
The Basel Problem

Paul Balister

The Basel Problem asks for the exact value of the infinite sum
∑∞

k=1
1
k2
. It was first posed

by Pietro Mengoli in 1644 and, despite much effort, was only solved ninety years later by
Leonhard Euler in 1734, who found that

∞∑
k=1

1

k2
=

π2

6
. (1)

His original proof was not rigorous by today’s standards, but since then many rigorous
proofs have been found. Here we use an approach that relies only on ideas and results
from Analysis I & II.

The material here is non-examinable and can be read after one has completed Section 9
of the lecture notes on the Mean Value Theorem.

We start with a trigonometric identity.

Lemma 1. For any n ≥ 1 and x ∈ R \ {kπ : k ∈ Z},

1

sin2 x
=

1

4n

2n−1∑
k=0

1

sin2
(
x+kπ
2n

) . (2)

Proof. We use standard trigonometric identities to deduce that

1

sin2 x
=

cos2 x
2
+ sin2 x

2(
2 sin x

2
cos x

2

)2 =
1

4 sin2 x
2

+
1

4 cos2 x
2

=
1

4

(
1

sin2
(
x
2

) +
1

sin2
(
x+π
2

)).
This is the n = 1 case. Now by induction, assuming the result for n− 1,

1

sin2 x
=

1

4n−1

2n−1−1∑
k=0

1

sin2
(
x+kπ
2n−1

)
=

1

4n−1

2n−1−1∑
k=0

1

4

(
1

sin2
(
x+kπ
2n

) +
1

sin2
(
x+kπ+2n−1π

2n

)) =
1

4n

2n−1∑
k=0

1

sin2
(
x+kπ
2n

) .
Remark 2. In fact it is true that

1

sin2 x
=

1

n2

n−1∑
k=0

1

sin2
(
x+kπ

n

)
for all n ≥ 1, not just when n is a power of 2. [Exercise: see if you can prove this!]
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Lemma 3. For all x ∈ R \ {kπ : k ∈ Z}

1

sin2 x
=

∞∑
k=−∞

1

(x− kπ)2
. (3)

Remark 4. When we have a doubly infinite sequence (an) defined for all n ∈ Z, the
statement that

∞∑
k=−∞

ak = L

is interpreted to mean that both
∑∞

k=0 ak and
∑∞

k=1 a−k converge and L is their sum.
Equivalently, ∀ε > 0: ∃N : ∀n,m ≥ N : |

∑n
k=−m ak − L| < ε. [Exercise: prove these

statements are equivalent.]

Proof. By using the fact that sin2 x is periodic with period π we can replace the terms
k = 2n−1 + 1, . . . , 2n − 1 with k = −(2n−1 − 1), . . . ,−1 giving (after renaming k to −k)

1

sin2 x
=

1

4n

2n−1−1∑
k=−2n−1

1

sin2
(
x−kπ
2n

) .
Now the idea is to replace the terms 1

sin2 z
in the sum with 1

z2
, so it helps to know how

the difference behaves. As x → 0 we have

1

sin2 x
− 1

x2
=

x2 − sin2 x

x2 sin2 x
=

x2−(x− x3

6
+O(x5))2

x2(x−O(x3))2
=

x4

3
+O(x6)

x4 +O(x6)
=

1
3
+O(x2)

1 +O(x2)
→ 1

3
. (4)

(Or apply L’Hôpital multiple times.) Thus we can extend this function to a continuous
function on [−2, 2], say. Thus by the Boundedness Theorem there is some M such that,
for all x ∈ [−2, 2] \ {0}, ∣∣∣ 1

sin2 x
− 1

x2

∣∣∣ ≤ M.

But then, assuming x is fixed and n large enough so that all x−kπ
2n

∈ [−2, 2] (which we
can do as we rearranged the sum so that |k| ≤ 2n−1),∣∣∣∣ 1

sin2 x
−

2n−1−1∑
k=−2n−1

1

(x− kπ)2

∣∣∣∣ = ∣∣∣∣ 14n
2n−1−1∑
k=−2n−1

(
1

sin2
(
x−kπ
2n

) − 1(
x−kπ
2n

)2)∣∣∣∣
≤ 1

4n

2n−1−1∑
k=−2n−1

M =
2nM

4n
=

M

2n
.

Now both sums
∑∞

k=0
1

(x−kπ)2
and

∑∞
k=1

1
(x−(−k)π)2

converge by comparison with
∑

1
k2
.

Thus taking the limit as n → ∞ we deduce that (3) holds by sandwiching.

We are now essentially done. Substitute x = π
2
to obtain

1 =
∞∑

k=−∞

1

(π
2
− kπ)2

=
4

π2

∞∑
k=−∞

1

(2k − 1)2
=

8

π2

∑
k>0 odd

1

k2
.
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But ∑
k>0 odd

1

k2
=

∑
k>0

1

k2
−

∑
k>0 even

1

k2
=

∑
k>0

1

k2
−
∑
k>0

1

(2k)2
=

3

4

∑
k>0

1

k2
.

Thus
∞∑
k=1

1

k2
=

4

3

∑
k>0 odd

1

k2
=

4

3
· π

2

8
=

π2

6
.

This solves the Basel Problem. However, in some sense it would be nicer to evaluate (3)
at x = 0 since then we don’t need to split into even and odd terms. Unfortunately both
sides are now undefined. But we do have for all 0 < |x| ≤ 2, say,

1

sin2 x
− 1

x2
=

∑
k ̸=0

1

(x− kπ)2
.

Now the RHS converges uniformly on [−2, 2] by the Weierstrass M -test: take Mk = 1
k2

for large k. Thus the RHS is a Uniform Limit of Continuous Functions, so is continuous,
and in particular, continuous at x = 0. But the limit of the LHS is 1

3
as x → 0 by (4).

Hence
1

3
=

∑
k ̸=0

1

(−πk)2
=

2

π2

∞∑
k=1

1

k2
,

and the Basel Problem is again solved.

What about sums of other powers? Can we find closed form expressions for

∞∑
k=−∞

1

(x− kπ)s

for other values of s and use them to calculate
∑

1
ks
?

One idea would be to repeatedly differentiate both sides of (3), with the RHS being dif-
ferentiated term by term to get higher negative powers of x−kπ. But can we differentiate
an infinite sum of functions term by term? The answer in general is of course ‘No’. But
the following theorem allows us to do this in many cases.

Theorem 5. Suppose I is an interval, uk : I → R are differentiable and

(a)
∑

uk(x0) converges for some x0 ∈ I,

(b)
∑

u′
k(x) converges uniformly on I.

Then
∑

uk(x) converges to a differentiable function with

d

dx

∞∑
k=1

uk(x) =
∞∑
k=1

u′
k(x).

Remark 6. We need
∑

u′
k to converge uniformly here,

∑
uk converging uniformly does

not help. Also condition (a) is just needed to ‘anchor’ the sum at some point, since
otherwise we could just take uk(x) = ak to be a constant with

∑
ak diverging as a

counterexample.
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Remark 7. You will see this theorem again in Analysis III with a much simpler proof
(but with the added assumption that u′

k are all continuous). The idea there is to just
integrate

∑
u′
k and use the fact (which will be proved in Analysis III) that the integral

of a uniform sum is the sum of the integrals.

Proof. First we show that
∑

uk(x) converges for every x ∈ I. Write fn(x) :=
∑n

k=1 uk(x)
for the partial sums and note that f ′

n(x) =
∑n

k=1 u
′
k(x) as the derivative of a finite sum

is just the sum of the derivatives.

Now f ′
n =

∑n
k=1 u

′
k converges uniformly as n → ∞, so by the Cauchy Convergence

Criterion for Uniform Convergence, for all ε > 0 there exists some N such that for
n,m ≥ N , and for all x ∈ I we have |f ′

n(x) − f ′
m(x)| < ε. But by the Mean Value

Theorem applied to fn − fm we have∣∣(fn(x)− fm(x))− (fn(x0)− fm(x0))
∣∣ = |(x− x0)(f

′
n(ξ)− f ′

m(ξ))| ≤ ε|x− x0|

for some ξ ∈ I between x0 and x. (Note that uniform convergence of
∑

u′
k was

needed here — we needed to apply the bound at some unknown ξ.) But by (a) and
the usual Cauchy Convergence Criterion, we have some N ′ such that if n,m ≥ N ′

|fn(x0) − fm(x0)| < ε. Thus for n,m ≥ max{N,N ′}, |fn(x) − fm(x)| < ε(|x − x0| + 1).
As |x− x0|+1 here is just a constant, we see that for any fixed x, (fn(x)) is Cauchy and
so fn converges.

Thus we have a well-defined limit function f(x) :=
∑∞

k=1 uk(x). Write

g(x) :=
∞∑
k=1

u′
k(x) = lim

n→∞
f ′
n(x)

for our conjectured derivative of f , noting that by (b) this does indeed converge. Fix
x1 ∈ I and now consider differentiability of f at x1. Using the MVT again we see that
for m,n ≥ N ∣∣∣fn(x)− fn(x1)

x− x1

− fm(x)− fm(x1)

x− x1

∣∣∣ = ∣∣∣f ′
n(ξ)− f ′

m(ξ)
∣∣∣ < ε.

for some ξ between x and x1. Taking a limit as n → ∞ gives∣∣∣f(x)− f(x1)

x− x1

− fm(x)− fm(x1)

x− x1

∣∣∣ ≤ ε

for m ≥ N . Now choose m ≥ N sufficiently large so that

|f ′
m(x1)− g(x1)| < ε

(recall f ′
m → g). Then (by definition of f ′

m) choose δ > 0 so that for 0 < |x− x1| < δ∣∣∣fm(x)− fm(x1)

x− x1

− f ′
m(x1)

∣∣∣ < ε.

Then, for 0 < |x− x1| < δ, the triangle inequality gives∣∣∣f(x)−f(x1)
x−x1

−g(x1)
∣∣∣ ≤ ∣∣∣f(x)−f(x1)

x−x1
− fm(x)−fm(x1)

x−x1

∣∣∣+ ∣∣∣fm(x)−fm(x1)
x−x1

−f ′
m(x1)

∣∣∣+ |f ′
m(x1)−g(x1)|

< ε+ ε+ ε = 3ε.

Hence f ′(x1) exists and is equal to g(x1).
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As an example, let’s calculate
∑

1
k4
. We note that

d

dx

1

sin2 x
=

−2 cosx

sin3 x
=

∞∑
k=−∞

−2

(x− kπ)3

and
d2

dx2

1

sin2 x
=

6 cos2 x+ 2 sin2 x

sin4 x
=

∞∑
k=−∞

6

(x− kπ)4
.

Both are valid for x ∈ (0, π), say, as the sums on the right converge uniformly (by the
M -test with Mk =

1
k3

or 1
k4

when k is large). Substituting x = π
2
into this last one gives

2 =
∞∑

k=−∞

6

(π
2
− kπ)4

=
16 · 6
π4

∞∑
k=−∞

1

(2k − 1)4
=

16 · 6 · 2
π4

∑
k>0 odd

1

k4
.

Now using ∑
k>0 odd

1

k4
=

∑
k>0

1

k4
−
∑
k>0

1

(2k)4
=

15

16

∑
k>0

1

k4
,

gives
∞∑
k=1

1

k4
=

16

15
· π4

6 · 16
=

π4

90
.

[Alternatively one can subtract 1/x4 from both sides and take limits x → 0.]

Unfortunately the same trick does not work for
∑

1
k3

as we get a sum over all odd (or
non-zero) integers of 1

k3
and the terms with −k cancel the ones with k. Nevertheless, it

should be clear that we can repeat this process for all even powers and in fact
∑

1
ks

will
always be a rational number times πs when s is even and s ≥ 2.

We remark that identities such as (3) can be proved very easily using next year’s course
on Complex Analysis. You have seen in Analysis I & II that one can often prove tricky
identities by constructing a function F based on them and showing that F ′ = 0. The
identities then follow from the Constancy Theorem. Similar, but much more powerful
techniques exist in Complex Analysis. For example, if you can construct an F (say by
taking the difference of the two sides in (3)) that is (complex) differentiable and just
bounded on all of C (or even C with some isolated points removed), then F is a constant.

Finally, we remark that the Riemann zeta function

ζ(s) :=
∞∑
k=1

1

ks
,

which converges for all real s > 1, has many amazing connections with number theory,
some of which you may see in future courses.
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