristic line through (X, t) that crosses x-axis at y, its
velocity is (x — ¥)/t. Thus, along this characteristic,

dz_

XY _
== (=) 2(0) = h)

t
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T herefore

_ ;(—;7)

w(x,t) = z(t) = h(y) + tf*( - (31)

This formula is problematic since it involves the unknown y.

m On the othe hand, by the convexity of f we have for any p

—we = F(wx) > F(p) + F'(p)(ws — p)

So
we + f'(p)wx < pf'(p) — f(p) = *(f'(p)).

Consider the straight line (x(t), t) through (X, t) with velocity
f'(p), let y be the intersection point with x-axis. Then



Since " > ¢y > 0, ' is strictly increasing with /(—o0) =
—00 and f’(4+00) = +o0. Thus (32) holds for all y € R since
we can take y to be any number by adjusting p. Since (31)
implies that the equality is achieved at some y, we expect

w(x,t) = inf {h(y) + tf"‘(#)} (33)

yeR

which is called the Hopf-Lax formula.
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m The above argument is not rigorous since it requires w € C*.

m Our goal is to show that (33) gives a weak solution of (29).

We first give some properties on f*.

Let f be a C! convex function on R. Then the following hold:

(i) f* is convex;

(ii) For any A > 0 we have

aeR {Ala] = (q)} < sup{f(x) : |x| < A};

(iii) For any x € R we have sup,cg {gx — *(q)} = f(x).
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Proof.

(i) f* is convex because f* is the supremum of linear functions.

(ii) By the definition of f* we have

F(q) = sup {ay — F()} > a2 — £(29) = Ajq| - 7(Aq/|q)).
yeR q| 9]

Therefore

22&2{’4"?' — 7 (q)} < igp{f(Aq/lql)} =sup {f(x) : [x| < A}.

(iii) Since the definition of f* implies f*(q) > gx — f(x) for all
g € R, we have

sup {gx — " (q)} < f(x).
geR
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To show the reverse inequality, we note that

gx — f7(q) = ax — sup1ay = f(y); = inf {qlx =y) + 1)}

Thus
sup {gx — f*(q)} = sup inf{g(x —y) +f(y)}

qeR
> ir;f {f’(x)(x —y)+ f(y)}

Since f is convex, we have f(y) > f(x) + f'(x)(y — x) and
thus

f(y)+ ' (x)(x—y) > f(x). Vy.
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So supger 19x — £7(q)} > f(x). The proof is complete. N

Let f € C? be such that f"' > ¢y for some constant co > 0. Then
(i) f* € C? is strictly convex and (f*) = (f')~1, where (')~}
denotes the inverse function of f':

(i) (f*)' is Lipschitz continuous, i.e. for any p,q € R there holds

(7Y (p) — (F)(q)] < 29

C0

Proof. By the condition on f, ' is strictly increasing with f'(—o0)
= —00 and f/(+o0) = 400, and thus g := (f')~! : R — R exists
as a C! function with g’(x) = 1/f"(g(x)) > 0.
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(i) For any g € R, there always holds f*(q) = gx — f(x), where x
is determined by g = f'(x), i.e. x = (f)71(q) = g(q). Thus

f*(q) = qg(q) — f(g(q)). Va.

This implies that f* € C1 and

(F)(q) = g(q) + 9’ (q) — '(g(q))&’(q)
= g(q) +9¢'(q) — ag'(q) = &(q).

Consequently (f*) = g and f* € C? with (f*)" =g’ > 0.
(i) For any p,q € R let x = (f*)'(p) and y = (*)'(q). Then

p="F(x) and q="f'(y).
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Since f” > ¢y, we have

fFy) = f£(x) = /0y —x) =
F(x) = f(y) = f'(V)(x—y) =
Adding these two inequalities gives
co(x = y)? < (F'(x) = F'(")(x = y) < IF'(x) = F'(¥)llIx — ¥
This implies that co|x — y| < |F'(x) — F/(y)], i.e.
col (F*)'(P) — (F*)'(q)] < |p — 4.

This completes the proof. H
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The function w defined by the Hopf-Lax formula (33) is Lipschitz
continuous on R x [0,00) and w(x,0) = h(x) for x € R.

Proof. We use

Lip(F) := sup{|F(x) = F(¥)|/Ix —y| : .y € R and x # y}

to denote the Lipschitz constant of a Lipschitz function F.

m We first show that, for each t > 0, w(-, t) is Lipschitz with

Lip(w(-. t)) < Lip(h).
To see this, let x1. x> € R. We may take y; € R such that

w(x1, t) = h(y1) + t FH (=22,
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Then
w(xp, t) — w(xy, t)

- inf{h(y)—l— tf* (2 t_y)} — h(y1) — tf* (=)

< h(x2 — x1 +y1) — h(y1) < Lip(h)|x2 — xq|.
Interchanging the role of x; and x> we then obtain
(w(x1,t) — w(xo, t)| < Lip(h)|x1 — xo|. (34)
m We next show that there is a constant Cy > 0 such that

lw(x,t) — h(x)| < Gt, ¥YxeRandt>0.



Indeed, we first have
w(x, t) < h(x)+ tf*(0).

Moreover, by using h(y) > h(x) — Lip(h)|x — y| we have

w(x,t) = inf {h(y) s _y)}

yveR t

> h(x) — sup {pr(h)lx —y - (= y)}

yeR t
= h(x) — tsup {Lip(h)|z| - ()}
> h(X) — (qt.

where Cy := sup|y<yipn) f(y) by Lemma 13 (ii).
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m We further show that there is a constant (5 such that

|W(X, fl)—W(X: f2)| < Cg(fg— ?fl) (35)

for all x € R and 0 < t; < t. Indeed, letting y € R be such

that
w(x, t1) = h(y) + tf" ((x —y)/t1),

we may use the definition of w(x, tp) to obtain

w(x, tp) < h(y)+ tof “((x —y)/t2) .

By writing
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and using the convexity of f* we have

w(x,t2) < h(y) + to {E—lf*(x t_1 y) + (1 — —) f*(O)}
= h(y) + tlf*(%) + (to — t1)f*(0)
= w(x, t1) + (t2 — t1)f*(0).
Therefore
w(x, t2) — w(x,t1) < (to —t1)f"(0), 0<t; < tr. (36)

On the other hand, we may take z € R such that

w(x, t2) = h(z) + tof "((x — 2) /t2).
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_h _ ; X—z __ Y=z _ XV
Let y = 2x+ (1 — 2)z. Since = = == = 7=, we have

y —Z X —Z Y —2Z
) + tof 7 ) — t1f(
t1 [59) t1

w(x, t2) = h(z) + t1f™(

)

X_
> w(y. t) + (&2~ 1) (7 {1 ).

Using (34) we have

w(y, t1) > w(x, t1) — Lip(h)|ly — x|.
Therefore

X—=Yy
th —t1”

w(x, t2) > w(x, t1) — Lip(h)|x — y|+ (t2 — t1)f(
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Consequently

w(x, t2) > w(x, t1) — (t2 — fl)zgﬂg{up(h)lnl — 7 (n)}

So, by Lemma 13 (ii), we have
w(x, tr) —w(x, t1) > —C(tr—t1), 0<t] <ty

Combining this with (36) we obtain (35).
m Finally, by writing

(w(xq, t1)—w(xo, t)| < |w(xg, t)—w(xe, t1)|+|w(x, t1)—w(x, t)|,

we may use (34) and (35) to complete the proof. B
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Theorem 16

The function w defined by the Hopf-Lax formula (33) is Lipschitz
continuous, is differentiable a.e. on R x (0,00) and is a weak

solution of (29).

Proof. By Lemma 15, w is Lipschitz on R x [0, 00) with w(-,0) =
h. So w is differentiable a.e. in R x (0, 00) by Rademacher’s
Theorem. It remains only to show that

we(x, t) + f(wy(x,t)) =0

for any (x,t) € R x (0,00) at which w is differentiable.

m We first choose z € R such that

w(x,t) = h(z)+ tf*((x — z)/t).
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Fix any 0 <& < tandsety=(1—-3)x+ -z. Then

~ |

)/—Z).

w(y,t —¢) < h(z)—b—(t—g)f*(t_g

Since 2=£ = £=£ e have
[ -

—Z) — (t—e)f" (—
t )

w(x,t) —w(y,t—gc) > tf(

)
= cf (

T herefore

X —Z

w(x,t) —w(x + 2(z —x),t —¢) S £

g t

)
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m Letting £ \ 0 gives

(1) we(x.t) 2 £(—).
Consequently, by the definition of f*,
we(x, t) + f(wy(x, t))
> f(mlx. 1) 4+ F(—=) = ——ma(x.1) 2 0.

t t

m On the other hand, fix any g € R and £ > 0. Then

W(x+eq.t+ <) = inf {h(y) +(t+o) tiqg_ y)} |
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m Since Xﬁif;y = =g+ rfra ~—~ we may use the convexity of
r* to derive
X+Eeq—YVY X—Yy
t+e)f* <ecf*(g)+tf" .
¢+ () <o g+ ep ()
Therefore

w(x +eq,t+¢) <ef*(q) +;2E§ {h(y) + tf*(xzy)}

=cf*(q) + w(x, t).
So

w(x +£q,t+¢)— w(x,t)
3

< f*(q).
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Letting ¢ N\, O gives
qwx(x, t) + we(x,t) < f*(q), VgeR.
Therefore, by Lemma 13 (iii),

—we(x, t) > (s?glpé{qwx(x} t) — f*(q)} = f(wx(x, t)),

e, we(x, t)+ f(wy(x,t)) <0. The proof is thus complete. B

We are ready to complete the proof of Theorem 11. To this end,
let h(x) = |5 uo(y)dy and define w(x, t) by the Hopf-Lax formula

w(x, t) = }igfﬁ{h(y) + tf*(X;y)}.
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By Theorem 16, w is Lipschitz, is differentiable for a.e. (x, t), and

we + f(wx) =0 a.e. in R x (0,00),
w(x,0) = h(x), xeR.

Let u:= wyx. Then u is a weak solution of (28).

Proof. Recall that Lip(w) < Lip(h) = ||uo|eo, u € L°(R X (0, 00))
with
lulloe < Lip(w) < ||uol|oo-

Next for any ¢ € C}(R x [0,00)) we have

0= /DDO /:(wﬁ F(wy))ox dxdt. (37)
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Since w is Lipschitz, x — w(x, t) is absolute continuous for each
t >0 and t — w(x, t) is absolute continuous for each x € R. So,
integration by parts can be used to obtain

/ / Wt px dxdt
0 —00
—_/ / W@Xtdxdt—/ w(x,0)px(x,0)dx
0 —0o0 —C
:/ / Wxgﬁthdt‘|'/ WX(X&O)(IO(X?O)dX'
0 —00 -

Since wy(x,0) = up(x) for a.e. x, we have

/ / Wy dxdt = / / Wxgordxdt—l—/ to(x)e(x,0)dx.
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Combining this with (37) gives

0= /ODO /_Z(Wxgot + f(wy )y )dxdt + /DO to(x)e(x,0)dx.

Thus u = wy is a weak solution of (28).

B [o complete the proof of Theorem 11, it remains only to show
that there is a function i with u = 1 a.e. in R X (0, 00) such
that o satisfies the Oleinik entropy condition.

m [o this end, we will use, for each (x, t) with t > 0, the
minimizer of the function

X_
t

Fxi(y) = h(y) + tf( y) over R.



P

The following lemma shows that for each fixed t > 0, if x; < xo

then the minimizer of Fy, +(y) is always on the left of the
minimizer of F,, +(y).

Assume that f € C? satisfies f” > ¢y > 0. Fixt > 0 and x; < xo.
If yi1 € R is such that

i {4 + ¢ (D) b= hon) + 07 (22,

then

%y X2 — % X2 —
h(vi) + tF1(Z—2) < h(y) +tF7(Z—2), Wy < n,
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N 4 e
Proof. Let 7 = prp o Then 0 <7 <1 and

x2—y1=7(x1 —y1) +(1 = 7)(x2 —y),
—y=00—=7)0x1—y1) +7(x2 — y).

By the strict convexity of f*, see Lemma 14 (i), we have

) < T ”)+(1— (=)

% X2
f(]t

£ (=

Adding these two inequalities gives

7)< (1- )f( )+ T (2.

w, X2 — V1 w« ;X1 — Y « /X1 — V1 w« s X2 — Y
F( - ) 4+ £*( - ) < F( - )+ F*( - ).
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Therefore

X1—Y

(2 1 e () + h(n) + hy)

< EF(ZT2) () + £ (F) + Ay

for the last inequality we used the fact that y; is a minimizer. This
implies the conclusion. H

Now we are able to give the construction of & which is stated in
the following result.
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There exists a function y(x.t) defined on R X (0, 00) such that

(i) for each t >0, x = y(x. t) is nondecreasing;

(i) for each (x,t) with t >0, y(x,t) is a minimizer of the

function y
Fet(y) = h(y) + tF( ).

(iii) if we set U(x,t) = (f*)’(x_yt(x’t)), then, for each t > 0,

u(x,t) =u(x,t) fora.e. x.

In particular, u = @ for a.e. (x,t) € R x (0, 00).
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Proof.

m Fix t > 0. For each x € R let y(x, t) be the smallest of those
points y giving the minimum of Fx :(y).

m It follows from Lemma 18 that x — y(x, t) is nondecreasing
and thus y(-, t) is continuous for all but at most countably
many X.

m At a point x of continuity of y(-, t), y(x, t) is the unique
minimizer of F, +(y) over R.

m From Theorem 16 it follows for each fixed t > 0 that

x — w(x, t) == D“eiﬁ{h(Y) n tf*(xzy)}

— hy(x. 1)) + e (X))

is differentiable a.e.
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m Since x — y(x, t) is monotone, it is differentiable a.e. as well.

Thus, for a.e. x, f*(x_yéx’t)) is differentiable and therefore

x — h(y(x, t)) is differentiable as well.

m Consequently for a.e. x

u(x.t) = % (h(y(x,, t)) + tFH(— yt(x’ t)))

= 2 (hy(x ) + (FY 2D 1 )

m Since y(x,t) is a minimizer of Fy +(y) over R, x must be a
minimizer of

z = Ferly(z.t)) = h(y(z. t)) + tF(Z— yt (2.1),
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m Consequently 0 = dz{z _ (Fxrely(z.t))), e

0= L (hy(x. 1)) - (FY (=28 ()

We therefore obtain u(x,t) = (f*)’(Lr(X’t)) a.e.

Theorem 20

Let f E C2 satisfy " > ¢g > 0, let up € L>°(R) and let h(x) :=
fO uo(y)dy. Then the function

i(x. 1) = (F) (=YD,

t

defined in Lemma 19 is a weak solution of (28) satisfying the
Oleinik entropy condition.

(38)
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Proof. By condition and Lemma 14, (f*)" is increasing. Thus, by
Lemma 19, we have for any t > 0 and x, a € R with a > 0 that

a(x. 1) = (£ (2D 5 (pry X 2.8y
By Lemma 14 (ii), we have
0(x.0) > (1Y (22 ) o)
= (x4 a,t) — a/(cot).
The proof is complete. H

Remark. The formula (38) is called the Lax-Oleinik formula. Recall
that (F*) = ()71, we have @i(x.t) = ()" ((x — y(x.1))/t).



!. !ong—Time Behaviour of Entropy Solutions

We prove a uniform decay estimate for the entropy solution of the
scalar conservation law

ur + f(u)x =0, u(x,0) = up(x) (39)

with uniformly convex flux f(u).

Theorem 21

Let ug € L°(R) N LY(R) and f € C? with " > ¢y > 0. Then the

entropy solution of (39) satisfies the estimate
u(x, t)] < C/tH2,

where C is a constant depending only on ¢y and ||ug]|;:.
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Proof. We use the Lax-Oleinik formula

() = (7Y (2

).

In order to use the Lipschitz continuity of (f*)', we take o € R
such that
() (e) =0,

i.e. (f)~%(o) = 0; we can take o = f/(0). Then

o) = (YD) — (0
1 x—y(x,t)_ar
o t '

(40)
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To estimate the right hand side, by the definition of y(x, t) we have

X, t)

h(y(x, t))—l—tf*(x_yt( ) = min {h(y)—l— tf*(u)}

yER t
< h(x —ot) + tf* (o)

where h(x) = [; uo(n)dn. Since f” > ¢y > 0, we have

(L) > o)+ (Y (o) (2 - o)

t o t

+ e (X_y(x’t) —0)2.

2 t
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Combining these last two inequalities gives

%fcﬂ (X - yt(xj ) _ U) < h(x —at) — h(y(x. t)).

Recall the definition of h and ug € LI(R), we have |h(x)| < ||uo]| 1
for all x € R. Therefore

1 _ t °
~ tco (X y(x.t) —U) < 2||uo| 1.

2 t
3 \/4||U0||L1.
- cot

Combining this with (40) gives the desired estimate. H




