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C4.4: Hyperbolic Equations

Lecturer: Professor Gui-Qiang G. Chen
Tutor: Dr. Immanuel Ben Porat

TA: Isaac Newell

Course Weight: 1.00 unit(s)

Level: M-level

Method of assessment: Written examination
Course Term: Hilary Term 2024
Time & Place:
Lectures: 4:00pm Tuesdays & Wednesdays (Ls)

Tutorial Sessions: To be announced



ood background in Multivariate Calculus and Lebesgue Integration
is expected (e.g. as covered in the Oxford Prelims & Part A Integration).
It would be useful to know some basic Functional Analysis and
Distribution Theory; however, this is not strictly necessary as the
presentation will be self-contained.

Course Overview:

We introduce analytical and geometric approaches to hyperbolic
equations, by discussing model problems from transport equations,
wave equations, and conservation laws. These approaches have been
applied and extended extensively in recent research and lie at the
heart of the Theory of Hyperbolic PDEs.

Learning Outcomes

You will learn the rigorous treatment of hyperbolic equations through
analytical and geometric approaches
as an introduction to the Theory of Hyperbolic PDEs.

You will see some model problems/methods for hyperbolic equations.



. Transport equations and nonlinear first order equations:
Method of characteristics, formation of singularities

. Introduction to nonlinear hyperbolic conservation laws:
Discontinuous solutions, Rankine-Hugoniot relation, Lax
entropy condition, shock waves, rarefaction waves, Riemann
problem, entropy solutions, Lax-Oleinik formula, uniqueness.

. Linear wave equations: The solution of Cauchy problem, energy
estimates, finite speed of propagation, domain of determination,
light cone and null frames, hyperbolic rotation and Lorentz
vector fields, Sobolev inequalities, Klainerman inequality.

4. Nonlinear wave equations: local well-posedness, weak solutions

If time permits, we might also discuss parabolic approximation
(viscosity method), compactness methods, Littlewood-Paley
theory, and harmonic analysis techniques for hyperbolic
equations/systems (off syllabus - not required for exam)



We refer to [1], [2, Chapters 2,3,5,7,11,12], and [3] for detailed
exposition.

1. Alinhac, S.: Hyperbolic Partial Differential Equations,
Springer-Verlag: New York, 2009.

2. Evans, L.: Partial Differential Equations. Second edition.
Graduate Studies in Mathematics, 19.
American Mathematical Society, 2010.

3. John, F.: Partial Differential Equations. Fourth edition.
Applied Mathematical Sciences, 1.
Springer-Verlag: New York, 1982

Please note that e-book versions of many books in the reading lists
can be found on and


http://solo.bodleian.ox.ac.uk/primo-explore/search?vid=SOLO
https://oxford.rl.talis.com/index.html
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III. Linear Wave Equations



— \s

We consider the Cauchy problem of linear wave equation

{utt—Au:f(x,t), x€R" t>0, (41)

u(x,0) = g(x), u(x,0)=h(x), x€eR,

where A =7

i1 a 97 denotes the Laplacian operator on R".

m A function u € C?(R" x [0, 00)) satisfying (41) is called a
classical solution of (41).

m We prove the uniqueness result by deriving energy estimate
and establish the existence result of classical solutions by
deriving the solution formulae.



€1ness

m We show that the Cauchy problem (41) has at most one
classical solution.

m We establish uniqueness result by proving a general result, the
so-called finite speed propagation property.

m Consider the homogeneous wave equation
Ou = 0?u—Au=0 inR" x[0,00). (42)
For any fixed (xp, tg) € R” x (0, 00), we introduce
Coto ={(x,t): 0t <typand |[x —xo| < tg — t}

which is called the backward light cone with vertex (xg, tg).



-

The following result says that any “disturbance” originating

outside By (x0) .= {x € R": |x — xg| < tp} at t = 0 has no effect
on the solution within C 4.

Theorem 22 (finite speed of propagation)

Let u be a C? solution of (42) in Cyy 4. If u(x,0) = u(x,0) =0
for x € Byy(Xx0), then u=0 in Cy 4,.



Proof. Consider for 0 < t < ty the function
E(t) .= / (Jue(x, t)[2 + |Vu(x, t)\2) dx
Bto— (XO)

to—t
— / / (Jue(x, t)]? + [Vu(x, t)\Q) do(x)dT.
0 0B+ (xo)

We have

d

CE(r) =2 /B o (e D)+ Yl ) V. ) o

— / (\ut(x, t)° + |Vu(x, t)\z) do(x).
OB, — (x0)



Since Vu - Vuy = div(u:Vu) — upAu, we have

iE(t) = 2/ uLudx + 2/ div(u:Vu)dx
dt Bry1(x0) Biy1(x0)

/ (lue]® + |Vul?) do.
OBty —t(x0)

Using Llu = 0 and the divergence theorem we have

d
—E(t)—2/ utVu-yda/ (o + |Vul) do
dt 881‘0—1‘()(0) 8Bt0—r(XO)

where v denotes the outward unit normal to 0By, _+(xp). We have

2w, Vu-v| <2|u||Vu| < ue)* + [Vul?.



/

Consequently %E(t) < 0 which implies that
E(t) < E(0), 0<t<t.

Since u(-,0) = ut(-,0) = 0 on B, (x0), we have E(0) = 0. Thus
E(t) =0 for 0 < t < tg. Therefore

ur=Vu=0 in Cyy.

So u = constant in Cy,t,. Since u(x,0) = 0 for x € By, (x0), we
must have u =0 in Gy «,- H

Corollary 23

The Cauchy problem (41) of linear wave equation has at most one
classical solution.

Proof. Assume that u; and wuz are two classical solutions of (41).

Then u:=u; — ur € C?(R" x [0, 00)) satisfies

u = upy — Au=0 inR"” x (0, 00),
u(x,0) =0, wu(x,0)=0, xeR".

Applying Theorem 22 to u, we conclude u = 0 in R” x [0, o0).




—_—

The existence of (41) can be established by solving the following
two problems:

Ou:=uyg —Au=0  inR"x (0, 00), (43)
u(x,0) = g(x), wu(x,0)=h(x), xecR"

|:|u = U — AU = f(X, t) in R” x (07 OO), (44)
U(Xa 0) — 07 ut(X7 0) — 07 x € R".

m If v is the solution of (43) and w is the solution of (44), then
u:= v + w is the solution of (41).

m We will solve (43) by deriving the explicit solution formula.

m We then solve (44) by reducing it to a problem like (43) using
the Duhamel principle.

We now derive the solution formula of (43) when n=1,2,3.

Case n = 1: Consider the Cauchy problem of 1D homogeneous
wave equation



(U — U =0  inR x(0,00),

< (45)
L u(x,0) =g(x), u(x,0)=h(x), xeR,

where g € C3(R) and h € C}{(R).

m Observing that vy — Uy = (0 — Ox)(0¢ + Ox)u. We introduce
V=u;+ Uy. Then v —v, =0 in R x (0,00). By the method
of Characteristics, we have

v(x,t) = w(x + t),

where vg(x) := v(x,0).



m S0 ur + ux = vp(x + t). Let ug(x) := u(x,0). Then, by the
method of characteristics again, it follows

u(x,t) = up(x — t) + /Ot vo(x — t 4 2s)ds

X+t
= uo(x — 1) + 5 / G

m The initial conditions give ug(x) = g(x) and vy(x) = h(x)+
g’'(x). Therefore

X+t
b, t) =gl =)+ 5 [ (81€)+ h(©) de



We therefore obtain the following result.

Theorem 24

Assume that g € C*(R) and h € C1(R). Then the d'Alembert
formula

1

X+t
u(x.0) = 5 (gl + 1) +lx— 1)+ 5 [ H(E)de

gives the unique classical solution of (45)

We next consider the Cauchy problem (41) in high dimensions.

m [he general idea is to reduce the high dimensional problems
to one-dimensional problem so that the d'Alembert formula
can be used.



m This can be achieved by considering the spherical mean.

m Given x € R" and r > 0, we use B,(x) and 0B, (x) to denote
the ball of radius r with center x and its boundary respectively.
Let w, denote the surface area of unit sphere, then

1
0B,(x)| = wpr™t and  |B.(x)| = ;wnr”.

m Let u e C?(R" x [0,00)) be a solution of (41). For a fixed
x € R", define

1
U(r, t; x) = t)d 0
(1620 = BT g, 10090, 7>

which is called the mean value of u over the sphere 0B, (x) at
time t.



m Notice that

lim U(r, t; x) = u(x, t).
r—0

If we can find a formula for U(r, t; x) for r > 0, then we can
obtain u(x, t) by taking r — 0.
m Write U(r, t; x) as

1
U(r,t; x) = o /51 u(x + r&, t)do(§).
Then
QU(rtx)=— | Vu(x+re 1) €do()
Wn Jigl=1
N wpr"—1 /éﬂBr(x) VU(yj t) ’ (y)



Since (y — x)/r is the outward unit normal to 0B, (x) at y, we
may use the divergence theorem to derive

1
o0, U(r, t;x) = — / Au(y,t)dy.
r(x)

Wnt"

m Using polar coordinates, we have

2,U(r, t; x) 1/ faB do(y)dr.

Consequently

O2U(r, t; x)
1 n—1

— Auly,t)do(y) — / Au(y,t)dy.
war" ! /6’Br(><) v doly) Wnl" JB,(x) o




m By using v — Au =0, we have

1 n—1
2 : _ _ -
U6 = ey [ el o) ~ 20U 60
5 n—1
= 0;U(r, t;x) — - 0, U(r, t; x).

m By the above expressions, we have
im U(r, t;x) = u(x, t),
r—0
im U,(r,t;x) =0, (46)

r—0

1
im U, (r,t;x) = =Au(x,t).

r—0 n



m Moreover, if uis a C? solution of (43), then, for fixed x € R",
U(r, t; x) as a function of (r,t) is in C%(]0,00) x [0,00)) and
satisfies the Euler-Poisson-Darboux equation

Ut — Up — 222U, =0 forr>0,t>0, (47)
U=G, Ui=H fort=0,
where

G(rix) = —— (v)doly)
rx) = g(y)da(y),

0B (x)| JaB,(x)

1

H(r:x) : h(y)do(y).

 10Br(x)] JoB, (x)

We hope to transform (47) into the usual 1D wave equation. This
can be done easily when n = 3. So we consider this case first.



Case n = 3. We consider the Cauchy problem (43) of 3D wave
equation. The Euler-Poisson-Darboux equation becomes

2
Utt — Urr — _Ur = 0.

r

Thus 92(rU) = 9%(rU). Let U=rU, G=rG and H=rH. Then

p

w—U, =0 forr>0,t>0

:6, Dt:H at t =0and r > 0.

g o

\

Moreover, in view of (46), we have

~ ~

U=0, U, = u(x,t), U, =0 when r=0.



Thus, we may extend U to R x [0, 00) by odd reflection, i.e. we set

~

Ur.t) = U(r, t; x), r>0,t>0,
T —U(=r,t;x), r<0,t>0.

Then U € C3(R x [0, 00)) and
Uy —U,=0 —oo<r<oo,t>0,
Y G(r).

(r,0) = U.(r,0) = H(r), —oo<r<ox,



By the d'Alembert formula,

r+t
U(r,t) = % (G(r+1t)+G(r—1t)) + 1/ H(s)ds.

2 Jr—t
Thus
U(r, t; x)
- <( : (6(r+ t)+ G(r — t)) + 3 :rtt H(s)ds, r>t>0,
— | % (E(H- ) — E(t— r)) +% :Frr Fl(s)ds, 0<r<t.

Consequently, for t > 0 we have

q&n:mﬂﬂmt@ZEmHJMy

r—0 r



Using the definition of G and H, and the fact [0B,(x)| = 472 in
R* we obtain

Theorem 25 (Kirchoff formula)

Let g € C3(R3) and h € C*(R3). Then

o[ 1 1
u(x, t) = 5 (ﬁ /yxtg(y)da(y)) = /yx_t h(y)da(y)

1

“w ), (8(y) +Valy) - (v = x) + th(y)) do(y)

gives the unique solution u € C*(R3 x [0,00)) of the Cauchy
problem (43) for 3D wave equation.



Case n = 2:

m The procedure for n = 3 does not work for 2D wave equations.

m We use the Hadamard's method of descent to derive the
solution formula for 2D wave equation from the Kirchoff
formula for 3D wave equation.

m Write x = (xq,x2) and X = (x, x3) and consider the Cauchy
problem of the 3D wave equation

Ug — AU = Uy =0 in R3 x (0, 00),
U(x.0) = g(x), Us(x.0)=h(x), x€eR

where A denotes 2D Laplacian, i.e. AU = Uy + Usoxo-



m By the Kirchoff formula,

Ul x5,1) = V%, 1) = = ( : /__tg(y)da(y))

Art

1

+— h(y)do(y)
Wt Jig-xi=t

where y = (y1,¥2) and ¥y = (y, y3). Since g and h do not
depend on y3, U is independent of x3 and hence it is a
solution of the Cauchy problem (43) of 2D wave equation.

m We simplify U by rewriting the two integrals over the sphere
y —X| =t.



m The sphere |y — x| =t is a union of the two hemispheres

y3 = ¢+(y) = x3 =+ \/t2 —ly — x|,

where |y — x| < t. On both hemispheres, we have

_ t
do(7) = \/1+ Vo= (y) 2dy = NETET
Therefore
0 (1 g(y)
U(x, t) = / dy
RN (QW yxi<t V2 = |y =X’ )
1 h

+ — W) dy.

21 Jy—x|<t /12 — |y — x|



This immediately gives the following result.

Theorem 26 (Poisson formula)

Let g € C3(R?) and h € C*(R?). Then

t g(x+ ty) t h(x + ty)
u(x, t) = 0 —/ dy)—l——/ dy
(27T yl<t /1= [yf? 21 Jiyj<1 /1 = |y]?

_ 1 g(y) +th(y) + Vely) - (y = x)
2T J)y—x|<t V2= |y — x|?

gives the unique solution in C*>(R? x [0,0)) of the Cauchy
problem (43) for 2D wave equation.

The procedures for n = 2,3 can be extended to derive solution
formulae of the Cauchy problems (43) for higher dimensional wave
equations.



Since the procedure is lengthy and boring, we state the results
without proofs.

Theorem 27

If g € CIn/2IH2(R™) and h € CI/2ITL(R™), then (43) has a unique
solution u € C?([0,00) x R"), where [n/2] denotes the greatest
integer not greater than n/2.

Moreover, if n > 3 is odd, then, with v, =1-3-5-...-(n—2),

u(x, t) L9 (1 a)"f t d
)= ;.\ T a9, d
7 Ot \ Ot 0B:()| Jog,00

n—3
1 /10)\ 2 12 /
4+ — | =— hdo
’Yn(faJ (3Bt(X) OB:(x) )




while, if n > 2 is even, then, with v, =2-4-...-(n—2) - n,
n—2
1 0 /10)\ 2 t" g(y)
u(x,t —— d
0= 25 () (Bt(x Y v g

n—?2
1 /10)\ 2 t" h(y)
+ — | -—= do | .
%(tﬁt) (Bt(x ) V2 =y — x| )

Remark.

m Given (xp, tg) € R" x (0,00). Theorem 22 shows that
u(xo, to) is completely determined by the values of f and g in
the ball ‘X —Xo‘ < 1p.

m When n > 3 is odd, by the solution formula this result can be
strengthened: u(ty, xg) depends only on the values of f and g
(and derivatives) on the sphere |x — xp| = to. This is called
the Huygens' principle.



Duhamel Principle
We now consider the inhomogeneous problem (44), i.e.

[ up — Au=f(x,t) in R x (0, 00),

| u(x,0) =0, u(x,0)=0, xeR, (48)

where f € CI/2H1(R" x [0, 00)). We use the Duhamel principle,
l.e. for any s > 0, we first consider the homogeneous problem

{ Wi — Aw =0 in R" x (s, 00), (49)

w=0, w=f(,s), whent=s

which has a unique solution, denoted as w(x, t; s); we then define

u(x, t) _/0 w(x, t;s)ds. (50)



The following result shows that u is the solution of (48).

Theorem 28

Let f € CI/2+L(R" x [0,00)). Then the u defined by (50) is the
unique solution of (48) in C*(R" x [0, 00)).

Proof. Clearly u(x,0) =0 and

t t
ut(x,t) = w(x, t; t) + / we(x, t;s)ds = / we(x, t; s)ds.
0 0
So u(x,0) = 0. Moreover
t
ust(x, t) = we(x, t; t) —I—/ Wi (X, t; ) f(x,t) / Aw(x,t;s)d
0

= f(x, t)—l—A/t w(x, t;s)ds = f(x, t) + Au(x, t). _
0



We conclude this section by giving the explicit solution formulae of
(48) for n=1,2,3.

m When n =1, by the d'Alembert formula the solution of (49) is

given by
1 X—I—(f—S)
w(x, t;s) = 5 / f(y,s)dy.
2 Jx—(t—s)

Therefore the solution of (48) for n = 1 is given by

// s)dyds
X—|—T

_f/ fly. t — 7)dydr.
2 0 Jx—1



m When n = 3, by the Kirchoff formula the solution of (49) is

w(x,t;s) = 47T(t1 ) /thS f(y;s)do(y).

Therefore, the solution of (48)

/ /y s t—s da(y)ds
L i

t— |y —
fyt=ly=x)
47T ly—x|<t ‘_)/—X‘

which is called the retarded potential because u(x,t) depends
on the values of f at the earlier times t' =t — |y — x]|.



m When n =2, by Poisson formula the solution of (49) is given

by

1 f
2_/ (3/75) 2dy.
T Jly—x|<t—s /(t —5)? — |y — x|

w(x, t;s) =

Therefore the solution of (48) is given by

a(x. 1) /f f(y,s) vds
T 21 Jo Jiyenice—s /(E—5)2 - \V—X\Q

!/t/ ”t_T)der
ly—x|<T \/T —ly — x
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IV. Nonlinear Wave Equations



W

ave Equations

m We will consider the Cauchy problem of semi-linear wave

equation

{ Ou := v — Au = F(u,0u), inR"x (0, T], (51)

u(x,0) = g(x), wu(x,0)=h(x), xeR"

where Ou = (0;u, Vu) and F € C* satisfies F(0,0) = 0.

Under certain conditions on g and h, we will establish a local
existence result, i.e. there is a small T > 0 such that (51) has
a unique solution in R"” x [0, T].

The proof is based on the Picard iteration which defines a
sequence {un}; the solution of (51) is obtained by the limit of
this sequence.



P e

m The sequence {up} is defined by solving the Cauchy problem
of linear wave equation

(52)

Uum = Fum—1,0Um—1), in R" x (0, T],
Um(Xa 0) — g(X)a 8tum(xa 0) — h(X)a x € R”

form=0,1,---, where we set u_; = 0.

m S0 it is necessary to understand the Cauchy problems of linear
wave equations deeper.

m We need some knowledge on Sobolev spaces.



- The Sobolev spacesy

For any fixed s € R, H® := H*(IR") denotes the completion of
Cy°(R") with respect to the norm

X 1/2
Il = ([ alg2riferde)

where (&) := Jrn e~ € f(x)dx is the Fourier transform of f.

m H° is a Hilbert space and H® = 2.

m If s > 0is an integer, then [[f|lps = >, < |0%F]| 2.
m H>2 C H* for any —o0 < 51 < s < 00.

m H ° is the dual space of H® for any s € R.

m

If s > k + n/2 for some integer kK > 0, then H® — CK(R")
compactly and there is a constant (s such that

STl < CsllFllpe. V€ HE.

o] <k



m Given integer k >0, C*([0, T], H®) consists of functions
f(x,t) such that t — ||04f (-, t)||s is continuous on [0, T] for
J=20,--- k. It is a Banach space under the norm

k
2% max_ NOLEC, ) s

m L1([0, T]. H®) consists of functions f(x, t) such that

-
/ |7 (-, t)||gsdt < .
0



Let 0 = 92 — A denote the d'Alembertian. We first establish the

following energy estimate.

For any u € C?(R" x [0, T]) there holds

t
[Ou(-, t)|[ 2 < [[Du(-, 0)]] 2 +/ 10u(-, 7)||2d7, 0<t<T.
0

Proof. Fix Tg > T and consider the energy
E(t) — / (lue(x, )2 + |V u(x, £)[?) dx.
|X|§T0—f_'
From the proof of Theorem 22 we have

iE(t“) < 2/ ue(x, t)Ou(x, t)dx.
dt x| < To—t



By the Cauchy-Schwartz inequality we can obtain

1/2
iE(i‘) <2 / ue(x, t)]°dx / Ou(x, t)[*dx
dt x| < To—t x| <To—t

= 2£(t)"/?||Du(, t)l 287, .(0))-

1/2

Therefore ZE(t)Y/? < |Duf(-, t)HLQ(BTO—t(O)' Consequently

t
|0u(-, )l 287, _(0)) = E(t)/? < E(0)M/? +/0 |0u( 7l 287, (0))dT

t
< H@U(,O)HLz +/0 HDU(',T)HL2dT.

Letting Tg — o0 gives the desired inequality. B



The energy estimate in Lemma 29 can be extended as follows.

Theorem 30

Let u e C*®°(R" x [0, T]). Then, for any s € R, there is a constant
C depending on T such that

t
Y o lo%u( )]s < C Zé‘au(-,O)Her/O |0u(-, 7)|| s dr

o <1 <1

for0<t<T.

Proof. Consider only s € Z. We may assume that the right hand
side is finite. There are three cases to be considered.



Case 1: s = 0. We need to establish

t
S l0u( )2 £ Y 1107 u(- 0)llz + /0 [0u(-, )| 2

| <1 <1
(53)
To see this, we first use Lemma 29 to obtain

t
10u( )l 2 < 9u(-,0) 12 + /O O, )| pdr. (54)

By the fundamental theorem of Calculus we can write

u(x,t) = u(x,0) —I—/O u(x,7)dT.



Thus it follows from the Minkowski inequality that

lu(s )l 2 < lul, L2+/ e, 7))l 2d T

Adding this inequality to (54) gives

Z Haa ||L2 Z H@au(-?O)HLz—F HDU('aT)H[_2dT

o<1 a<1

An application of the Gronwall inequality then gives (53).



Case 2: s € N. Let 8 be any multi-index with |5]| <'s. We apply
(53) to 0% u to obtain

Y 00%uC )l S Y 1970 u- L2+/ 100%u(-, 7)| 2dr

af<1 o<1

t
N Z 858%(-,0)Lz+/ 10°0u(-, 7)| 2 dT.
0

o<1

Summing over all 3 with [3] < s we obtain

t
N 0%uC )]s S Y (0% )Hs+/0 |0u(-, 7)|| gd.

af<1 <1



Case 3: s € —N. We consider

v(-, t) ;= (I = A)u(-, t).

Since —s € N, we can apply the estimate established in Case 2 to
v to derive that

t
S 10 llns § 3 1Ol + |10V

o] <1 o<1
Since U and (/ — AA)® commute, we have

(v(,7) = (I = A)°Ou(-, 7).



‘ Therefore
1OV ) - = [[Dul-, 1) s

Consequently

t
Z 107 (s )l Z 10%v( )Hs+/0 |0u(-, )| ysdT.
al<1

Since ||0%v(-, t)||y—s = |[0%u(-, t)||ys, the proof is complete. I

We now prove the following existence and uniqueness result for the
Cauchy problem of linear wave equation

{ Ou = f(x,t), in R" x (0, T], (55)

u(x,0) = g(x), O0:u(x,0)=h(x), x€eR"



Theorem 31

Ifg,h e C*(R") and f € C>(R" x [0, T]), then (55) has a
unique solution u € C*°(R" x [0, T]). If in addition there is s € R
such that

g € HSTY(R"), he H(R™) and f e LY[0, T], H5(R")),

then
u € C([0, T], H**Y) n C([o, T], H°)

and, for 0 < t < T there holds the estimate

Z Haa HHS < HgHHsH -+ HhHHS / Hf )HHSdT.

o<1

Proof. The existence and uniqueness follow from the previous
chapter. The remaining part is a consequence of Theorem 30. W




!.3. Solutions of semilinear wave equations

We next consider the semi-linear wave equation (51), i.e.

Lu = F(u,du) in R" x (0, T},
U(-, 0) — & Ut('v O) — h?

where F € C* satisfies F£(0,0) = 0.

(56)

m For this equation, there holds the finite propagation speed
property, i.e. if u € C?(R" x [0, T]) is a solution with
u(x,0) = ug(x,0) = 0 for |[x — xg| < tp, then u =0 in the
backward light cone C,, 1,. (see Exercise)



Theorem 32

If g, h € Cg°(R"), then there isa T > 0 such that (56) has a
unique solution u € Cg°(R" x [0, T]).

Proof. 1. We first prove uniqueness. Let u and i be two solutions.
Then v := u — @ satisfies

Vit — Av = Ra V(Oa ) =0, Vt(oa ) =0,
where R := F(u,0u) — F(0,00). It is clear that
R| < C(lv] +|ov]).

In view of Theorem 30, we have

S 0% 1)l < /R de¢</ S 0, )| 2

a[<1 af<1



By Gronwall inequality, » |, <1 |0%v[[;2=0. Thus 0 =v =u—10.

2. Next we prove existence. We first fix an integer s > n + 2.

m We use the Picard iteration. Let u_1 = 0 and define u,,,
m > 0, successively by

Oum = F(um—1,0um—1) in R" x (0, 00), (57)
um(-,0) =g, O:um(-,0) = h.

By Theorem 31, all u,, are in C*(R" x [0, 00)).

m For any index ~ satisfying || < s we have

07 up = 7 [F(um—1, Oum—_1)].



m [ herefore, it follows from Theorem 30 that

> 070 um (- b2

Bl<1

t
< Go | 32 1070 a0z + [ 107 (F (1. O 1)l 2
0

for all v with || <'s. Summing over all such v gives

> 0% um( )]

|| <s+1

t
<co( S 0% unt )l + [ Zaa[F(uml,aum1)1deT)
|| <s+1 0

o] <s



m Let

Am(t) == Z 10%um(-, )] -

la|<s+1
Then
An(t) < CO / Z 10Y[F(um—1,0Um_ 1)]HL2dT)
la|<s

By using (57) it is easy to show that
Am(0) < Ay, m=0,1,--

for some number Ay independent of m; in fact we can take Ag
to be a multiple of ||g||yss2 + || hl|Hs.



m Consequently

An(©) < CoAo+ [ 3 10 (Fum-1, Dum-)l o).

O lal<s

(58)

Step 1. We show that there is 0 < T <1 independent of m such
that

Am(t) <2CAy), YO<t<Tand m=0,1,---. (59)

m We prove (59) by induction on m. Since F(0,0) = 0 and
u—1 = 0, we can obtain (59) with m = 0 from (58). Next we

assume that (59) is true for m = k and show that it is also
true for m = k + 1. During the argument we will indicate the

choice of T.



In view of (58), we have

Acr(t) < CO(A0+/t 3 Haa[F(uk,auk)]HdeT). (60)

O Jal<s

Observing that 0“[F (uk, Ouy)] is the sum of the terms
a(ug, Ouk)0P uy - - - 0P u " Ouy - - - MmOy

where |B1| 4+ -+ |B/| + |v1| + - + |vm| = |a|. Therefore
15;] < lal/2 and || < |a|/2 except one of the multi-indices.

So O F(uk,duk)] is the sum of finitely many terms, each is a
product of derivatives of uy in which at most one factor where
uy is differentiated more than |a|/2 +1 < s/2 + 1 times.



For 07 uy with |v| <'s/2+ 1, by Sobolev embedding we have
for r > n/2+ 1+ s/2 that

D, 1w < CY 07wt

v|<s/2+1 | <r

Since s > n+2, we have s+ 1> n/2+ 1+ s5/2 and thus by
induction hypothesis

Z ‘ijﬁuk(X? t)‘ <C Z Haﬂ}/uk(ﬁt)HLQ

vI<s/2+1 y|<s+1
< CAk(t) < 2CGHA. (61)



T herefore

|8a[F(Ukvauk)]| < CAO Z ‘aﬁuk‘a V‘O‘f‘ <s.
B]<s+1

Consequently, by the induction hypothesis, we have

> 0 TF (uk, dulll 2 < CagAi(t) < Cape (62)

la|<s
In view of (60), we obtain

Ak1(t) < Co (Ao + Capt) < G (Ao + Ca T), 0t T,

So, by taking 0 < T <1 so small that C4, T < Ag, we obtain
Aki1(t) <2CyAg for 0 < t < T. This completes the proof of
(59).



Step 2. Next we show that {u,} is convergent under the norm

Jull == max_  [[0%u( 1) 2

0<t<T
la<s+1

To this end, consider

En(t):= ) [0%(umr1 — tm)(-, )]l

|a|<s+1

By the definition of {u,}, we have

Wit — tm) = R in R" x (0, T],

(Un+1 = Um)t=0 =0,  O¢(Uum+1 — um)|t=0 =0,



where
Ry = F(um, Oum) — F(um—1,0um_1).

By the same argument for deriving (58), we obtain

Thus



Consequently

Ct)™
() sup Eo(t), m=20,1,---.

En(t) <
m(t) m! <<t

So ) . Em(t) < Co. Therefore {upy} converges to some function u
under the norm || - ||. By Sobolev embedding, we can conclude

Um — u in CSHA=2IR" 5 [0, T]) and hence in C3(R" x [0, T])
since s > n+ 2. By taking m — oo in (57) we obtain that v is a
solution of (56).

Step 3. The T obtained in Step 1 depends on s. If we can show
(59), i.e.

Z 10%m (- t)][ 2 <A, 0ZtLST

la|<s+1



forall m=0,1,--- with T > 0 independent of s, then we can

conclude that v € C*(R" x [0, T]).

m We now fix s > n+3 and let T > 0 be such that

Orgntagx'r Z H@O‘um(-j t)HL2 < (<oo, m=0,1,---
|| <sp+1

and show that for all s > sy there holds

(0%
M2 <
oy > 0%um(t, )2 < G <00, ¥m. (63)
|| <s+1

m We show (63) by induction on s. Assume that (63) is true for
some s > sg, we show it is also true with s replaced by s + 1.



By the induction hypothesis and Sobolev embedding, |

max Z [0%m(x, t)] < As < 00, Vm.
(x,t)eR"x[0,T] o|<st1_[(n12)/2]

Since s > n+3, we have [(s+4)/2] <s+1—[(n+2)/2]. So

max Z 0%um(x, t)] < As,  Vm.
(x,t)ER"x[0,T] < (514) 2

This is exactly (61) with s replaced by s + 2. Same argument
there can be used to derive that

max O%Um(-, t < Csp1 <00, Vm,
max > 0 un(- Dl < Coga < o0,

|| <s+2
We complete the induction argument and obtain a C*

solution. B



m [he interval of existence for semi-linear wave equation could
be very small.

m The following theorem gives a criterion on extending solutions
which Is important in establishing global existence results.

Theorem 33 (Continuation principle)

Assume that u be the solution of the Cauchy problem (56) with
g,he C°(R"). Let

T, :=sup{T > 0: u satisfies (56) on [0, T]}.
If T. < oo, then

Y 10%(t,x)| € L°(R” x [0, T.]). (64)

la|<(n+6)/2



Proof. Assume that (64) does not hold, then

sup Z 0%u(t, x)| < C < .
0T PE ) <(n+6) 2

Applying the argument in deriving (59) we have

sup Y [0%u( )]l £ G <
RHX[O’T*)\Q\gso—I—l

where sp = n+ 3. By the argument in Step 3 of the proof of
Theorem 32 we obtain for all s > sy that

sup Yy [[0%u(t. )2 < G < o

[0. T )X R o <51



P

So u can be extend to u € C*°([0, T,] x R").

Since g, h € C5°(R"), by the finite speed of propagation we can
find a number R (possibly depending on T.) such that u(x,t) =0
for all |[x| > R and 0 <t < T,. Consequently

u(x, T.) = Oru(x, T,) =0 when |x| > R.

Thus, u(x, T.) and Oru(x, T,) are in C3°(R"), and can be used as
initial data at t = T, to extend u beyond T, by theorem 32. This
contradicts the definition of T,. |



! in Minkowski Space

First are some conventions. We will set

RI+N . — {(t,x):t € R and x € R"},

where t denotes the time and x := (x!,--- , x") the space variable.
We sometimes write t = x° and use
0 0
= — an = —=forj=1,---,n.
80 It and 81 Y J ] ]
For any multi-index o = (ag, - -+ , @,) and any function u(t, x) we
write

ol =ap+a1+---+ap and 0% = 0y°0{" --- 05" u.



Given any function u(t, x), we use

Oy ul? = O:ul®> and |Oul? = |Ogul? + |0y ul’.
J

j=1

We will use Einstein summation convention: any term in which an
index appears twice stands for the sum of all such terms as the
index assumes all of a preassigned range of values.

m A Greek letter is used for index taking values O, --- , n.

m A Latin letter is used for index taking values 1,--- , n.

For instance

b”@uu:Zb“é’uu and bj@ju:ij@ju.
(=0 Jj=1



!. gector fields and tensor %e%%s

m We use x = (x¥,x%, .-+, x") to denote the natural coordinates
in R, where x° = t denotes time variable.

m A vector field X in R is a first order differential operator of
the form

- 0
_ w2 oxn
X = EOX A = X"0,,
where X* are smooth functions. We will identify X with (X*).

m The collection of all vector fields on R is called the
tangent space of R'*" and is denoted by TR*".



m For any two vector fields X = X#0,, and Y = Y*0,,, one can
define the Lie bracket

X, Y] = XY — YX.
Then

(X, Y] = (XP0,) (Y70,) = (Y70,) (X" 0,)
= X*Y"0,0, + X" (0,Y") 0, — Y'X* 0,0, — Y" (0,X") 0,
= (X"0,Y" = Y"9,X")0, = (X(Y") = Y(X"))O,.
So [X, Y] is also a vector field.
m A linear mapping 1 : TR — R is called a 1-form if

n(fX) = fn(X), Vfe CORM™"),X e TR



For each 1 =0,1,---,n, we can define the 1-form dx* by

dx"(X) = X", ¥X = X19, € TR
Then for any 1-form n we have
1(X) = XMn(8,) = nud(X),  where 1, = n(2,).

Thus any 1-form in R*™" can be written as n = nudxt with
smooth functions 7,,. We will identify n with (7,).

m A bilinear mapping T : TR x TR*" — R is called a
(covariant) 2-tensor field if for any f € C®°(R!™") and X, Y
c TR there holds

T(X,Y)=T(X,fY)=fT(X,Y).



It is called symmetric if T(X,Y)= T(Y,X) for all vector
fields X and Y.

m Let
(myy) = diag(-1,1,--- 1)

be the (1 4+ n) x (1 + n) diagonal matrix. We define
m: TR x TR 5 R by

m(X,Y):=m,X"Y"

for all X = X#9, and Y = Y9, in TR It is easy to
check m is a symmetric 2-tensor field on R*™". We call m the
Minkowski metric on RY". Clearly

m(X, X) = — (XO)" + (X1 + - + (X",



m A vector field X in (IRi1+”,m) is called space-like, time-like, or
null 1f

m(X,X) >0, m(X,X)<0, o m(X,X)=0

respectively. Consider the three vector fields X1 = 20y — 01,
Xo =0y — 01 and X3 = 0y — 201. Then Xj is time-like, X5 is
null, and X3 is space-like.

m In (R, m) we define the d'Alembertian
O =m"9,0,, where (m"”):=(m,,)".

In terms of the coordinates (t, xt .. x™), O = —83 + A,
where A = 07 + - + 02,



nergy-momentu

m In order to derive the general energy estimates related to
[Ju = 0, we introduce the so called energy-momentum tensor.

m [o see how to write down this tensor, we consider a vector
field X = X#0,, with constant X*. Then for any smooth
function u we have

(Xu)Ou = XP0,um" 0,0, u
= 0, (X’m"0,ud,u) — X’'m""9,,0,ud, u.

Using the symmetry of (m*”) we can obtain

1
XPm"0,0,ud,u =0, (EXmeé?uu@,,u) .



Therefore (Xu)Ou = 0, (Q[U]ZX“) , where

vV 1% 1 vV o
Q[u]}, = m"?0,ud,u — §5u (m”?0,ud,u)

in which 0}, denotes the Kronecker symbol, i.e. 4, =1 when
1 = v and 0 otherwise.

m [ his motivates to introduce the symmetric 2-tensor

1
Qlu]uw == my,Qu]) = 0,ud,u — > My (m”0,ud,u)

which is called the energy-momentum tensor associated to
[Ju = 0. Then for any vector fields X and Y we have

Q[ul(X.Y) = (Xu)(Yu) — %m(X, Ym(du, du)



o

m For a 1-form 7 in (R m), its divergence is a function
defined by
divy := m"’0,n,.

For a symmetric 2-tensor field T in (R, m), its divergence
is a 1-form defined by

(divT), :==m""0,T,,.
m The divergence of the energy-momentum tensor is
(divQlul)p = m™ 0, Qlulyy
=m"0, (8yué’pu — %m,,p (m""@au&?uo

=m"0,0,ud,u = (Uu)o,u.



m Let X be a vector field. Using Q[u] we can introduce the
1-form

P, = Qlu],nX".

Then its divergence is

divP = m"9,P, = m"d,, (Q[u],,X")
= "9, Q[uly,X? + m" Q[u],, 0, X
= (divQ[u]), X* + " Q[ul,, 8, X"
= Oudu X’ + m" Q[u],,m""9, X,

_ (Cu)Xu + %Q[u]“ﬁ (9,X, 4 9,X,).

where Q[u]"” := m*""m?’ Q[u])» and X, := m,, X?.



m For a vector field X, we define
K = 0,X, +8,X,

which is called the deformation tensor of X with respect to m.
Then we have

1
divP = 0,(m"'P,) = (Du)Xu + - Q[u]"” X)W (65)

m Assume that u vanishes for large |x| at each t. Then for any
to < t1, we integrate divP over [tp, t;] X R" and note that 0;
is the upward unit normal to each slice {t} x R", we obtain

// divPdxdt = / Q[ul(X, d;)dx — / Q[ul(X, d)dx.

[to,t1] X R" {t=t1} {t=ty}



This together with (65) then implies

Theorem 34

Let u € C?(RY™") that vanishes for large |x| at each t. Then for
any vector field X and ty < t; there holds

/ Q[u|(X. O )dx = / Q[u](X, Op)dx + // (Ou) Xudxdt

{t=t1} {t=to} [to, t1] X R”

1 vV
+3 / Q[u*” M7, dxdt. (66)

[to,t1]><R”

m By choosing X suitably, many useful energy estimates can be
derived from Theorem 34.



m For instance, we may take X = 0; in Theorem 34. Notice that
()71 =0 and

1
Q[u](0t, 0¢) = > (|0sul* + [Vul?) |

we obtain for £(t) = 3 [ry,0n(|0:ul* +[Vu[?)dx the identity

t
E(t) = E(to)+/ / Ou dpudxdt’, Yt > t.
to n

This implies that

iE(i’f) = / Dududx < v/2||0u., t)HL2(Rn)E(t)1/2.
dt [t} xR?



Therefore

E(0M2 < | 0u( 1)z

Consequently we obtain the energy estimate

1 t
E(t)/? < E(tp)Y? + 7 |8u(-, )| 2@ndt’, ¥t > k.
to

3.3. Killing vector fields

The identity (66) can be significantly simplified if )7 =0. A
vector field X = X*9,, in (R'*" m) is called a Killing vector field
if X)r =0, ie

0, X, +0,X, =0  inR'".



Corollary 35 ‘

Let u € C*(R*") that vanishes for large |x| at each t. Then for
any Killing vector field X and ty < t; there holds

/ Q[u](X,d¢)dx = / Q[u](X, 0 )dx + // (Ou) Xudxdt.

{t=t1} {t=to} [to,t1] xR”

m We can determine all Killing vector fields in (R, m). Write

T = (X)WW, Then

Dy = 0,0, X, + 0,0,X,..
Oy = 040X, + 0,0,X,.
o = 0,0,X, + 0, 0,X,.



m [herefore
Oumyp + Oympy, — Oy = 20,0, X,,.
If X is a Killing vector field, then X)7 =0 and hence
0,0,X, =0 forall u,v,p.

Thus each X, is an affine function, i.e. there are constants
a,s and b, such that

X, = ayx’ + b,

(X)

Using \*/7 = 0 again we have

0=0,X +0,X,=a,, +a.u.



m Therefore a,, = —a,, and thus

X =X'0, =m"X,0, =m" (a,,x" + b)) 0,

_ +57 ) 2y x"mt 0, + m* b0
:(x z) 0, & b,

v=0 \p<v p>v
n n
= Z Z aypX'm" o, + Z Z ay Xm0, + m"’b,0,
v=0 p<v p=0rv<p

n
= Z Z (av, Xm0, + a,,x"mt’9,) + m*"b,0,

v=0 p<v

= 3% ay (D, — X m0,) + mb, 0

v=0 p<v



Thus we obtain the following result on Killing vector fields.

Proposition 36

Any Killing vector field in (R**", m) can be written as a linear
combination of the vector fields 9,,, 0 < u < n and

Q= (m"x" —m”x")0, 0<pu<v<n.

m Since (m"”) = diag(—1,1,--- ,1), the vector fields {€2,,,, }
consist of the following elements

(Lo = X’.at +t0;, 1<i<n,
Qi = ) —xi(‘?j, 1<i<j<n.



m When X7, = fm,, for some function f, the identity (66)

can still be modified into a useful identity. To see this, we use
(65) to obtain

1
divP = Qu(m“”Py) = (DU)XU + EmeVQ[U]u,I/
1—n

= (Hu)Xu + fm"0,ud,u.

We can write

fm"0,ud,u=m"9,(fud,u) — m"ud,fo,u — fullu
1 1
=m""0,(fud,u) — m"”o, (§u28uf) + Eusz — fullu

1 1
—m"o, | fud,u— =u?d,f | + =u’0Ff — fullu
" 2 2



.
Consequently

1—n

1
Ou(m" P,) = (Du)Xu + m"’o, (fué‘yu — §u28yf)

1—n 1—n

+ ?Of — fullu

Therefore, by introducing
~ n—1

1
Py = Py + ——fudju - ”Taﬂauf,

we obtain

~ ~ —1 — 1
divP = 0,(m""P,) = Uu (Xu + k Z fu) . . v?0f .



By integrating over [tg, t1| X R™ as before, we obtain
y g g 7

Theorem 37

If X is a vector field in (R'", m) with X)w = fm, then for any
smooth function u vanishing for large |x| there holds

/Q(X,(‘?t)dx: / é(X,@t)dX—ngl // u? O fdxdt

t=t t=to [to,t1] xR7

- (xu+

[to,tl]XR”

A - 1fu) Nudsxdt.

where ty < t; and

Q(Xﬁt) = Q[u](X, 0¢) + ! ; ! (fuc‘?tu — %u%’ﬁ) .



m A vector field X = X#9, in (R m) is called conformal
Killing if there is a function f such that X7 = fm, i.e.
Xy +0,X, = fmy,.

m Any Killing vector field is conformal Killing. However, there
are vector fields which are conformal Killing but not Killing.

(i) Consider the vector field

n

Lo = ZX“@M = x"0,.

p=0

we have (Lo)* = x" and so (Lo), = m,,x". Consequently

(Lo)mw = Ou(Lo)y + 9u(Lo)p = Op(mynx") 4 9y (myyx")

= mynéz +my,0, =2m,,.

Therefore Lo is conformal Killing and (L) = 2m.



(ii) For each fixed u©=0,1,---,n consider the vector field
K, :=2m,,x"x"0, —m,,x"x"0,,.
We have (K),)” = 2m,,, x"x" — my,,x"'x"f,. Therefore
(Ki)p = mpn(Ku)" = 2mpum,, x"x7 —mpy,m,, x"x7.
By direct calculation we obtain
(K”)an = 0p(Kpu)y + O (Kyu)p = 4myux"my,).

Thus each K, is conformal Killing and (Ku) g = 4m,,, x"m.
The vector field Kp is due to Morawetz (1961).

All these conformal Killing vector fields can be found by
looking at X = X#0,, with X*# being quadratic.



m We can determine all conformal Killing vector fields in
(R, m) when n > 2.

Proposition 38

Any conformal Killing vector field in (R*™™ m) can be written as a
linear combination of the vector fields

Oy, 0<pu<n,
Q= (MPx" —m™x")0,, 0<p<v<n,

n

LO — ZX“@W

=0
KUJ — mquVXpap - mpyXpram /,L — Oj 1j * , n.



Proof. Let X be conformal Killing, i.e. there is f such that
X = 0,X +0,X, = fm,,.
We first show that f is an affine function. Recall that
20,0, X, = Oymyp + Oumpy — OpT .
Therefore
20,0, X, = m,,0,f + m,,0,f —m,,0,f.
This gives

200X, = 2m" 8,0, X, = (1 — n)d,f.

(67)

(68)



In view of (67), we have
(n+1)f =2m""9, X,
This together with (68) gives
(n+ 1)Uf =2m"9,0X, = (1 — n)m""0,0,f = (1 — n)LIf.
So LJf = 0. By using again (68) and (67) we have
1 —n

(1= n)0,d,f = (0,0, f + 8,0,f) = 8,0X, + 0,0X,
= 0(9,X, + 0,X,) = m,Of = 0.

Since n > 2, we have 9,0,f =0. Thus f is an affine function, i.e.
there are constants a,, and b such that f = a,x* + b.



_—
Consequently
X)r = (aux" + b)m.

Recall that (L) = 2m and (K7 = 4m ,,x"m. Therefore, by

introducing the vector field

. 11
X=X~ >blo— 7m"a,K,

we obtain

()?)W — (X) - _ lb (Lo) 7 — lm“”a,, (Ku)e = 0.

Thus X is Killing. We may apply Proposition 36 to conclude that
X is a linear combination of d,, and §2,,,,. The proof is complete. W



We turn to global existence of Cauchy problems for nonlinear wave
equations

u = F(u,du).

This requires good decay estimates on |u(t, x)| for large t. Recall
the classical Sobolev inequality

)l <C Y 0%, YxER”
| <(n+2)/2

which is very useful. However, it is not enough for the purpose. To
derive good decay estimates for large t, one should replace Of by
Xf with suitable vector fields X that exploits the structure of
Minkowski space. This leads to Klainerman inequality of Sobolev

type.



e

The formulation of Klainerman inequality involves only the
constant vector fields

and the homogeneous vector fields

LO — Xpap,

Q= (M*PXx" —m”x")0,, 0<pu<v<n.

There are m + 1 such vector fields, where m = (”+1)2(”+2). We will

use [ to denote any such vector field, i.e. [ = (['g,---,I,) and

for any multi-index oo = (v, - - , am) we adopt the convention
ro =rge...rom
=g O



It is now ready to state the Klainerman inequality of Sobolev type,

which will be used in the proof of global existence.

Theorem 39 (Klainerman)

Let u e C*([0,00) x R™) vanish when |x| is large. Then

(L4 e+ X)L+ = xDlu(e )P < C Y Mt )l

42
|04|§n7

for t > 0 and x € R", where C depends only on n.

We skip the proof of Theorem 39 since the argument is rather
lengthy. Before using this result, deeper understanding on the
vector fields I is necessary.



Lemma 40 (Commutator relations)

Among the vector fields 0,,, <1,,, and Ly we have the commutator
relations:

[0, 0] = 0,
[f% LO: 8/“
(@ ] = (m"“éz — m‘”’éﬁ) Oy,
[Qw/a Qpa:
[Q;u/a L0:

0.

Therefore, the commutator between 0, and any other vector field
is a linear combination of {0, }, and the commutator of any two
homogeneous vector fields is a linear combination of homogeneous
vector fields.



I —————————".
Proof. These identity can be checked by direct calculation. As an
example, we derive the formula for [€2,,,,€,s]. Recall that

Q= (M x" —m"x")0,.
Therefore

Q.20 = Q0 (MPx7 —m'"7xP) 0, — Q,r (M x" —m'""x") 0
v s3tp j 7 p 7
= (m*x” —m7x") (m”p&? — m”"&?) Oy
— (M7Px% —m77x") (mwd’; — m”’/&“y‘) Oy
=m" (m”x" —m"x") 0, — m" (m"7x" —m"'x7) 0,
+ m” (m"7x* —m""x7) 0, — m?” (m"’x* —m'""x") 0,

This shows the result. B
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For any 0 < j1,v < n there hold
0,0, =0, [0,Q,]=0, |0 L]=20

Consequently, for any multiple-index « there exist constants ¢,
such that
Or* = ) 0. (69)

18]<|e

Proof. Direct calculation. B




!4. Global Existence in Higher Dimension

We consider in R'*" the global existence of the Cauchy problem

u = F(Ou)

(70)
Ult:() :Ef; 8tu|t:0 — &8,

where n >4, > 0is a number, and F : R1T" - R is a given C™
function which vanishes to the second order at the origin:

F(0)=0, DF(0)=0. (71)

The main result is as follows.



Theorem 42

Let n>4 and let f,g € C°(R"). If F is a C* function satisfying
(71), then there exists eqg > 0 such that (70) has a unique solution
ue C®([0,00) x R") for any 0 < ¢ < &¢.

Proof. Let
T« :=sup{T > 0:(70) has a solution u € C>([0, T] x R")}.

Then T, > 0 by Theorem 33. We only need to show that T, = oc.
Assume that T, < oo, then Theorem 33 implies

> 0%u(t.x)| € L]0, T.) x R™).

|| <(n+6)/2
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We will derive a contradiction by showing that there is eg > 0 such
that for all 0 < ¢ < &g there holds

sup Y 10%u(t,x)] < oo (72)
(t,x)€[0, T ) xRn | <(n+6)/2

Step 1. We derive (72) by showing that there exist A > 0 and
go > 0 such that

At):== > [lortu(t,)|z < As, 0<t<T, (73)
|| <n+4

for 0 < € < gg, where the sum involves all invariant vector fields
Ou, Lo and €2,



- g
In fact, by Klainerman inequality in Theorem 39 we have for any
multi-index 3 that

(e x) < CL+0) 7T Y rearfu(t, .
a|<(n+2)/2

Since [I', 0] is either 0 or +0, see Lemma 40, using (73) we obtain
for 3| < (n+6)/2 that

O u(t,x)| < CL+8)~ 7 Y [lorTu(t, )|,
|| <n+-4
1

= C(1+t)" 7T A(t)
< CAs(1+1t)"T. (74)



-,
To estimate [P u(t, x)|, we need further property of u. Since
f,g € C§°(R"), we can choose R > 0 such that

f(x)=g(x)=0 for |x| > R.
By the finite speed of propagation,
u(t,x)=0, if0<t<T,and|x| >R+t
To show (72), it suffices to show that

sup Tu(t,x)| < oo, Val <(n+6)/2.



-,
For any (t, x) satisfying 0 < t < T, and |x| < R+ t, write
x = |x|w with |w| = 1. Then

Mu(t,x) =T%(t, |x|w) —T%u(t, (R + t)w)

1
- /0 O ult, (slx| + (1~ )(R + B)w)ds ([x| - R — £}

In view of (74), we obtain for all |a| < (n+6)/2 that
Fu(t,x)| < CAe(1+t)~"7 (R+t — |x|)

n—3

< CAs(1+1t) 2.




Step 2. We prove (73).

m Since u € C*([0, T,) x R") and u(t,x) =0 for |x| > R + t,
we have A(t) € C([0, T,)).

m Using initial data we can find a large number A such that

A(0) < = Ae. (75)

By the continuity of A(t), thereis 0 < T < T, such that
A(t) < Asfor0<t < T.

m Let

To=sup{T €[0, T,): A(t) < Ae,V0O <t < T},

Then Tg > 0. It suffices to show Ty = T..



We show To = T. be a contradiction argument. If To < T, then
A(t) < Ae for 0 < t < Tg. We will prove that for small € > 0 there
holds

A(t) < %AE for 0 <t < T,
By the continuity of A(t), there is 9 > 0 such that
Alt) <Ae for0<t< Tg+9
which contradicts the definition of Ty.
Step 3. It remains only to prove that there is eg > 0 such that

1
A(t) < Asfor 0 <t < T0:>A(t)§§A€for0§t§ To

for 0 < e < gp.



By Klainerman inequality and A(t) < Ae for 0 <t < Tp, we have

for |5] < (n+6)/2 that
Or0u(t,x)| < CAs(1+ )2, W(t,x) €0, To] x R". (76)

To estimate [[OTu(t,)||;2 for |a| < n+ 4, we use the energy
estimate to obtain

t
|or%u(t, )l 2 <[0T u(O0, )2 + C/O IO u(r, )| 2d7. (77)

We write
(%, =[O, T u+TY(F(Ou))

and estimate ||[“(F(0u))(7, )|/ ;2 and ||[LJ, T*]u(T, -)|| ;2.



Since F(0) = DF(0) = 0, we can write

F(Ou) = Z Fix(Ou)O;udyu.
jk=1

where Fj are smooth functions. Using this it is easy to see that
[*(F(Ou)) is a linear combination of following terms

Foioa,(Ou) - T0u -T*20u - - - T*m0u

where m > 2, Fg,...q, are smooth functions and |a1| + -+ + |am|
= || with at most one «; satisfying || > |«|/2 and at least one
«; satisfying |« < |al/2.

m In view of (76), by taking g such that Asg < 1, we obtain
| Fay -, (Ou)|| 1~ < C for 0 < e < gp with a constant C
independent of A and «.
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m Since |a|/2 < (n+4)/2, using (76) all terms Y 0u, except
the one with largest |a;|, can be estimated as

| 1
[T 0u(t, x)| Loo ([0, To]xrr) < CAe(1+t)" 2

Therefore
[TECF(Ou))(t, )2 < CA(1 + 1) Z IT°0u(t, )|l 2
1B|< ]
< CAs(1+ t)™ "= A(2). (78)

Recall that [[J, ] is either O or 2[]. Thus

0. < Y IMP0ul S ) P (F(8uw)].

|B]< el B <|ex]
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Therefore

IO, TTu(t, e < € Y PP (FOw)(E )2

B8] <|ex]

< CA(1+ 1) A(t). (79)

Consequently, it follows from (77), (78) and (79) that

t
A
Joru(e, Yoz < 0760, Y2 + CA= [ —2ar
o (L+7)72
Summing over all o with |a| < n + 4 we obtain
A7) 1 LOA(T)

A(t) < A(0) + CAe —dT1 < ZAs + CAe dr.

o (1+7)= o (L4+7)7



P e

By Gronwall inequality,

At) < 1A ca [ ar 0<t<T
< ZAcexp g o 1Dz <t< lop.
For n > 4, fooo (1+~r§j(z—1>/2 = % < 00. (This is the reason we

need n > 4 for global existence). We now choose £y > 0 so that

2
——CA < 2.
exp(n+2C 50) <

Thus A(t) < As/2 for 0 <t < Tp and 0 < € < . The proof is
complete. ]



Remark. The proof does not provide global existence result when
n < 3 in general. However, the argument can guarantee existence
on some interval [0, T.], where T. can be estimated as

( e/5, p=3,
T.>< c/e?, n=2, (80)
n=1.

\ C/5,

In fact, let A(t) be defined as before, the key point is to show that,
forany T < T,

1
A(t) < Asfor0 <t < T:>A(t)§§A€forO§t§T
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The same argument as above gives

At) < 1A CA /t ar 0<t<T
4 = &P - 0 (1_|_7-)(n—1)/2 ’ - =

Thus we can improve the estimate to A(t) < %As for0<t< Tif

I satisfies
.
g dr
exp (CAs/O i T)(nl)/2) <2

When n < 3, the maximal T. with this property satisfies (80).
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Remark. For n =2 or n = 3, the above argument can guarantee
global existence when F satisfies stronger condition

F(0)=0, DF(0)=0, ---, DX*F(0)=0, (81)

where k = 5 — n. Indeed, this condition guarantees that F(Ou) is a
linear combination of the terms

(Ou)oju---0;

Jk+1 u.

.Il Jk+1

Thus '*(F(Ou)) is a linear combination of the terms
fi..i (Ou)*20u - ... - T Ju,

where r > k+ 1, |a1| 4+ -+ + |a,| = |a| and f;,...; are smooth
functions; there are at most one «; satisfying «; > |«|/2 and at
least k of «; satisfying |a;| < |a/2.
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We thus can obtain

IT*(F(Ou))(t, )|l < CAs(1+1t)" 2 A(t),
1[0, Tu(t, )| 2 < CAs(1+t)" = A(t).

Therefore

1 t dr
A(t) < ZAgexp (CAE/O (1_|_7-)((n1)k)/2)°

Since k =5 — n, fooo (HT)(‘{:_I)WQ converges for n =2 or n = 3.

The condition (81) is indeed too restrictive. In next lecture we
relax it to include quadratic terms when n = 3 using the so-called
null condition introduced by Klainerman.



