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1 Several facts from analysis
Random models arising from science and engineering are time series, stochastic processes in discrete
or continuous time, or more general random fields. Distributions of these models are probability
measures on path spaces and in general on spaces of mappings, which are infinite dimensional spaces.
Often one starts with discrete models with scaling parameters and takes their limits in the hope of
obtaining more practical models. This is the reason why we need to study limit theories of probability
measures on function spaces. In this course we develop important tools dealing with distributions on
path spaces.
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To develop probability limit theories covered in this course, we need several theorems from anal-
ysis which are not covered in prerequisite options. In this first lecture, we recall several such notions
and theorems. The proofs of the results we review are not included, but references are given, so if you
are interested in the details of a particular topic, you may study further in the indicated literature.

[Proofs in this section are not examinable.]

1.1 Topology on metric spaces
In Paper A2 Metric Spaces and Complex Analysis, we have studied the concepts of compactness and
connectedness for metric spaces. Let us add three more notions about metric spaces which are useful
in our discussions below.

Let (E,ρ) be a metric space. Then Bx(r) denotes the open ball centered at x with radius r, that is,
{z ∈ E : ρ(z,x)< r}. The metric ρ induces a topology on E, i.e. a collection of open subsets of E,
namely a subset U ⊂ E is open if for every x ∈ E, there is a r > 0 such that Bx(r)⊂U . This topology
of E is determined uniquely by the metric ρ and must be Hausdorff. The metric ρ is however not
uniquely determined by its generated topology. In fact, as we have seen in Paper A2, ρ , ρ∧1, ρ

1+ρ
and

etc. determine the same topology, and therefore determine the same Borel σ -algebra on E, denoted
by B(E). Hence, if it is necessary, we will use bounded metrics only.

A metric space (E,ρ) is complete, by definition, if every ρ-Cauchy sequence has a unique limit
in E.

We say (E,ρ) is separable if it possesses a countable dense subset, i.e. there is a countable subset
Q ⊂ E, such that for every x ∈ E and for every ε > 0, there is a ∈ Q, x ∈ Ba(ε). From Prelims
Analysis, we know that Rd (equipped with the standard metric) is separable and complete.

A complete and separable metric space (E,ρ) is called a Polish space. A more proper definition
of Polish spaces should be that; [if you want to make your life more complicated as mathematicians
usually do]; a topological space E is a Polish space, if there is a metric ρ on E which generates the
same topology on E and (E,ρ) is complete and separable.

For a given metric space, in particular, if the space is infinite dimensional, it is often quite chal-
lenging to validate if a metric space is compact or not. The concept of totally bounded metric spaces
is introduced to address this problem.

We recall that a metric space is compact (definition via open covers) if and only if it is sequentially
compact (definition in terms of sequences).

Definition 1.1. Let (E,ρ) be a metric space. A subset A ⊂ E is totally bounded, if for every ε > 0,
there are finitely many points x1, · · · ,xn ∈ E (for some n ∈ N), such that {Bxi(ε) : i = 1, · · · ,n} is a
cover of A, i.e. ∪n

i=1Bxi(ε)⊃ A.

From definition, a totally bounded metric space must be bounded and separable.

Lemma 1.2. A metric space (E,ρ) is totally bounded, if and only if any sequence of E contains a
sub-sequence which is Cauchy.

We have the following important result about compactness and totally boundedness.

Theorem 1.3. (Hausdorff) Let (E,ρ) be a metric space.
(1) If E is compact then E is totally bounded.
(2) Suppose (E,ρ) is complete. Then A ⊂ E is compact if and only if A is totally bounded and

closed.
(3) If every totally bounded and closed subset of E is compact, then (E,ρ) must be complete.
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Theorem 1.4. (Ascoli-Arzelà’s Lemma) Let (T ,d) be a compact metric space, and C(T ;Rd) denote
the space of all continuous functions on T taking values in Rd , equipped with the supremum norm
||x||= supt∈T |x(t)| and its induced metric.

(1) C(T ;Rd) is a complete metric space.
(2) A family of continuous functions, K ⊂ C(T ;Rd), is relatively compact, if and only if K is

bounded
sup
x∈K

sup
t∈T
|x(t)|< ∞,

and equivalently continuous in the sense that

lim
δ↓0

sup
x∈K;d(s,s′)≤δ

∣∣x(s)− x(s′)
∣∣= 0 . (1.1)

For a proof see Yosida [26, Chapter III].
This theorem may be generalized to the case where (T ,d) is not necessary compact, and we

will consider an important case where T = [0,∞) with the usual distance. For this case a function
x : [0,∞)→ Rd is called a path in Rd . Let C(Rd) or C([0,∞);Rd) denote the space of all continuous
paths in Rd , equipped with the uniform convergence topology, i.e. the topology induced by the metric

ρ(x,y) =
∞

∑
n=1

1
2n

(
sup

0≤t≤n
|x(t)− y(t)|∧1

)
, ∀x,y ∈C([0,∞);Rd). (1.2)

Then C(Rd) with metric ρ is complete and separable. About its relatively compact subsets, we have
the following version of Ascoli-Arzelà’s Lemma.

Corollary 1.5. (Ascoli-Arzelà’s Lemma) K ⊂ C(Rd) is relatively compact, if and only if

sup
x∈K
|x(0)|< ∞

and
lim
δ↓0

sup
x∈K;0≤s,s′≤T,|s−s′|≤δ

∣∣x(s)− x(s′)
∣∣= 0

for every T > 0.

Since the second condition that the functions in K are equivalently continuous, therefore the first
condition in the previous theorem may be replaced by the condition that for every T > 0,

sup
x∈K,0≤t≤T

|x(t)|< ∞

which implies that the range {x(t) : t ∈ [0,T ],x ∈ K} is contained in a compact subset of Rd .

1.2 Measures, integration and Daniell integration
In measure theory (paper B8.1 or A4), we begin with a measure µ on a measurable space (Ω ,F )
and establish theory of integration. The procedure is simple, we first identify a class of non-negative
F -measurable simple functions and define integrals for these simple functions first. For a simple
function φ = ∑i ci1Ai where Ai ∈F and ci ≥ 0, i runs through a finitely many indices, its integral

µ(φ) =

ˆ
Ω

φdµ = ∑
i

ciµ(Ai).
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Extend the definition to a non-negative F -measurable function f by

µ( f ) =
ˆ

Ω

f dµ = sup{µ(φ) : φ non-negative F - simple and φ ≤ f} .

For a general F -measurable function f , if both µ ( f+) and µ ( f−) are finite, then f is called inte-
grable and define

µ( f ) =
ˆ

Ω

f dµ = µ( f+)−µ( f−).

Therefore, the important task is of course to construct measures. In finite dimensional case, the
Lebesgue measure, constructed in Paper A4, serves our aim. In stochastic analysis, we construct
measures on path spaces by studying distributions of stochastic processes and random fields. In this
course we aim to provide important tools to tackle this construction problem.

Daniell integration is another way for constructing measures, which is based on the following
observation.

If (Ω ,F ,µ) is a measure space, then L1(Ω ,F ,µ), the vector space of all integrable function, is
in fact a vector lattice in the sense that if f ,g ∈ L1, then both f ∧g and f ∨g belong to L1(Ω ,F ,µ)
too. The integration operation f → µ( f ) is linear functional on the vector space L1(Ω ,F ,µ), and
positive in the sense that µ( f )≥ 0 if f is integrable and f ≥ 0.

The following theorem establishes the equivalence between measures and Daniell integration.

Theorem 1.6. (Daniell-Stone’s Theorem) Let Ω be a space.
a) Let H be a real vector lattice of some real valued functions on Ω , i.e. H is a real vector

space and H is closed under the operations ∧ and ∨.

b) Let I : H → R be a linear functional. Suppose that I is a Daniell integration in the sense that:
(b-i) I( f )≥ 0 for every f ∈H and f ≥ 0, and
(b-ii) I satisfies the following continuity condition (MCT): if fn, f ∈H and fn ↑ f , then I( fn) ↑

I( f ).

c) Let F = σ { f : f ∈H } the smallest σ -algebra such that every f ∈H is F -measurable.

Then there is a measure µ on (Ω ,F ) such that H ⊂ L1(Ω ,F ,µ) and µ( f ) = I( f ) for every
f ∈H .

Remark. The proof may be found in Dudley [13]. The continuity condition in 2) is also equivalent
to that: if fn ∈H and fn ↓ 0, then I( fn) ↓ 0.

Remark. If there is an increasing fn ∈H , fn ≥ 0 and fn ↑ 1, then the measure µ is σ -finite, and
µ is unique. In particular, if 1 ∈H , then µ is a finite measure, and is unique.

As an application of Daneill and Stone’s theorem we may establish the Riesz representation the-
orem for positive functionals on a compact metric space.

Let us begin with the following

Definition 1.7. Let E be a metric space. A function f : E→ (−∞,∞] is called lower semi-continuous
if { f > a} is open for every a ∈ R. If − f is lower-semi-continuous, then we say f is upper semi-
continuous.
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Clearly, f is lower semi-continuous if and only if { f ≤ a} is closed for every a ∈ R.

Lemma 1.8. (Dini Lemma) If E is a compact metric space, and fn→ [0,∞) are upper semi-continuous,
where n = 1,2, . . .. Suppose fn ↓ 0 , that is, fn+1 ≤ fn for every n and fn→ 0 as n→ ∞, then fn→ 0
uniformly on E as n→ ∞.

Proof. The Dini Lemma was proved for the case where E = [a,b] in Prelims Analysis II. For any given
ε > 0, Un = { fn < ε} is open for every n. {Un : n≥ 1} is a open cover of E. Using compactness of E
to determine N, such that fn(x)< ε for all n≥ N and x ∈ E.

Theorem 1.9. (F. Resiz representation theorem) Let E be a compact metric space, and C(E;R) denote
the vector space of all continuous and real-valued functions on E. Suppose I : C(E;R)→ R is a
positive linear functional. Then I must be a Daniell integration with H = C(E;R), and therefore
there is a unique finite measure µ on (E,B(E)) such that I( f ) = µ( f ) for every f ∈C(E;R).

Proof. We only need to check the continuity condition (b-ii) in the Daniell-Stone Theorem. Let
fn ∈C(E;R), fn ≥ 0 and fn ↓ 0. By Dini lemma, fn ↓ 0 uniformly on E. Therefore for every ε > 0
there is N such that 0≤ fn(x)< ε for every x ∈ E and n≥ N. That is ε1− fn ≥ 0 for all n≥ N. Since
I is positive and linear, so that

I(ε1− fn) = εI(1)− I( fn)≥ 0

and so that
0≤ I( fn)≤ εI(1)

for all n≥N, which implies that I( fn)→ 0. Therefore I is a Daniell integration. The other conclusions
now follow from Daniell-Stone’s theorem and the fact that the σ -algebra generated by all continuous
functions are exactly the Borel σ -algebra on E.

Remark. F. Resiz representation theorem for locally compact space. Suppose E is a locally com-
pact metric space (or a locally compact Hausdorff space), then C(E;R) is in general too big for a
Daniell integration. For example, for the Lebesgue measure, not every continuous function is inte-
grable, therefore we have to work with a smaller function space. A good and interesting one is the
function space H =Cc(E;R) of all continuous functions on E with compact supports. Suppose I is a
positive linear functional on H , then one can show that I must be a Daniell integration. Hence, there
is a unique σ -finite measure µ on (E,B(E)) such that I( f ) = µ( f ) for every f ∈Cc(E;R). Moreover
µ is regular in the sense that

µ(U) = sup{µ(K) : K ⊆U and K is compact}

for every open subset U , and

µ(A) = inf{µ(U) : U ⊇ A and U is open}

for every A∈B(E). The reader should be able to find the details in standard textbook such as Dudley
[13].
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2 Weak convergences of probability measures
In this section we study the weak convergence of probability measures on metric spaces. Let (E,ρ)
be a metric space (or more general a E is a metrizable topological space), whose Borel σ -algebra is
denoted by B(E).

[The material here is fundamental.]
Let Cb(E) (resp. Uρ(E)) denote the totality of all bounded (resp. bounded and uniformly) contin-

uous functions on E. Then Uρ(E)⊂Cb(E).

Definition 2.1. A sequence (Pn) of probability measures on (E,B(E)) converges to a probability
measure P on (E,B(E)) weakly, denoted by Pn→ P weakly, if

lim
n→∞

ˆ
E

f (x)Pn(dx) =
ˆ

E
f (x)P(dx)

for every f ∈Cb(E).

The definition may be generalized to the “continuous” case. For example, suppose Pε is a prob-
ability measure for every ε ∈ (0,δ ), where δ > 0 is some constant. Then Pε → P weakly as ε ↓ 0,
if

lim
ε↓0

ˆ
E

f (x)Pε(dx) =
ˆ

E
f (x)P(dx)

for every f ∈Cb(E).

Example. Let Pε be the Gaussian measure in Rd with mean value a and variance ε > 0, that is,

Pε ∼ (2πε)−d/2 exp
(
−|x−a|2

2ε

)
dx.

Then Pε → δa(dx) weakly as ε ↓ 0.

Theorem 2.2. Let Pn and P be probability measures on (E,B(E)), where (E,ρ) is a metric space.
Then the followings are equivalent:

(1) Pn→ P weakly;
(2)
´

E f dPn→
´

E f dP as n→ ∞ for every f ∈Uρ(E);
(3) limsupn→∞ Pn(F)≤ P(F) for every closed subset F;
(4) liminfn→∞ Pn(G)≥ P(G) for every open subset G;
(5) limn→∞ Pn(A) = P(A) for every A ∈B(E) such that P(∂A) = 0.

Here ∂A is the boundary of A which is defined to be Ā \Ao, where Ao is the largest open subset
lying inside A, that is,

Ao = ∪{U : U is open and U ⊂ A} ,

and Ā is the closure of A, the least closed subset containing A.

The interesting point of this theorem is that the class of functions Uρ(E) may depends on the
metric ρ , but the weak convergence by definition depends only on the topology which specifies the
class Cb(E) of bounded continuous functions on E. The advantage of item (2) lies in the fact ρ can
be any metric on E which defines the same topology and thus does not alter the space Cb(E).
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You may recognize that (5) is the general form of convergence of distribution functions we have
discussed in Part A Probability.

We develop some general tools about weak convergence of probability measures on metric spaces.
A standard reference about weak convergence is the classic: Convergence of Probability Measures
(Second Edition) by P. Billingsley, which can be your reference in your future research, but we will not
follow his approach closely. The first task is to define a metric on the space of all probability measures
on (E,B(E)) whose induced topology defines the weak convergence of probability measures.

To this end we need a so-called Tychonoff’s embedding theorem which says that a separable
metric space E can be embedded into a compact metric space (E ′,ρ ′). More precisely

Theorem 2.3. (Tychonoff’s embedding theorem) Let (E,ρ) be a separable metric space. Then there
is a metric space (E ′,ρ ′) such that

(1) (E ′,ρ ′) is a compact metric space,
(2) E ⊆ E ′, and
(3) ρ and ρ ′ restricted on E are topologically equivalent, so if necessary, we will replace the

metric ρ on E by ρ ′ instead.
Let Ē be the closure of E in (E ′,ρ ′). Then (Ē,ρ ′) is the compact and separable metric space.

The proof of this theorem does not belong to this course, and is not examinable for this paper.
According to the theorem that continuous functions on a compact metric space is bounded and

uniformly continuous, we may conclude that C(Ē) = Cb(Ē) = Uρ ′(Ē), which can be identified with
uniformly continuous functions on (E,ρ). That is we have the following

Lemma 2.4. Let (E,ρ) be a separable metric space, embedded in a compact metric space (E ′,ρ ′)
as in Theorem 2.3. Without losing generality we may assume that ρ = ρ ′ on E (otherwise we use
the metric ρ ′ on E instead). Then every f ∈C(Ē) restricted on E is uniformly continuous w.r.t. ρ ′.
Conversely, every f ∈Uρ ′(E) can be extended uniquely to be a continuous function on Ē. Therefore
we will identify the space Uρ ′(E) with C(Ē), in particular any bounded and uniformly continuous
function on E is automatically extended to be a continuous function on Ē.

Corollary 2.5. Let (E,ρ) be a separable metric space. With the same notations in the previous
lemma. (Ē,ρ ′) is a compact separable metric space, so that C(Ē) equipped with the supremum norm
is a separable Banach space. Therefore Uρ ′(E) is separable.

Example. Let E = (a,b) be a open interval, where a < b are two real numbers. Then Ē = [a,b]. In
Prelims Analysis II we have shown that a continuous function on (a,b) has limits at a and b (so it can
be extended to be continuous function on [a,b]) if and only if it is uniformly continuous on (a,b).

Theorem 2.6. (Prohorov’s metric) Let (E,ρ) be a separable metric space, and M1(E) denote the
space of all probability measures on (E,B(E)). By Corollary 2.5, Uρ ′(E) is separable, so there is a
countable dense subset { f1, f2, · · ·} in Uρ ′(E). Define

d (P,Q) =
∞

∑
n=1

1
2n (1∧|P( fn)−Q( fn)|) .

Then d is a metric on M1(E) and (M1(E),d) is separable. Let Pn,P ∈M1(E). Then Pn→ P weakly,
if and only if d(Pn,P)→ 0.
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Proof. [Proof is not examinable.] Proof follows from Theorem 2.2 and Corollary 2.5 immediately.

Remark. If (E,ρ) is a Polish space, i.e. it is a separable and complete metric space, then
(M1(E),d) where d is the Prohorov’s metric as constructed above is also a Polish space.

We need a characterization of compact subsets of M1(E). To this end we introduce the concept
of tightness.

Definition 2.7. Let E be a metric space. A subset L ⊂M1(E) is tight, if for every ε > 0, there is a
compact subset K ⊂ E such that

P(K)≥ 1− ε for every P ∈L . (2.1)

We first show the following fact.

Lemma 2.8. Let (E,ρ) be a Polish space. Then any finite subset L of M1(E) is tight.

Proof. By definition, we only need to show the lemma for a singleton. Let P ∈M1(E) and ε > 0.
Since E is separable, for every δ > 0, E can be covered by countable many balls with radius δ .
Therefore, for every n, there is a sequence of closed balls B(n)

i of radius 1
2n (where i = 1,2, . . .) such

that ∪iB
(n)
i = E for each n. By construction

lim
k→∞

P
(
∪k

i B(n)
i

)
= P(∪iB

(n)
i ) = P(E) = 1.

Hence for each n, there is kn such that

P
(
∪kn

i B(n)
i

)
> 1− ε

2n .

Let K = ∩∞
n=1 ∪

kn
i B(n)

i . K is totally bounded by definition and is also closed. Since E is complete,
therefore K is compact. Since

P(Kc)≤
∞

∑
n=1

P
((
∪kn

i B(n)
i

)c)
<

∞

∑
n=1

ε

2n = ε

and therefore P(K)> 1− ε .

We now prove the main result of this section.

Theorem 2.9. (Prohorov’s theorem) Let (E,ρ) be a separable metric space, and L ⊂M1(E).
(1) If L is tight, then L is relatively compact in M1(E) equipped with Prohorov’s metric.
(2) The converse of (1) is also true if E is a Polish space.

Proof. [The proof is not examinable, too technical.] By the Tychonoff’s embedding, there is a com-
pact metric space (E ′,ρ ′) such that E ⊂ E ′, and ρ and ρ ′ are equivalent topologically on E. Let Ē be
the closure of E in (E ′,ρ ′), so that (Ē,ρ ′) is compact and separable.

First prove (1). Equipped with the Prohorov’s metric, M1(E) is a separable metric space, hence
we only need to show that L is sequentially relatively compact. That is, if (Pn) is any sequence in
L , we need to show one can extract a weakly convergent sub-sequence.
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Since B(E) = E ∩B(Ē), we can extend Pn to be a probability measure on (Ē,B(Ē)) by setting
Qn(A) = Pn(A∩ E) for every A ∈ B(Ē). Since E is separable, so is Ē, and therefore C(Ē) is a
separable too. Hence, we can choose a dense sequence ϕn ∈ C(Ē), where n = 1,2, . . ., and we can
choose ϕ1 = 1. For every k = 1,2, . . ., (Qn(ϕk))n≥1 is a bounded sequence, so that it contains a
convergent sub-sequence. By using Cantor’s diagonal technique, we can choose a sub-sequence nl
such that Qnl(ϕk)→ fk as l → ∞ for every k. Since for each nl , φ → Qnl(φ) is linear, so that for
any φ = ∑

m
j=1 c jϕ j ∈ span{ϕk : k ≥ 1} then Qnl(φ)→ ∑

m
j=1 c j f j = f (φ). Then | f (φ)| ≤ ‖φ‖ as for

each nl , |Qnl(φ)| ≤ ‖φ‖. Clearly f is linear on the linear space span{ϕk : k ≥ 1}. Since the closure
of span{ϕk : k ≥ 1} is exactly C(Ē), so that f can be uniquely extended to be a linear functional on
C(Ē), which is positive, | f (φ)| ≤ ||φ ||, and f (ϕ1) = 1. By F. Resiz representation theorem, there is
a unique probability measure Q on (Ē,B(Ē)), such that Q(φ) = f (φ) for every φ ∈ C(Ē). By our
construction Qn→ Q weakly as probability measures on Ē.

Since L is tight, for each m = 1,2,. . . there is a compact subset Km of E, which is also a compact
subset of Ē, such that

Pnl(Km)> 1− 1
2m for all l = 1,2, . . . .

By definition, Qnl(Km) = Pnl(Km), so it follows that (Theorem 2.2, (3))

Q(Km)≥ limsup
l→∞

Qnl(Km) = limsup
l→∞

Pnl(Km)≥ 1− 1
2m

for every m. Therefore
Q(∪∞

m=1Km) = 1.

Define P on (E,B(E)) to be the restriction of Q on B(E). Since ∪∞
m=1Km ⊂ E, so P ∈M1(E). Let

us show that Pnl → P weakly.
Let F be a closed subset of E. We want to show that P(F) ≥ limsupl→∞ Pnl(F), which implies

that Pnl → P weakly. By definition, there is a closed A of Ē such tat F = A∩E. Hence

P(F) = P(E ∩A) = Q(E ∩A)
= Q(A∩ (∪∞

m=1Km))

= Q(A)≥ limsup
l→∞

Qnl(A)

= limsup
l→∞

Pnl(A∩E)

= limsup
l→∞

Pnl(F),

where the inequality follows from the fact that Qnl → Q weakly. According to Theorem 2.2, (3),
again, we can conclude that Pn→ P weakly. Hence L is relatively compact.

Next we prove (2). Thus assume that E is a Polish space and L ⊂M1(E) is relatively compact.
For any δ > 0, since E is separable, there is a sequence open balls Bi(δ ) which forms a cover of E.
Let Gn = ∪i≤nBi(δ ). We claim that for every ε > 0 there is n, such that

inf
P∈L

P(Gn)≥ 1− ε.

Suppose it were not true, for every n, there is Pn ∈L , such that Pn (Gn)< 1−ε . Since L is relatively
compact, so there is a sub-sequence nk such that Pnk → P weakly, by Theorem 2.2, (2), since each Gn
is open and Gn ↑ E,

P(Gn)≤ liminf
k→∞

Pnk(Gn)≤ liminf
k→∞

Pnk(Gnk)≤ 1− ε
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and therefore
1 = P(E) = lim

n→∞
P(Gn)≤ 1− ε

which is impossible.
Apply the argument for δ = 1

2k and with ε replaced by ε/2k. Then for every ε > 0, and for every

k = 1,2, . . ., there is an nk, and nk open balls B(k)
i (2−k) with radius 2−k (where i = 1,2, . . . ,nk) such

that
inf

P∈L
P
(

G(k)
)
≥ 1− ε

2k

where

G(k) =
nk⋃

i=1

B(k)
i (2−k).

Let G = ∩k=1G(k). Then G is totally bounded. Since E is complete, the closure of G, denoted by K,
is compact in E. By definition

P(K)≥ P(G)≥ 1− ε

for every P ∈L . This proves that L is tight.

3 Weak convergence of random variables
Let (Ω ,F ,P) be a probability space, and (E,ρ) be a metric space. Recall that a random variable X
with values in E is a measurable mapping Ω to E, that is, for every B ∈B(E), X−1(B) ∈F . The law
or distribution of X is defined to be the probability measure PX on (E,B(E)) defined by

PX(B) = P [X ∈ B] for B ∈B(E).

We are therefore able to give the following definition of convergence for random variables in law
(or called convergence in distribution). Namely, we say a sequence of random variables X1, X2,. . .
(they may be defined on different probability spaces !) taking values in a metric space E converges
weakly to a random variable X , if the corresponding sequences of distributions PXn → PX weakly.
More precisely if Xn is a random variable on some probability space (Ωn,Fn,Pn) with values in E,
then Xn→ X in distribution if for every bounded continuous function ϕ on E we have

ˆ
Ωn

ϕ(Xn)dPn→
ˆ

Ω

ϕ(X)dP

as n→ ∞.

Lemma 3.1. Let Xn, X (n = 1,2, . . .) be random variables on the same probability space (Ω ,F ,P)
taking values in a metric space (E,ρ). If Xn→ X in probability, i.e. for every δ > 0,

P [ρ(Xn,X)> δ ]→ 0 as n→ ∞,

then for every ϕ ∈Uρ(E)
E [|ϕ(Xn)−ϕ(X)|]→ 0.

In particular Xn→ X in distribution.

The proof of this lemma is left as an exercise.
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Theorem 3.2. (Skorohod (1956) and Dudley (1968)) Let (E,ρ) be a separable metric space, and Pn,
P (where n = 1,2, . . .) be probability measures on (E,B(E)), such that Pn→ P weakly. Then there is
a probability space (Ω ,F ,P) and random variables Xn,X : Ω→E such that PXn =Pn for n= 1,2, . . .,
PX = P, such that Xn→ X almost surely.

The proof of this important theorem may be found in Ikeda and Watanabe [16], page 9, Theorem
2.7. The proof is not examinable in C8.6.

4 Laws on spaces of continuous paths
The main reference for this part is Stroock-Varadhan [25, Section 1.3]. For simplicity, we use C(Rd)
to denote the path space C([0,∞);Rd). Let us equip C(Rd) with the following metric ρ defined by

ρ(x,y) =
∞

∑
n=1

1
2n

(
1∧ sup

t∈[0,n]
|x(t)− y(t)|

)
(4.1)

for any x,y ∈ C(Rd). The convergence with respect to the metric ρ is the uniform convergence over
any compact subset of [0,∞).

Lemma 4.1. C(Rd) equipped with the metric ρ given in (4.1) is a Polish space.

The proof is left as an exercise.
The coordinate process on the path space C(Rd) is denoted by Xt (where t ≥ 0) which is defined

by
Xt(w) = w(t) for every w ∈ C(Rd),

for every t ≥ 0. The natural filtration of σ -algebras generated by the coordinate process {Xt : t ≥ 0},
is given as, by definition, F 0

t = σ {Xs : s≤ t}, and

F 0 = F 0
∞ = σ {Xt : t ≥ 0} .

Lemma 4.2. The Borel σ -algebra on (C(Rd),ρ) coincides with F 0 = σ {Xt : t ≥ 0}.

The proof is left as an exercise. The following is the main result of this section.

Theorem 4.3. Let L be a family of probability measures on (C(Rd),B(C(Rd))). Then L is rela-
tively compact if and only if

lim
L↑∞

inf
P∈L

P [w : |w(0)| ≤ L] = 1 (4.2)

and for any λ > 0 and T > 0,

lim
δ↓0

inf
P∈L

P

[
w : sup

s,t∈[0,T ];|t−s|<δ

|w(t)−w(s)| ≤ λ

]
= 1. (4.3)

Proof. (C(Rd),ρ) is a Polish space, so that by Prohorov’s theorem, L is relatively compact if and
only if it is tight.

Proof of Necessity. Suppose L is tight, then for every ε > 0 there is a compact subset Kε ⊂C(Rd),
such that

inf
P∈L

P(Kε)≥ 1− ε.

11



According to the Ascoli-Arzela’s theorem, a closed subset Kε ⊂ C(Rd) is compact if and only if
it is bounded and equivalently continuous on any closed interval [0,T ], which are equivalent to the
following two conditions:

sup
w∈Kε

sup
t∈[0,T ]

|w(t)|< ∞ (4.4)

and
lim
δ↓0

sup
w∈Kε

sup
s,t∈[0,T ];|t−s|<δ

|w(t)−w(s)|= 0. (4.5)

Due to the equivalent continuity (4.5), the first condition (4.4) may be replaced by the following
weaker one:

sup
w∈Kε

|w(0)|< ∞. (4.6)

Let α = supw∈Kε
|w(0)|. Then for any L > α and P ∈L , we have

P(Kε) = P [w ∈ Kε : |w(0)|< ∞] = P [w ∈ Kε : |w(0)| ≤ α]≤ P [w : |w(0)| ≤ L]

and therefore
inf

P∈L
P [w : |w(0)| ≤ L]≥ inf

P∈L
P(Kε)≥ 1− ε

for every ε > 0, so (4.2) holds.
Similarly, by (4.5), for every λ > 0, there is δ0 > 0 such that

sup
w∈Kε

sup
s,t∈[0,T ];|t−s|<δ0

|w(t)−w(s)| ≤ λ

so that for any 0 < δ < δ0 we have

P(Kε)≤ P

[
w ∈ Kε : sup

s,t∈[0,T ];|t−s|<δ0

|w(t)−w(s)| ≤ λ

]

≤ P

[
w : sup

s,t∈[0,T ];|t−s|<δ

|w(t)−w(s)|< λ

]

which yields that

inf
P∈L

P

[
w : sup

s,t∈[0,T ];|t−s|<δ

|w(t)−w(s)| ≤ λ

]
≥ 1− ε

for any ε > 0, thus (4.3) must be true.
Proof of Sufficiency. Suppose (4.2,4.3) hold. For every ε > 0, by (4.2), there is Lε > 0 such that

inf
P∈L

P [w : |w(0)| ≤ Lε ]> 1− ε

2
,

and, by definition of (4.3), for every n = 1,2, . . ., there is δn(ε)> 0 such that

inf
P∈L

P

[
w : sup

s,t∈[0,n];|t−s|<δn(ε)

|w(t)−w(s)| ≤ 1
n

]
> 1− ε

2n+1 .
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Let

Kε =
∞⋂

n=1

{
w : sup

s,t∈[0,n];|t−s|<δn(ε)

|w(t)−w(s)| ≤ 1
n

}
∩{w : |w(0)| ≤ Lε} .

Then

P
(
C(Rd)\Kε

)
≤

∞

∑
n=1

ε

2n+1 +
ε

2
= ε

for any P ∈L , which implies that

P(Kε)≥ 1− ε for every P ∈L .

According to the Ascoli-Arzela theorem, Kε is compact in (C(Rd),ρ). Hence L is tight, and there-
fore is relatively compact. The proof is complete.

Let us draw some consequences which give very useful forms in applications.

Theorem 4.4. Let (Pn) be a sequence of probability measures on (C(Rd),B(C(Rd))). Then (Pn) is
relatively compact if and only if

lim
L↑∞

inf
n

Pn [w : |w(0)| ≤ L] = 1 (4.7)

and for any λ > 0 and T ∈ R+,

lim
δ↓0

limsup
n→∞

Pn

[
w : sup

s,t∈[0,T ];|t−s|<δ

|w(t)−w(s)| ≥ λ

]
= 0. (4.8)

The following form is the most useful form to prove convergence of continuous stochastic pro-
cesses.

Theorem 4.5. Let {X (n)
t : t ≥ 0} be a sequence of stochastic processes valued in Rd on a probability

space (Ω ,F ,P) with continuous sample paths. Suppose

lim
L↑∞

inf
n
P
[
|X (n)

0 | ≤ L
]
= 1 (4.9)

and for any λ > 0 and T ∈ R+,

lim
δ↓0

limsup
n→∞

P

[
sup

s,t∈[0,T ];|t−s|<δ

|X (n)
t −X (n)

s | ≥ λ

]
= 0. (4.10)

Then there is a sub-sequence nk and a continuous stochastic process X valued in Rd , such that X (nk)
· →

X· in law.

As an application, we can prove the following

Theorem 4.6. (Kolmogorov’s criterion) Let (X (n)) be a sequence of Rd-valued continuous stochastic
processes on a probability space (Ω ,F ,P) such that

lim
L↑∞

inf
n
P
[
|X (n)

0 | ≤ L
]
= 1 (4.11)
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and there are α > 0 and β > 0 such that for every T > 0

E
[
|X (n)

t −X (n)
s |α

]
≤C|t− s|1+β (4.12)

for all 0≤ s, t ≤ T , where CT > 0 depends only on T but independent of n. Then the collection of the
laws of (X (n)) is relatively compact.

For a proof see the notes for Problem Sheets.

5 Compactness for laws of continuous semi-martingales
In general it is highly non trivial to estimate the probability appearing in (4.10). Here we propose a
way to handle it. We will make further comments after we have considered the Skorohord topology
in next section.

Let us consider the distributions on the path space C([0,∞);Rd). For a path x : [0,∞)→ Rd ,
given increment size ε > 0 and duration T > 0, we may define its entropy numbers N (x,ε,T ) and a
minimal gap δ (x,ε,T ). Let T0 = 0,and Tj+1 be defined inductively by Tj+1 = ∞ if Tj = ∞, and

Tj+1 = inf
{

t ≥ Tj : |x(t)− x(Tj)| ≥
ε

4

}
if Tj < ∞

for j = 0,1,2, . . ., where inf /0 = ∞. By definition, if x is a continuous path, then

Tj+1−Tj > 0 if Tj < ∞,

and
|x(Tj+1)− x(Tj)|=

ε

4
if Tj+1 < ∞.

The entropy number
N (x,ε,T ) = inf

{
j : Tj+1 > T

}
and the minimal gap

δ (x,ε,T ) = inf
{

Tj−Tj−1 : 1≤ j ≤N (x,ε,T )
}
.

Then (Exercise)
sup

s,t≤T ;|t−s|<δ (x,ε,T )
|x(t)− x(s)| ≤ ε. (5.1)

The following lemma follows from the definition.

Lemma 5.1. Suppose (Xt)t≥0 is a stochastic process with continuous sample paths on a probability
space (Ω ,F ,P), and we define Tj as above with x(t) replaced by Xt .

1) If (Xt)t≥0 is adapted to a filtration (Ft)t≥0, then all Tj are (Ft)t≥0-stopping times.
2) Let T > 0, δ > 0 and ε > 0. Then

P

[
sup

s,t≤T ;|t−s|<δ

|Xt−Xs|> ε

]
≤ P [δ (X ,ε,T )< δ ] . (5.2)

The following lemma, adopted from the discussion in Stroock-Varadhan [25, Section 1.4], pro-
viding the necessary estimates for controlling (5.2).
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Lemma 5.2. Suppose X = M+A is a d-dimensional continuous semi-martingale on a filtered prob-
ability space (Ω ,F ,Ft ,P), so that M is a continuous local martingale and A is adapted with finite
variations, valued in Rd . Assume that

|dAt | �Cdt and |d 〈M,M〉 | �Cdt

for some constants. Let ε > 0 and T > 0. Define stopping times Tj as above. Then
1) There is a constant C1 depending only ε > 0 and C, we have

E
[
1{Tj−Tj−1≤δ}|FTj−1

]
≤ (C1 +C2)δ

on Tj−1 < ∞, for every δ > 0.
2) There is a constant α ∈ (0,1) depending only on ε and C such that

P [N (x,ε,T )≥ k]≤ eT
α

k

for all k = 1,2, . . ..

Proof. [The proof is not examinable.] We assume that all X , M and A have zero initial value. Apply
Itô’s formula we obtain

f (X(Tj−Tj−1)∧δ+Tj−1−XTj−1) =

ˆ (Tj−Tj−1)∧δ+Tj−1

Tj−1

∇ f (Xs−XTj−1)dMs

+

ˆ (Tj−Tj−1)∧δ+Tj−1

Tj−1

∇ f (Xs−XTj−1)dAs

+
1
2

ˆ (Tj−Tj−1)∧δ+Tj−1

Tj−1

∂ 2 f
∂xi∂x j (Xs−XTj−1)d

〈
Mi,M j〉

s

on Tj−1 < ∞, where
(Tj−Tj−1)∧δ +Tj−1 = Tj∧ (δ +Tj−1).

By taking conditional expectation on FTj−1 , we obtain that

E
[

f (XTj∧(Tj−1+δ )−XTj−1)1[Tj−1<∞]|FTj−1

]
= E

[ˆ Tj∧(Tj−1+δ )

Tj−1

∇ f (Xs−XTj−1)dAs|FTj−1

]

+
1
2
E

[ˆ Tj∧(Tj−1+δ )

Tj−1

∂ 2 f
∂xi∂x j (Xs−XTj−1)d

〈
Mi,M j〉

s |FTj−1

]
.

Let us choose a bump non-negative function f ≥ 0 such that f (|x|) = 1 when |x|= ε

4 , f is smooth
with a compact support. f depends only on ε > 0.

E
[
1[Tj−Tj−1≤δ ,Tj−1<∞]|FTj−1

]
≤ E

[
f (XTj∧(Tj−1+δ )−XTj−1)1[Tj−1<∞]|FTj−1

]
= E

[ˆ Tj∧(Tj−1+δ )

Tj−1

∇ f (Xs−XTj−1)dAs|FTj−1

]

+
1
2
E

[ˆ Tj∧(Tj−1+δ )

Tj−1

∂ 2 f
∂xi∂x j (Xs−XTj−1)d

〈
Mi,M j〉

s |FTj−1

]
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By assumptions, we have

E

[ˆ Tj∧(Tj−1+δ )

Tj−1

∇ f (Xs−XTj−1)dAs|FTj−1

]
≤C1δ

and
1
2
E

[ˆ Tj∧(Tj−1+δ )

Tj−1

∂ 2 f
∂xi∂x j (Xs−XTj−1)d

〈
Mi,M j〉

s |FTj−1

]
≤C2δ

for any δ > 0, where C1 and C2 are two constants depending only on f . Then

E
[
1[Tj−Tj−1≤δ ,Tj−1<∞]|FTj−1

]
≤ (C1 +C2)δ

for every δ > 0, on Tj−1 < ∞.
Now we can work out the second estimate. Firstly

E
[
e−(Tj+1−Tj)|FTj

]
= E

[
e−(Tj+1−Tj)1[Tj+1−Tj<β ]|FTj

]
+E

[
e−(Tj+1−Tj)1[Tj+1−Tj≥β ]|FTj

]
≤ P

[
Tj+1 ≤ Tj +β |FTj

]
+ e−βE

[
1[Tj+1−Tj≥β ]|FTj

]
= e−β +(1− e−β )P

[
Tj+1 ≤ Tj +β |FTj

]
≤ e−β +(1− e−β )(C1 +C2)β

Choose β > 0 small enough so that

e−β +(1− e−β )(C1 +C2)β = α < 1.

Then
E
[
e−(Tj+1−Tj)|FTj

]
≤ α < 1

where α depends on ε > 0 and C1 +C2 only. It follows that

E
[
e−Tj+1|FTj

]
= e−TjE

[
e−(Tj+1−Tj)|FTj

]
≤ αe−Tj

so that
E
[
e−Tj+1 |FTj

]
≤ α

j

for all j. Now

P [N (x,ε,T )≥ k] = P [Tk ≤ T ]≤ E
[
e−Tk+T ]

≤ eT
α

k−1

for all k.
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Theorem 5.3. Let
{

X (n)
t : t ≥ 0

}
be a sequence of continuous semi-martingales valued in Rd on a

probability space (Ω ,F ,P). Let X (n)
t = X (n)

0 +M(n)
t +A(n)

t be the semi-martingale decomposition.
Suppose

lim
L↑∞

inf
n
P
[
|X (n)

0 | ≤ L
]
= 1 (5.3)

and there is a constant C ≥ 0 independent of n such that

|dA(n)
t | �Cdt and |d

〈
M(n),M(n)

〉
| �Cdt.

Then the totality of the laws of the sequence
{

X (n) : n = 1,2, · · ·
}

of semi-martingales is tight.

Proof. [The proof is not examinable.] According to the previous lemma we have for every k

P
[
δ (X (n),ε,T )< δ

]
≤ P

[
inf

1≤ j≤k

(
Tj−Tj−1

)
≤ δ

]
+P [N (x,ε,T )≥ k]

≤
k

∑
j=1

P
[
Tj−Tj−1 ≤ δ

]
+P [N (x,ε,T )≥ k]

≤ k(C1 +C2)δ + eT
α

k−1.

for any k ≥ 1. Taking sup then letting δ ↓ 0 we obtain that

limsup
δ↓0

sup
n
P
[
δ (X (n),ε,T )< δ

]
≤ eT

α
k−1

for any k. sending k→ ∞ we deduce that

limsup
δ↓0

sup
n
P
[
δ (X (n),ε,T )< δ

]
= 0

which completes the proof.

6 Wasserstein’s metric and weak convergence
According to Prohorov’s theorem, weak convergence of probability measures on a separable metric
space (E,ρ) is a metric topology, but the Prohorov metric is less explicit and is difficult to use for
analysis on the space of probability measures. The Wasserstein distance we are going to introduce is,
more or less, capable of dealing with weak convergence, and much easy for analysis. This is the main
reason why the Wasserstein distance plays an important rôle in the current research on probability
metric spaces. We follow the exposition in Villani [30, Section 6].

Let (E,ρ) be a Polish space with its Borel σ -algebra. If P,Q ∈M1(E) are two probability mea-
sures on (E,B(E)), then Π(P,Q) denotes the collection of all probability measures Θ on the product
space E×E such that the marginal distributions are P and Q.

Lemma 6.1. (Wasserstein’s distance) Let P,Q ∈M1(E) and p≥ 1. Define

Wp(P,Q) =

[
inf

Θ∈Π(P,Q)

ˆ
E×E

ρ(x,y)p
Θ(dx,dy)

]1/p
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which is non-negative (maybe even infinity). Then Wp is a metric on the space Pp(E) of all probability
measures P ∈M1(E) such that ˆ

E
ρ(x,y)pP(dx)< ∞

for some y ∈ E (and therefore for all y ∈ E).

The proof is left as an exercise. W1 is called the Kantorovich-Rubinstein distance, which has a
duality representation

W1(P,Q) = sup
f∈Lip(E),|| f ||Lip≤1

{ˆ
E

f dP−
ˆ

E
f dQ

}
(6.1)

where Lip(E) denotes the collection of all Lipschitz functions, and ‖ f‖Lip denotes the Lipschitz norm
of a function f : E→ R, that is,

‖ f‖Lip = inf{M : | f (x)− f (y)| ≤Mρ(x,y) for any x,y ∈ E} .

Lemma 6.2. Let (E,ρ) be a Polish space and p ≥ 1. Suppose Pn,P ∈Pp(E) and Pn→ P weakly.
Then the following four statements are equivalent:

1) For some y ∈ E (and therefore for all y ∈ E)
ˆ

E
ρ(x,y)pPn(dx)→

ˆ
E

ρ(x,y)pP(dx).

2) For some y ∈ E (and therefore for all y ∈ E)

limsup
n→∞

ˆ
E

ρ(x,y)pPn(dx)≤
ˆ

E
ρ(x,y)pP(dx).

3) For some y ∈ E (and therefore for all y ∈ E)

lim
R↑∞

limsup
n→∞

ˆ
{ρ(x,y)>R}

ρ(x,y)pPn(dx) = 0.

4) For every f ∈C(E) with growth at most by d(y, ·)p (for some and therefore for all y ∈ E), i.e
there is a constant C such that

| f (x)| ≤C [1+d(y,x)p]

for all x ∈ E, then ˆ
E

f (x)Pn(dx)→
ˆ

E
f (x)P(dx) as n→ ∞.

If 4) is satisfied, then we say Pn→ P weakly in Pp(E) as n→ ∞.

The main interest of the Wasserstein distance lies in the following result, which is much clean
than any other tightness criterion we have done so far.

Theorem 6.3. Let (E,ρ) be a Polish space and p≥ 1. Suppose Pn ∈Pp(E) (where n = 1,2, . . .) is a
Cauchy sequence with respect to the Wasserstein distance Wp. Then {Pn : n≥ 1} is tight.
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Proof. [The proof is not examinable.] The proof is similar to the proof of Lemma 2.8. Without losing
a generality we may assume that p = 1 as W1 ≤Wp. Since (Pn) is W1-Cauchy, so that by the Triangle
inequality, we deduce thatˆ

E
ρ(a,x)Pn(dx)≤W1(δa,Pn)≤W1(δa,P1)+W1(P1,Pn) (6.2)

which is bounded uniformly in n, though the bound may depend on a ∈ E which is a fixed point.
Let ε > 0. For every l = 1,2, . . ., there is an nl such that

W1(Pi,Pj)<
1

22l ε
2 for any i, j ≥ nl. (6.3)

Since {P1, · · · ,Pnl} is tight (Lemma 2.8), so there is a compact subset Kl ⊂ E such that

Pj(Kl)> 1− 1
2l ε for j = 1, . . . ,nl. (6.4)

For each l = 1,2, . . ., Kl is compact so that it is totally bounded (Theorem 1.3), thus there are finite
points a(l)1 , . . . ,a(l)ml ∈ E, the totality of open balls centered at a(l)j with radius ε/2l cover Kl , that is

G(l) ≡
ml⋃
j=1

B
a(l)j

(2−l
ε)⊇ Kl. (6.5)

Let U (l) =
{

z ∈ E : ρ(z,G(l))< 2−lε
}

. Then F(l) ≡
⋃ml

j=1 B
a(l)j

(2−l+1ε) ⊇ U (l) for each l, and by

definition
Pn(U (l))≥ Pn(G(l))≥ Pn(Kl)> 1− ε

2l

for n = 1, . . . ,nl .
Let

φl(x) = 0∨

(
1− ρ(x,G(l))

2−lε

)
which is Lipschitz continuous on E with Lipschitz constant smaller or equal to 2lε−1, and

1G(l) ≤ φl ≤ 1U (l)

so that for n > nl

Pn(U (l))≥
ˆ

E
φldPn =

ˆ
E

φldPnl +

ˆ
E

φldPn−
ˆ

E
φldPnl

≥
ˆ

E
φldPnl −2l

ε
−1W1(Pn,Pnl)

≥ Pnl(G
(l))−2l

ε
−1 ε2

22l

≥ 1−2
ε

2l

where the second inequality follows from (6.1). Therefore

Pn(F(l))≥ Pn(U (l))≥ 1− ε

2l−1
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for every l = 1,2, . . . and for all n = 1,2, . . .. Let

K =
∞⋂

l=1

F(l).

Then K is closed and totally bounded, and therefore K is compact, and

Pn(E \K)≤
∞

∑
l=1

Pn(E \F(l))≤
∞

∑
l=1

ε

2l−1 = 2ε

for every n = 1,2, · · · . Therefore by definition (Pn) is tight.

The following theorem demonstrates why Wasserstein distances are important for dealing with
weak convergence.

Theorem 6.4. Let (E,ρ) be a Polish space and p ≥ 1. Suppose Pn,P ∈Pp(E) and Pn→ P weakly
in Pp(E), that is, for every f ∈C(E) with growth at most by d(y, ·)p (for some and therefore for all
y ∈ E), i.e. there is a constant C such that

| f (x)| ≤C [1+d(y,x)p]

for all x ∈ E, then

lim
n→∞

ˆ
E

f (x)Pn(dx) =
ˆ

E
f (x)P(dx),

if and only if
Wp(Pn,P)→ 0.

7 The Skorohod topology
[Only the definition of Skorohod topology and the meaning of convergence are examinable, but not
their proofs.]

Not all interesting stochastic processes have continuous sample paths. For example, the sample
paths of Lèvy processes are only right continuous having left limits. In this part we study the weak
convergence on such path spaces.

Let (S,d) be a metric space. We assume that d is bounded, otherwise using d∧1 or d
1+d instead.

A function w defined on [0,∞) with values in S is called a path in S. Several quantities associated
with a path can be introduced, which may measure some aspects of the regularity of a path in a metric
space.

If w : [0,∞)→ S is a path in S, the oscillation of the path w over a subset A⊂ [0,∞) may be defined
by

ω(w,A) = sup
s,t∈A

d(w(t),w(s)) (7.1)

where supremum assumes ∞ if ρ(w(t),w(s)) are unbounded over s, t ∈ A. Given T > 0 and δ > 0,
the modules of continuity of w is given by

ω(w,δ ,T ) = sup
s,t∈[0,T ];|s−t|<δ

d(w(t),w(s)). (7.2)

By definition, w is continuous (so uniformly continuous) on [0,T ] if and only if ω(w,δ ,T )→ 0 as
δ ↓ 0. By using modules of continuity we may restate the Ascoli-Arzelà theorem as the following.
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Theorem 7.1. (Ascoli-Arzelà) A subset K ⊂ C(Rd) is relatively compact if and only if

sup
w∈K

sup
s∈[0,T ]

|w(s)|< ∞

and
lim
δ↓0

sup
w∈K

ω(w,δ ,T ) = 0

for every T > 0.

A path w : [0,∞)→ S is called a càdlàg (this is the French abbreviation of “continue à droite avec
limites à gauche”) path in a metric space S, if w is right continuous on [0,∞) and has left limits at
every point t ∈ (0,∞), that is, lims↓t w(s) = w(t) for every t ≥ 0 and w(t−) = lims↑t w(s) exists for
every t > 0. D(S) (notation used in Jacod and Shiryaev: Limit Theorems for Stochastic Processes) or
DS[0,∞) (notation used in Ethier and Kurtz: Markov Processes - Characterization and Convergence)
denotes the space of all càdlàg paths in S.

An obvious topology on D(S), like on the space C(S), is the uniform convergence over any com-
pact subset of [0,∞), which is the metric topology induced by the metric for example

ρ(w(1),w(2)) =
∞

∑
n=1

1
2n

(
1∧ sup

t∈[0,n]
d(w(1)(t),w(2)(t))

)

for w(i) are two paths in S. While, even if (S,d) is a Polish space, D(S) with the above metric ρ may be
not separable. In order to study the weak convergence of laws on D(S) via the Prohorov theorem, we
wish to introduce a metric on D(S) such that D(S) is a Polish space, and the Borel σ -algebra B(D(S))
coincides with the natural σ -algebra generated by the canonical coordinate process on D(S). The idea
is to introduce a variation of modules of continuity, which is compatible with the càdlàg path space
DS[0,∞). This modules of continuity will be denoted by ωD(w,δ ,T ), which should be similar to
ω(w,δ ,T ) (where δ > 0 and T > 0), but characterizes the càdlàg paths rather than continuous ones.
The simple way is to write down its definition:

ωD(w,δ ,T ) = inf
{0=t0<t1<···<tk=T}∈Dδ [0,T ]

max
1≤ j≤k

sup
s,t∈[t j−1,t j)

d(w(t),w(s)). (7.3)

where Dδ [0,T ] is the collection of all finite partitions of [0,T ]

0 = t0 < t1 < · · ·< tk = T.

such that |t j− t j−1| > δ for j = 1, · · · ,k− 1. Note that the length of the last interval [tk−1,T ] is not
controlled.

Lemma 7.2. Let δ > 0, T > 0 and w : [0,T ]→ S. Then

ωD(w,δ ,T )≤ ω(w,2δ ,T ). (7.4)

Proof. This is not surprising though. Consider a finite partition 0 = t0 < · · · < tk = T such that
|t j − t j−1| > δ for j = 1, · · · ,k− 1. If |ti− ti−1| > 2δ for some i = 1, · · · ,k− 1, we can make the
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partition finer to be 0 = t ′0 < · · ·< t ′k′ = ζ so that |t ′i − t ′i−1| ≤ 2δ for all i = 1, · · · ,k′−1 but still retain
the condition that |t ′j− t ′j−1|> δ for j = 1, · · · ,k′−1. Hence

ωD(w,δ ,T ) ≤ max
1≤ j≤k

sup
s,t∈[t j,t j−1)

d(w(t),w(s))

≤ max
1≤ j≤k′

sup
s,t∈[t ′j,t ′j−1)

d(w(t),w(s))

≤ ω(w,2δ ,T ).

The following theorem provides a characterization of paths in S which are right continuous with
left-hand limits.

Lemma 7.3. Let (S,d) be a metric space, and w : [0,∞)→ S be a path in S.
1) If w ∈ D(S), then limδ↓0 ωD(w,δ ,T ) = 0 for any T > 0.
2) If in addition (S,d) is complete and limδ↓0 ωD(w,δ ,T ) = 0 for any T > 0, then w ∈ D(S).
3) If w ∈ D(S), then δ → ωD(w,δ ,T ) is right continuous at every δ > 0 for every T > 0.

Proof. 1). Suppose w is a càdlàg path, and T > 0. For ε > 0, let τ be the supremum of t ∈ [0,T ] such
that there is a finite partition 0 = t0 < · · ·< tk = t, such that

max
1≤ j≤k

sup
s1,s2∈[t j−1,t j)

d(w(s1),w(s2))< ε .

Then τ > 0 as w is right continuous at 0. Since w(τ−) exists, so that there is τ ′ ∈ [0,τ) such that

sup
s1,s2∈[τ ′,τ)

d(w(s1),w(s2))< ε.

By definition, as τ ′ < τ , there is a finite partition 0 = t ′0 < · · ·< t ′k′ = τ ′ such that

max
1≤ j≤k′

sup
s1,s2∈[t ′j−1,t

′
j)

d(w(s1),w(s2))< ε .

Together
0 = t ′0 < · · ·< t ′k′ = τ

′ < τ

a partition of [0,τ] denoted by 0 = t0 < · · ·< tk = τ and

max
1≤ j≤k

sup
s1,s2∈[t j−1,t j)

d(w(s1),w(s2))< ε .

If τ < T , then w is right continuous at τ , there is τ ′′ ∈ [τ,T ] such that

sup
s1,s2∈[τ,τ ′′)

d(w(s1),w(s2))< ε,

which allows to produce a partition of [0,τ ′′]:

0 = t0 < · · ·< tk( = τ) < tk+1 = τ
′′
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such that
max

1≤ j≤k+1
sup

s1,s2∈[t j−1,t j)

d(w(s1),w(s2))< ε

which is a contradiction to the definition of τ . Hence τ = T which proves the necessity of 1).
Proof of 2). (S,d) is complete. Let T > 0 and limδ↓0 ωD(w,δ ,T ) = 0. Then, for every ε > 0 there

is a δ0 > 0 such that for any 0 < δ < δ0, there is a finite partition of [0,T ]: 0 = t0 < · · ·< tk = T such
that |t j− t j−1|> δ for j = 1, · · · ,k−1, and

sup
s1,s2∈[t j−1,t j)

d(w(s1),w(s2))< ε

for all j = 1, · · · ,k, which implies that w is right continuous on [0,T ).
Suppose by contradiction that there is r ∈ (0,T ], such that w(r−) did not exist. Then, there

is ε0 > 0 and there exist tn,sn ↑ r such that d(w(tn),w(sn)) ≥ ε0, this contradicts to the previous
inequality for ε = ε0.

The proof of 3) is left as an exercise.

Example. Step functions are important examples of càdlàg paths. For example any sequence in
S (such as random sequences in discrete-time) can be considered as continuous paths if S is also a
vector space, but in general a sequence can be considered as a càdlàg path. A step function w with
finitely many jumps, is a path w : [0,∞)→ S such that there is a partition 0 = t0 < .. . < tk (for some
k) such that w(t) = w(ti−1) for t ∈ [ti−1, ti) for i = 1, . . . ,k and w(t) = w(tk) for all t ≥ tk. A step
function may have infinitely many jumps, but the followings are typical ones. There is a partition
0 = t0 < t1 < .. . < t j < .. ., where t j→ ∞, and w(t) = w(t j−1) for t ∈ [t j−1, t j) for j = 1,2, . . ..

Example. Let w ∈ D(S). By Lemma 7.3, for every n = 1,2, . . ., there is a δn > 0 such that
ωD(w,δn,n)< 1

n . Hence there is a partition

0 = t(n)0 < t(n)1 < · · ·< t(n)k(n) = n

such that t(n)j − t(n)j−1 > δn for j ≤ k(n)−1 and

sup
j≤k(n)

sup
s,t∈[t(n)j−1,t

(n)
j )

d(w(t),w(s))<
1
n
.

Define for every n = 1,2, . . . a step function w(n) by setting w(n)(t) = w(t(n)j−1) for t ∈ [t(n)j−1, t
(n)
j ) and

w(n)(t) = w(n) for t ≥ n. Then w(n) is a step function with finitely many jumps, w(n) ∈ D(S) and

sup
t≤n−1

d(w(t),w(n)(t))<
1
n

for every n, that is w(n)→ w uniformly on [0,T ] for every T > 0. Therefore any càdlàg path in (S,d)
is a uniform limits of step càdlàg paths in (S,d) on any [0,T ].

Next we introduce the Skorohod topology on D(S), where (S,d) is a metric space. We may assume
that the metric d is bounded by one, otherwise we may replace its (topologically) equivalent metric
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d∧1 or d
1+d instead. Still there are slightly different ways to introduce Skorohod’s topology on D(S),

in this course we mainly follow the approach in Ethier and Kurtz [14, Chapter 3]. The easiest manner
to define the Skorohod topology is to construct a metric giving rise to the required topology. Let us
define such a metric on D(S), called the Skorohod metric.

Let Λ0 denote the collection of strictly increasing function λ from [0,∞) one-to-one and onto
[0,∞). Such λ must be continuous, λ (0) = 0 and limt↑∞ λ (t) = ∞. The inverse λ−1 ∈ Λ0 too. If
λ ∈Λ0 then

γ(λ )≡ sup
t>s≥0

∣∣∣∣log
λ (t)−λ (s)

t− s

∣∣∣∣
which measures how close between the reparameterization t→ λ (t) and t→ t. If λ ∈Λ0 and γ (λ )<
∞, then we say λ ∈Λ . Clearly γ(λ ) = γ(λ−1).

Exercise 7.4. 1) If λi ∈Λ (i = 1,2), then λ1 ◦λ2 ∈Λ and

γ (λ1 ◦λ2)≤ γ (λ1)+ γ (λ2) . (7.5)

2) If λ ∈Λ then

sup
t≤T
|λ (t)− t| ≤ T

(
eγ(λ )−1

)
, ∀T ≥ 0. (7.6)

3) If λi ∈Λ (i = 1,2), then

sup
t≤T

λ1 (|λ2(t)− t|) ≤ sup
s≥0

λ1(s)
s

sup
t≤T
|λ2(t)− t|

≤ eγ(λ1) sup
t≤T
|λ2(t)− t| ∀T ≥ 0. (7.7)

To simplify our notations, let us introduce the following convention. If β is a real or complex
valued function on [0,∞), and T > 0, then

‖β‖T = sup
t≤T
|β (t)| and ‖β‖= ‖β‖

∞

the supremum norm of β , which may be infinity.
If x,y : [0,∞)→ S are two paths, then

‖d (x,y)‖T = sup
t≤T

d(x(t),y(t))

and
‖d (x,y)‖= sup

t≥0
d(x(t),y(t)) = ‖d (x,y)‖

∞
.

For s≥ 0 we use xs to denote the path stopped at s, that is, xs(t) = x(t∧ s). If λ ∈Λ0, then x◦λ is
the reparameterisation of x, thus, x ◦λ (t) = x(λ (t)). Note the difference that xs ◦λ (t) = x(s∧λ (t))
and (x◦λ )s(t) = x(λ (t ∧ s)) for t ≥ 0. The subtle difference is important if the x has jumps.

Lemma 7.5. If x ∈ D(S), λ ∈Λ and s≥ 0, then xs and x◦λ also belong to D(S).

24



Definition 7.6. Let (S,d) be a metric space with a bounded metric d. If x,y ∈ D(S), then define

ρ(x,y) = inf
λ∈Λ

[
γ (λ )∨

ˆ
∞

0
‖d(xs,ys ◦λ )‖e−sds

]
. (7.8)

In other words

ρ(x,y) = inf
λ∈Λ

[
sup

t>s≥0

∣∣∣∣log
λ (t)−λ (s)

t− s

∣∣∣∣∨ˆ ∞

0
e−s sup

t≥0
d(x(t ∧ s),y(λ (t)∧ s))ds

]
. (7.9)

Lemma 7.7. Let (S,d) be a metric space with bonded metric d. Then ρ defined by (7.8) is a metric
on D(S), called the Skorohod metric.

See [14, pages 117,118] for the proof. The induced topology on D(S) by the metric ρ is called the
Skorohod topology.

Remark. We can avoid the L1-norm in the definition (7.8) if (S,d) is a normed vector space.
For each n = 1,2, . . . we define a Lipschitz continuous cut-off function kn(t) = 1 for t ≤ n, kn(t) =
1− (t−n) for t ∈ (n,n+1] and kn(t) = 0 for t > n+1. If x ∈D(Rd), knx(t) = kn(t)x(t) defines a new
path which coincides with x(t) for t ∈ [0,n] and vanishes on [n+1,∞). A (topologically) equivalent
Skorohod metric is defined by

ρ̃(x,y) = inf
λ∈Λ

{
γ (λ )+

∞

∑
n=1

1
2n (‖(knx)◦λ − kny‖∧1)

}
(7.10)

which defines the Skorohod topology on D(Rd).

Let us discuss the convergence of sequences in D(S) with respect to the Skorohod topology
through several lemmas, their proofs are omitted, one may refer to [14, Chapter III].

Lemma 7.8. Let (S,d) be a metric space with a bounded metric d, and ρ the Skorohod metric on
D(S). Suppose x(n),x ∈ D(S) (where n = 1,2, . . .). Then ρ(x(n),x)→ 0, if and only if there is a
sequence λ (n) ∈Λ such that

γ

(
λ
(n)
)
→ 0 (7.11)

and
sup

t∈[0,T ]
d
(

x(n)(t),x(λ (n)(t))
)
→ 0 (7.12)

as n→ ∞ for every T > 0.

Lemma 7.9. Let (S,d) be a metric space with a bounded metric d, and ρ the Skorohod metric on
D(S). Let x(n), x ∈ D(S), where n = 1,2, . . .. Then ρ(x(n),x)→ 0 as n→ ∞, if and only if for every
T > 0, there is a sequence λ (n,T ) ∈Λ0 such that

sup
t∈[0,T ]

∣∣∣λ (n,T )(t)− t
∣∣∣→ 0

as n→ ∞, and
sup

t∈[0,T ]
d
(

x(n)(t),x(λ (n,T )(t))
)
→ 0, as n→ ∞.
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Lemma 7.10. Let (S,d) be a metric space with a bounded metric d, and ρ the Skorohod metric on
D(S). Let x(n),x ∈ D(S) (for n≥ 1). Then ρ(x(n),x)→ 0 as n→ ∞, if and only if there is a sequence
λ (n) ∈Λ , such that γ

(
λ (n)

)
→ 0, and

sup
t≥0

d(x(n)(t ∧ s),x(λ n(t)∧ s))→ 0

as n→ ∞ for s > 0 at which x is continuous. In particular, if x is continuous at s > 0, then x(n)(s)→
x(s) and also x(n)(−s)→ x(s) as n→ ∞.

The following theorem allows fully implement Prohorov’s theorems for weak convergences of dis-
tributions on D(S) endowed with the Skorohod topology, and its induced Borel σ -algebra B(D(S)).

Theorem 7.11. Let S be a metric metric with a bounded metric d, and ρ be the Skorohod metric on
D(S).

1) If (S,d) is separable, then (D(S),ρ) is separable too.
2) If (S,d) is a Polish space, then (D(S),ρ) is separable and complete too.

We will not give the proof of the previous theorem in the lectures, see [14, Chapter III] for details.
Let (Xt)t≥0 be the coordinate process on D(S) where for every t ≥ 0, Xt(w) = w(t) for every

w ∈ D(S).

Theorem 7.12. Let (S,d) be a Polish metric space. Then the Borel σ -algebra generated by the
Skorohod topology, B(D(S)) = σ {Xt : t ≥ 0}.

Next we need to identify the relatively compact subsets of D(S) equipped with the Skorohod
topology. To this end we introduce the following notations. If w ∈ D(S) is a step function, then there
is a partition 0 = t0 < t1 < · · ·< t j < · · · , such that

w(t) = w(t j−1) if t ∈ [t j−1, t j)

for j = 1,2, · · · , where t0 = 0 and if t j−1 < ∞ then

t j = inf{t > t j−1 : w(t) 6= w(t−)}
= inf{t > t j−1 : w(t) 6= w(t j−1)}.

Therefore t j = ∞ for some j or t j ↑ ∞. To indicate the dependence on the step function w ∈ D(S), we
may write t j as t j(w).

The following give some examples of compact subsets of D(S).

Lemma 7.13. Let (S,d) be a Polish space. Let δ > 0 and Γ ⊂ S be a compact subset. A (Γ,δ )
denotes the collection of all step functions w ∈ D(S) such that

1) w(t) ∈ Γ for all t (that is, w ∈ D(Γ) where (Γ,d) is a compact metric space), and
2) t j(w)− t j−1(w)≥ δ for j such that t j−1(w)< ∞.
Then A (Γ,δ ) is compact in D(S) under the Skorohod topology.

Proof. Let
{

w(n)
}

be a sequence in A (Γ,δ ). If necessary, by applying Cantor’s digonalization to

t j(w(n)), we may assume that, for any j = 0,1, · · · , either 1) t j(w(n)) = ∞ for all n, or 2) t j(w(n))< ∞,
t j(w(n))→ t j and w(n)

t j(w(n))
→ wt j for some elements wt j ∈ Γ. Define w ∈ D(Γ) by wt = wt j for t ∈

[t j, t j+1) if t j < ∞. Then, since t j(w(n))− t j−1(w(n))≥ δ , we can verify that w(n)→ w in the Skorohod
metric D. Clearly, t j− t j−1 ≥ δ , so that t j(w)− t j−1(w)≥ δ , and therefore w ∈A (Γ,δ ).
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The following theorem is the Ascoli-Arzelà theorem for càdlàg paths.

Theorem 7.14. Let (S,d) be a Polish metric space. A subset K ⊂ D(S) is relatively compact with
respect to the Skorohod topology, if and only if the following two conditions are satisfied:

1) There is a dense set Q ⊂ [0,∞) such that {wt : w ∈ K} is relatively compact in S for any t ∈Q.
2) For every T > 0

lim
δ↓0

sup
w∈K

ωD(w,δ ,T ) = 0.

For a proof of this theorem read [14, Chapter III].
By Prohorov’s criterion for relative compactness of probability measures on Polish spaces, we

then have the following tightness criterion for distributions on D(Rd).

Theorem 7.15. Let D(Rd) be equipped with the Skorohod metric. Let L be a family of probability
measures on (D(Rd),B(D(Rd))). Then L is relatively compact with respect to weak convergence
topology (i.e. equivalently with respect to the Prohorov’s metric topology over the space of probability
measures on D(Rd)), if and only if the following two conditions are satisfied:

lim
L→∞

sup
P∈L

P

[
w : sup

t∈[0,T ]
|w(t)| ≥ L

]
= 0

and
lim
δ↓0

sup
P∈L

P [w : ωD(w,δ ,T )≥ ε] = 0

for every T > 0 and ε > 0.

Theorem 7.16. Let X (n) (where n = 1,2, . . .) be a sequence of stochastic processes with values in Rd

on a probability space (Ω ,F ,P), whose sample paths are right continuous on [0,∞) with left limits
on (0,∞), so that their distributions are probability measures on (D(Rd),B(D(Rd))). Then (X (n)) is
tight if and only if

lim
L→∞

sup
n
P

[
sup

t∈[0,T ]
|X (n)

t | ≥ L

]
= 0

and
lim
δ↓0

sup
n
P
[
ωD(X (n),δ ,T )≥ ε

]
= 0

for every T > 0 and ε > 0.

The modified modules of continuity, ωD(x,δ ,T ) is not easy to estimate, so any simpler replace-
ments will have value. Here we introduce another version of modules of continuity. If x : [0,∞)→Rd ,
then

ωd(x,δ ,T ) = sup
0≤s<t<r≤T ;r−s<δ

[|x(t)− x(s)|∧ |x(r)− x(t)|] .

Theorem 7.17. Let D(Rd) be equipped with the Skorohod metric. Then K ⊂ D(Rd) is relatively
compact if and only if

sup
w∈K

sup
t≤T
|w(t)|< ∞,

lim
δ↓0

sup
x∈K

ωd(w,δ ,T ) = 0

for every T > 0, and
lim
δ↓0

sup
w∈K

sup
s,t∈[0,δ )

|w(t)−w(s)|= 0.
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8 Cramèr’s theorem
The main reference on large deviations is Stroock [24], and we will follow the exposition there closely.

Let (ξn) be an i.i.d. sequence on (Ω ,F ,P) with a common distribution µ on R. Assume that ξ1
is integrable, and let

a = E [ξ1] =

ˆ
R

xµ(dx).

Let µn denote the distribution of 1
n ∑

n
i=1 ξi. Then, according to the law of large numbers

1
n

n

∑
i=1

ξi→ a almost surely

so that µn→ δa weakly by DCT. The probabilities of the deviations of µn away from δa is the context
of Cramèr’s theorem.

To this end we define the exponential moment function of the distribution µ

Mµ(λ ) =

ˆ
R

eλ z
µ(dz) for λ ∈ R,

which is positive, though may be equal to infinite for some λ .
In what follows we assume that the distribution µ satisfies that Mµ(λ )< ∞ for all λ ∈ R.
Under the assumption above, we may define the Legendre transform of logMµ to introduce the

rate function Iµ associated with µ , which is given by

Iµ(x) = sup
λ∈R

{
λx− logMµ(λ )

}
for x ∈ R.

Iµ takes values in [0,∞].
Now we are in a position to state the first example of large deviation principle.

Theorem 8.1. (H. Cramèr) Suppose Mµ(λ ) < ∞ for all λ ∈ R, then {µn : n ≥ 1} satisfies the large
deviation principle (LDP) with the rate function Iµ , in the sense that

limsup
n→∞

1
n

log µn(F)≤− inf
x∈F

I(x) (8.1)

for every closed subset F ⊂ R, and

liminf
n→∞

1
n

log µn(G)≥− inf
x∈G

I(x) (8.2)

for every open subset G⊂ R.

We divide the proof of this theorem into several steps.

Lemma 8.2. 1) Mµ : R→ (0,∞) is smooth and log-convex, that is λ → logMµ(λ ) is convex.
2) Iµ is a convex good rate function in the sense that Kc =

{
x : Iµ(x)≤ c

}
is compact for every c.

3) Iµ(a) = 0 where a =
´
R xµ(dx), and Iµ ↑ on (a,∞) and Iµ ↓ on (−∞,a).

4) We have
inf
(x,y]

Iµ = I(y) if x < y≤ a

and
inf
[x,y)

Iµ = I(x) if a≤ x < y .
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Proof. 1) We only need to show that logMµ(λ ) is convex, which however follows the following
observation: for every α ∈ (0,1)

Mµ(αλ1 +(1−α)λ2) =

ˆ
eαλ1xe(1−α)λ2x

µ(dx)

≤
(ˆ

eλ1x
µ(dx)

)α(ˆ
eλ2x

µ(dx)
)1−α

where the inequality follows from Hölder inequality with p = 1
α

. Therefore logMµ(λ ) is convex.
2) Iµ is lower semi-continuous, non-negative and convex as it is the supremum of the linear func-

tions. We need to show that for every c > 0

Kc =
{

x ∈ R : Iµ(x)≤ c
}

is compact. Since Iµ is lower semi-continuous so Kc is closed, we therefore only need to show that
Kc is bounded. If x ∈ Kc then

±x− logMµ(±1)≤ c

so that
|x| ≤ c+ logMµ(1)+ logMµ(−1)

for every x ∈ Kc. Hence Kc is bounded.
3) By Jensen’s inequality

logMµ(λ ) = log
ˆ

eλx
µ(dx)

≥ λ

ˆ
xµ(dx) = λa

which implies that
λa− logMµ(λ )≤ 0 for all λ

Therefore we must have Iµ(a) = 0 so a is the global minimum of Iµ . The other claims then follows
immediately as Iµ is convex.

Lemma 8.3. 1) We have
xλ − logMµ(λ )≤ (x−a)λ (8.3)

for any x and λ .
2) We have

Iµ(x) = sup
λ≥0

{
λx− logMµ(λ )

}
for x≥ a (8.4)

and
Iµ(x) = sup

λ≤0

{
λx− logMµ(λ )

}
for x≤ a . (8.5)

Proof. 1) (8.3) follows from Jensen’s inequality

logMµ(λ ) = log
ˆ
R

eλ z
µ(dz)≥ λ

ˆ
R

zµ(dz) = aλ .
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2) In particular, it follows from (8.3) that

λx− log
ˆ
R

eλ z
µ(dz)≤ 0

for any x and λ such that (x−a)λ ≤ 0, and therefore

Iµ(x) = sup
λ :(x−a)λ≥0

{
λx− logMµ(λ )

}
for any x, which implies (8.4, 8.5) immediately.

Lemma 8.4. We have

µ ([x,∞))≤ exp
(
−Iµ(x)

)
= exp

(
− inf

[x,∞)
Iµ

)
for x≥ a

and

µ ((−∞,x])≤ exp
(
−Iµ(x)

)
≤ exp

(
− inf

(−∞,x]
Iµ

)
for x≤ a .

Proof. If λ ≥ 0 and x≥ a

µ ([x,∞)) =

ˆ
z≥x

µ(dz)

≤
ˆ

z≥x

eλ z

eλx
µ(dz)

≤
ˆ
R

eλ z

eλx
µ(dz)

= exp
{
−
(
λx− logMµ(λ )

)}
so that

µ ([x,∞)) ≤ exp

{
− sup

λ≥0

(
λx− logMµ(λ )

)}
= exp

{
−Iµ(x)

}
.

Similarly we may prove the case where x≤ a.

After having established the elementary facts we are now in a position to prove the LDP bounds.

Proof of upper bound (8.1). If F = /0 or a∈ F then inf Iµ = 0 so that infF Iµ = 0 the bound is trivial
in this case.

Therefore we assume that a /∈ F . If F ⊂ [a,∞), then F ⊂ [y,∞) where y = inf{z : z ∈ F}. Hence

inf
F

Iµ = Iµ(y) = sup
λ≥0

{
λy− logMµ(λ )

}
. (8.6)
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For every λ > 0

µn(F) ≤ µn([y,∞)) = P

{
1
n

n

∑
i=1

ξi ≥ y

}

≤
ˆ
{ 1

n ∑
n
i=1 ξi≥y}

e
1
n λ ∑

n
i=1 ξi

eλy
dP

≤
ˆ

Ω

e
1
n ∑

n
i=1 λξi

eλy
dP=

ˆ
Ω

∏
n
i=1 e

λ

n ξi

eλy
dP

= e−λy
n

∏
i=1

ˆ
Ω

e
λ

n ξidP (ξi are i.i.d.)

= e−λy (Mµ(λ/n)
)n

and therefore
1
n

log µn(F)≤−
{

λ

n
y− logMµ

(
λ

n

)}
for every λ ≥ 0. It thus follows that

1
n

log µn(F) ≤ − sup
λ≥0

{
λy− logMµ (λ )

}
= −Iµ(y) =− inf

F
Iµ =−Iµ (min(F)) .

We thus have proven the upper bound for the case that F ⊂ [a,∞).
Similarly we may show that

1
n

log µn(F)≤− inf
F

Iµ =−Iµ (max(F)) if F ⊂ (−∞,a] .

Finally for an arbitrary closed set F in R, let F1 = F ∩ (−∞,a] and F2 = F ∩ [a,∞). Then

1
n

log µn(F)≤ 1
n

log(µn(F1)+µn(F2))

so that

limsup
n→∞

1
n

log µn(F) ≤ max
{

limsup
n→∞

1
n

log µn(F1), limsup
n→∞

1
n

log µn(F2)

}
≤ max

{
−Iµ (maxF1) ; − Iµ (minF2)

}
= −min

{
Iµ (maxF1) ; Iµ (minF2)

}
≤ − inf

F
Iµ

which is the upper bound for large deviations.

Proof of lower bound (8.2). We are going to show that for every x ∈ G,

liminf
n→∞

1
n

log µn(G)≥−Iµ(x) .
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if G is an open subset. Obviously we only need to prove the previous inequality for those x ∈ G such
that Iµ(x)< ∞.

We consider two cases.
Firstly let us consider the case that the supremum (which equals Iµ(x)) of

λy− logMµ(λ )

is not achievable on λ ∈ R. Then x 6= a (as I(a) = 0 which is achieved when λ = 0).
Without loss of generality, let us assume that x > a. Then we may choose a sequence of λn > 0

such that λn→+∞ and
λnx− logMµ(λn)→ Iµ(x) as n→ ∞ .

While by Lebesgue’s dominated convergence theorem

lim
n→∞

ˆ
(−∞,x)

eλn(z−x)
µ(dz) = 0

and therefore

lim
n→∞

ˆ
[x,∞)

eλn(z−x)
µ(dz) = lim

n→∞

ˆ
R

eλn(z−x)
µ(dz)

= lim
n→∞

e−{λnx−log
´
R exp(λnz)µ(dz)}

= exp
(
−Iµ(x)

)
<+∞. (8.7)

On the other hand, for any δ > 0 we have
ˆ
[x+δ ,∞)

eλn(z−x)
µ(dz)≥ eδλn µ([x+δ ,∞))

so that

µ([x+δ ,∞)) ≤ e−δλn

ˆ
[x+δ ,+∞)

eλn(z−x)
µ(dz)

≤ e−δλn

ˆ
R

eλn(z−x)
µ(dz)

≤ e−δλne−{λnx−log
´
R eλnzµ(dz)} .

Letting n→ ∞ we conclude that

µ([x+δ ,∞)) ≤ e− limn→∞{λnx−log
´
R eλnzµ(dz)} lim

n→∞
e−δλn

= 0 ∀δ > 0 .

Therefore µ((x,∞)) = 0. Hence by (8.7)

lim
n→∞

ˆ
[x,∞)

eλn(z−x)
µ(dz) = µ({x}) = exp

(
−Iµ(x)

)
32



which follows thus that

µn(G) ≥ µn({x})
≥ P{ξi = x : i = 1, · · · ,n}
= µ({x})n .

Therefore
liminf

n→∞

1
n

log µn(G)≥ ln µ({x}) =−Iµ(x) .

Similarly one may handle the case that x < a.
Next we consider the case that x ∈ G and there is λ such that

Iµ(x) = λx− logMµ(λ )

= sup
η

{
ηx− logMµ(η)

}
where we must have (x−a)λ ≥ 0. Since λ is a critical point of the function

η → ηx− log
ˆ
R

eηz
µ(dz)

so that its derivative at λ vanishes, which yields that

x =

´
R zeλ zµ(dz)

Mµ(λ )
. (8.8)

Without losing generality, assume that x≥ a so that λ ≥ 0. Choose δ > 0 such that (x−δ ,x+δ )⊂G.
Then

µn(G) ≥ µn((x−δ ,x+δ ))

= P

{∣∣∣∣∣1n n

∑
i=1

ξi− x

∣∣∣∣∣< δ

}

≥ E

{
eλ ∑

n
i=1 ξi

enλ (x+δ )
;

∣∣∣∣∣1n n

∑
i=1

ξi− x

∣∣∣∣∣< δ

}

= e−nλ (x+δ )E

{
eλ ∑

n
i=1 ξi;

∣∣∣∣∣1n n

∑
i=1

ξi− x

∣∣∣∣∣< δ

}
= e−nλ (x+δ )

ˆ
Rn

eλ ∑
n
i=1 zi1{| 1n ∑

n
i=1 zi−x|<δ}µ(dz1) · · ·µ(dzn) .

Define a new probability measure v on R by

ν(dz) =
eλ z

Mµ(λ )
µ(dz)

which is a probability measure on (R,B(R)). Then

µn(G) ≥ e−nλ (x+δ )
(
Mµ(λ )

)n
ˆ
Rn

1{| 1n ∑
n
i=1 zi−x|<δ}v(dz1) · · ·v(dzn)

= e−nλ (x+δ )
(
Mµ(λ )

)nP

{∣∣∣∣∣1n n

∑
i=1

Yi− x

∣∣∣∣∣< δ

}
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where Yi are i.i.d distribution ν , so that its mean (see equation (8.8))

E [Yi] =

ˆ
R

ziv(dzi) =

ˆ
R

zieλ zi

Mµ(λ )
µ(dzi)

=
1

Mµ(λ )

ˆ
R

zieλ zi µ(dzi)

= x.

On the other hand, by the strong law of large numbers

P

{∣∣∣∣∣1n n

∑
i=1

Yi− x

∣∣∣∣∣< δ

}
→ 1 as n→ ∞

so that, together with the previous estimate for µn(G),

1
n

log µn(G) ≥ −λ (x+δ )+ logMµ(λ )

+
1
n

logP

{∣∣∣∣∣1n n

∑
i=1

Yi− x

∣∣∣∣∣< δ

}
→ −λ (x+δ )+ logMµ(λ ) as n→ ∞ .

Therefore

liminf
n→∞

1
n

log µn(G) ≥ −
(
λx− logMµ(λ )

)
−δλ

= −Iµ(x)−δλ ∀δ > 0.

By letting δ ↓ 0 we obtain

liminf
n→∞

1
n

log µn(G)≥−Iµ(x) for every x ∈ G.

Thus we have completed the proof of Cramèr’s theorem.

9 Large deviation principles, and functional integration
The speed of convergence of a sequence of distributions to their limiting distribution may be described
by rate functions, which are non-negative, lower semi-continuous functions on the state space E.

Let E be a Polish space, and B(E) denote the Borel σ -algebra. Recall that a function I : E →
(−∞,∞] is lower semi-continuous if for every real number c the level set

Ic = I−1((−∞,c]) = {s ∈ E : I(s)≤ c}

is closed. In other words, I is lower semi-continuous if

liminf
s→s0

I(s)≥ I(s0).

A lower semi-continuous function I : E → [0,∞] is called a rate function. We will see that however
a necessary condition for a rate function to be the speed describing large deviations of distributions
only if can I achieve its minimum zero.
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A family {Pε : ε > 0} of probability measures on (E,B(E)), where E is a Polish space, satisfy
the large deviation principle (LDP) with rate function I if

limsup
ε↓0

ε logPε (F)≤− inf
s∈F

I(s) (9.1)

for every closed sets F ⊂ E (which is called upper bound of large deviations) and

liminf
ε↓0

ε logPε (G)≥− inf
s∈G

I(s) (9.2)

for every open subset G⊂ E (that is called the lower bound of large deviations).
In this case we also say that the rate function I governs the large deviations of {Pε : ε > 0}.
Here the following conventions are applied: if A is empty, then − infA I =−∞, and log0 =−∞.
Obviously (9.1) and (9.2) together is equivalent to

− inf
x∈Bo

I(x)≤ liminf
ε↓0

ε logPε (B)≤ limsup
ε↓0

ε logPε (B)≤− inf
x∈B

I(x) (9.3)

for every Borel subset B in E. Therefore, if B is a Borel set in E such that infB I = infBo I (= infB I)
then

lim
ε↓0

ε logPε (B) =− inf
B

I

and therefore

Pε (B)≈ exp
{
− infB I

ε

}
as ε ↓ 0.

That is, unless infB I = 0, Pε (B) tends to zero exponentially as ε ↓ 0.
We will see that the lower bound of large deviations (9.2) is more or less a local property, but the

upper bound (9.1) reflects in many cases the global distribution of the family {Pε : ε > 0}, and thus
is more important, and more difficult to prove. Therefore we may also introduce the so-called weak
large deviation principle: {Pε : ε > 0} satisfies the weak large deviation principle with rate function I
if

limsup
ε↓0

ε logPε (K)≤− inf
x∈K

I(x) (9.4)

for every compact subset K ⊂ E (instead of any closed set) together with the lower bound of large
deviation (9.2).

Lemma 9.1. For a given family {Pε : ε > 0} of probabilities on E there is at most one rate function
governing the large deviations of {Pε : ε > 0}.

Proof. Exercise.

We have seen that a necessary condition that a rate function I governs large deviations of a family
of distributions is that the rate function I must achieve its minimum zero. Good rate functions are
introduced to address this issue and other analytic difficulties.

Definition 9.2. (Good rate functions) Let E be a Polish space. A function I : E→ [0,∞] is a good rate
function if

1) inf I < ∞,
2) I is lower semi-continuous, and
3) for any c≥ 0, {s : I(s)≤ c} is compact.
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Of course, condition 3 implies condition 2, and is a very strong restriction on rate functions. It
follows thus that I must achieve its minimum, and indeed we can say a little bit more.

Proposition 9.3. Let I : E → [0,∞] be a good rate function and Φ : E → [−∞,∞) be upper semi-
continuous (i.e. −Φ : E → (−∞,∞] is lower semi-continuous). Suppose S ⊂ E is closed such that
supS Φ < ∞, then there is a s0 ∈ S such that

Φ(s0)− I(s0) = sup
S
(Φ− I) . (9.5)

Proof. [The proof is not examinable. ] Since supS Φ < ∞, so supS (Φ− I) < ∞, and therefore
supS (Φ− I) is finite. By definition, there is a sequence {sn} in S such that

sup
S
(Φ− I)− 1

n
≤Φ(sn)− I(sn)≤ sup

S
(Φ− I) .

In particular

I(sn) ≤ Φ(sn)+
1
n
− sup

S
(Φ− I)

≤ sup
S

Φ+1− sup
S
(Φ− I)

and therefore

{sn} ⊂
{

x : I(x)≤ sup
S

Φ+1− sup
S
(Φ− I)

}
which is compact. Hence there is a convergent sub-sequence of {sn}, so without losing generality, we
assume that sn→ s0. Since S is closed, so s0 ∈ S. Since Φ− I is upper semi-continuous,

sup
S
(Φ− I)≥Φ(s0)− I(s0)≥ limsup

n→∞

(Φ(sn)− I(sn)) = sup
S
(Φ− I)

so s0 achieves the supremum of Φ− I on S.

Proposition 9.4. Let I : E → [0,∞] be a good rate function on a Polish space (E,ρ), and S be a
closed, non-empty subset of E. Define for δ > 0

Sδ = {s ∈ E : ρ(s,S)< δ}
= {s ∈ E : ρ(s,s′)< δ for some s′ ∈ S} .

Then
inf

s∈Sδ

I(s) ↑ inf
s∈S

I(s) as δ ↓ 0 .

Proof. We argue by contradiction. Suppose infs∈Sδ I(s) ↑ l as δ ↓ 0 for some l, but l < infs∈S I(s).
Then for every n, we may choose sn ∈ S1/n such that

I(sn) ≤ inf
s∈S1/n

I(s)+
1
n

≤ l +
1
n

.
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In particular (sn) ⊂ {I ≤ l +1}. But I is a good rate function, so {I < l +1} is compact, hence
there is a convergent sub-sequence {sn′} such that sn′ → s0. S is closed, so s0 ∈ S, and therefore
I(s0)≥ infs∈S I(s). While by the lower semi-continuity

I(s0) ≤ liminf
n→∞

I(sn′)

≤ l
< inf

s∈S
I(s)

which is a contradiction.

A very useful tool is Varadhan’s contraction principle.

Theorem 9.5. (S. R. S. Varadhan) Let I be a good rate function governing the large deviations of
{Pε : ε > 0} on E, and f : E→ E ′ a continuous map (E,E ′ are Polish spaces). Define

I′(s′) = inf
{

I(s) : s ∈ E such that f (s) = s′
}

.

Then I′ is a good function on E ′ that governs the large deviations of
{

Pε ◦ f−1 : ε > 0
}

.

Exercise in Problem Sheet 3.
Indeed all conclusions follow directly from definitions. We will give a proof of a generalization

of the contraction principle.

Definition 9.6. Let {Pε : ε > 0} be a family of probability measures on a Polish space (E,ρ). Then
{Pε : ε > 0} is exponentially tight if for every c > 0 there is a compact set Kc in E such that

limsup
ε↓0

ε logPε [E \Kc]≤−c. (9.6)

Begin with an elementary fact.

Lemma 9.7. If xε and yε are positive (for small ε > 0), then

limsup
ε↓0

ε log(xε + yε)≤max

{
limsup

ε↓0
ε logxε , limsup

ε↓0
ε logyε

}
(9.7)

and

liminf
ε↓0

log(xε + yε)≥min
{

liminf
ε↓0

ε logxε , liminf
ε↓0

ε logyε

}
. (9.8)

Proof. We have

log(xε + yε) ≤ log{2max(xε ,yε)}
= log2+ log{max(xε ,yε)}
= log2+max{logxε , logyε}

so that

limsup
ε↓0

ε log(xε + yε) ≤ limsup
ε↓0

ε log2+ limsup
ε↓0

ε max{logxε , logyε}

= limsup
ε↓0

max{ε logxε , ε logyε}

≤ max

{
limsup

ε↓0
ε logxε , limsup

ε↓0
ε logyε

}
.

37



Similarly

log(xε + yε) ≥ log{min(xεyε)}
= min{logxε , log yε}

so that

liminf
ε↓0

log(xε + yε) ≥ min
{

liminf
ε↓0

ε logxε , liminf
ε↓0

ε logyε

}
≥ min

{
liminf

ε↓0
ε logxε , liminf

ε↓0
ε logyε

}
.

The following result is similar to the tightness criterion for weak convergence.

Theorem 9.8. If {Pε : ε > 0} is exponentially tight and satisfies the weak large deviation principle
with rate function I, then

1) I is a good rate function.
2) I governs the large deviations of {Pε : ε > 0}.

Proof. For every c > 0, we choose a compact set Kc such that (9.6) holds. Since Kc is compact, by
the weak large deviation principle

−c≥ liminf
ε↓0

ε logPε [E \Kc]≥− inf
E\Kc

I

which yields that
inf

E\Kc
I ≥ c

so that
Ic = {s : I(s)≤ c} ⊂ Kc+1.

Since I is lower semi-continuous, so that Ic is a closed subset of a compact subset Kc+1. Thus Ic must
be compact.

Next we prove that the upper large deviation bound holds for any closed set S⊂ E. In fact for any
c > 0

Pε(S)≤ Pε(Kc∩S)+Pε(E \Kc)

so that

limsup
ε↓0

ε logPε(S) ≤ limsup
ε↓0

ε log [Pε(Kc∩S)+Pε(E \Kc)]

≤ −
(

inf
Kc∩S

I
)
∧ c

≤ −
(

inf
S

I
)
∧ c

for every c > 0. Letting c→ ∞ we obtain

limsup
ε↓0

ε logPε(S)≤− inf
S

I

which is the upper bound for large deviations.
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Theorem 9.9. (S. R. S. Varadhan) Let I be a rate function governing the weak large deviations of
{Pε : ε > 0}, and Φ : E→ (−∞,∞] be lower semi-continuous. Then

liminf
ε↓0

ε log
ˆ

E
e

Φ

ε dPε ≥ sup
Φ∧I<∞

(Φ− I) . (9.9)

Proof. [The proof is not examinable.] As we have indicated, lower bounds for large deviations reflect
only local property of the family of distributions Pε . This point is demonstrated clearly from the proof
below. For any s ∈ E such that Φ(s)− I(s)< ∞ and δ > 0 we have

liminf
ε↓0

ε log
ˆ

E
e

Φ

ε dPε ≥ liminf
ε↓0

ε log
ˆ

B(s,δ )
e

Φ

ε dPε

≥ liminf
ε↓0

ε log
{

e
infB(s,δ )Φ

ε Pε(B(s,δ ))
}

= inf
B(s,δ )

Φ+ liminf
ε↓0

ε logPε(B(s,δ ))

≥ inf
B(s,δ )

Φ− inf
B(s,δ )

I

≥ inf
B(s,δ )

Φ− I(s)

Letting δ ↓ 0, since Φ is lower semi-continuous, we obtain

liminf
ε↓0

ε log
ˆ

E
e

Φ

ε dPε ≥ lim
δ↓0

inf
B(s,δ )

Φ− I(s)

≥ Φ(s)− I(s)

for any s ∈ E, it follows thus that

liminf
ε↓0

ε log
ˆ

E
e

Φ

ε dPε ≥ sup
Φ∧φ<∞

(Φ− I) .

Theorem 9.10. (S. R. S. Varadhan) Let I be a good rate function that governs the large deviations of
{Pε : ε > 0}, and Φ : E→ [−∞,∞) upper semi-continuous which satisfies that

lim
c→∞

limsup
ε↓0

ε log
ˆ
{Φ≥c}

e
Φ

ε dPε =−∞. (9.10)

Then
limsup

ε↓0
ε log

ˆ
E

e
Φ

ε dPε ≤ sup
E

(Φ− I) . (9.11)

Proof. [The proof is not examinable] Let us first consider the case that Φ is bounded above by some
M > 0. Given c > 0, the level set Kc = {I ≤ c} is compact in E. Since Φ is upper semi-continuous,
for any δ > 0, we can choose finite many si in Kc and positive numbers ri (where 1 ≤ i ≤ n) so that
Kc is covered by balls Bi ≡ B(si,ri), and

sup
B̄i

Φ≤Φ(si)+δ ; inf
B̄i

I ≥ I(si)−δ for all i .
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Let G = ∪n
i=1Bi. Then

ˆ
E

e
Φ

ε dPε =

ˆ
E\G

e
Φ

ε dPε +

ˆ
∪n

i=1Bi

e
Φ

ε dPε

≤ e
M
ε Pε(E \G)+

n

∑
i=1

ˆ
Bi

e
Φ

ε dPε

≤ e
M
ε
+logPε (E\G)+

n

∑
i=1

e
Φ(si)+δ

ε
+logPε (Bi)

≤ e
1
ε
(M+ε logPε (E\G))

+
n

∑
i=1

e
1
ε
((Φ(si)+δ )+ε logPε (B̄i))

and therefore

limsup
ε↓0

ε log
ˆ

E
e

Φ

ε dPε

≤ max

{
M+ limsup

ε↓0
ε logPε (E \G) ,(Φ(si)+δ )+ limsup

ε↓0
ε logPε (B̄i)

}

≤ max
{

M− inf
E\G

I,(Φ(si)+δ )− inf
B̄i

I
}

≤ max{M− c,(Φ(si)+δ )− I(si)+δ}

≤ max
{

sup
E
(Φ− I),M− c

}
+2δ .

Letting δ ↓ 0 and letting c→ ∞ we obtain (9.11).
For general Φ

ˆ
E

e
Φ

ε dPε =

ˆ
Φ<c

e
Φ

ε dPε +

ˆ
Φ≥c

e
Φ

ε dPε

≤
ˆ

E
e

Φ∧c
ε dPε +

ˆ
Φ≥c

e
Φ

ε dPε

so that

limsup
ε↓0

ε log
ˆ

E
e

Φ

ε dPε

≤ max

{
sup

E
(Φ∧ c− I) , limsup

ε↓0
ε log

ˆ
Φ≥c

e
Φ

ε dPε

}

≤ max

{
sup

E
(Φ− I) , limsup

ε↓0
ε log

ˆ
Φ≥c

e
Φ

ε dPε

}
and finally by letting c→ ∞, since

lim
c→∞

limsup
ε↓0

ε log
ˆ

Φ≥c
e

Φ

ε dPε =−∞
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we obtain

limsup
ε↓0

ε log
ˆ

E
e

Φ

ε dPε ≤ sup
E

(Φ− I) .

Theorem 9.11. (S. R. S. Varadhan) Let I be a good rate function that governs the large deviations of
{Pε : ε > 0}, and Φ : E→ R a continuous function which satisfies

lim
c→∞

limsup
ε↓0

ε log
ˆ
{Φ≥c}

e
Φ

ε dPε =−∞ . (9.12)

Then

lim
ε↓0

ε log
ˆ

E
e

Φ

ε dPε = sup
E

(Φ− I) . (9.13)

It follows directly from the previous two theorems.

Lemma 9.12. If a continuous function Φ : E→ R satisfies

sup
0<ε≤1

(ˆ
E

eα
Φ

ε dPε

)ε

< ∞

for some α > 1, then (9.12) holds, that is

lim
c→∞

limsup
ε↓0

ε log
ˆ
{Φ≥c}

e
Φ

ε dPε =−∞ .

Proof. Indeed by Hölder’s inequality

ˆ
{Φ≥c}

e
Φ

ε dPε ≤
(ˆ

E
eα

Φ

ε dPε

)1/α
(ˆ
{Φ≥c}

dPε

)1−1/α

≤
(ˆ

E
eα

Φ

ε dPε

)1/α
(

e−α
c
ε

ˆ
{Φ≥c}

eα
Φ

ε dPε

)1−1/α

≤ e(1−α) c
ε

ˆ
E

eα
Φ

ε dPε

and therefore

ε log
ˆ
{Φ≥c}

e
Φ

ε dPε

≤ (1−α)c+ log
(ˆ

E
eα

Φ

ε dPε

)ε

.

The conclusion thus follows immediately.
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10 Contraction principles, continuity theorem
In practice, we more often deal with random variables directly, so we may introduce the following

Definition 10.1. Let {Xε : ε ∈ (0,1)} be a family of random variables taking values in a Polish space
E on a probability space (Ω ,F ,P). We say {Xε : ε ∈ (0,1)} satisfies LDP with a rate function I, if

limsup
ε↓0

ε logP [Xε ∈ F ]≤− inf
s∈F

I(s) (10.1)

for every closed subset F ⊂ E, and

liminf
ε↓0

ε logP [Xε ∈ G]≥− inf
s∈G

I(s) (10.2)

for every open subset G⊂ E.

In this section, we study the following question. If {Xε
n : ε ∈ (0,1)} (n = 1,2, · · · ) is a sequence

of families of random variables valued in E on (Ω ,F ,P), suppose Xε
n converges to Xε as n→ ∞

(for each ε > 0 but small), and suppose for each n, {Xε
n : ε ∈ (0,1)} obeys LDP with rate function

In, under what conditions, the limiting distributions of {Xε : ε ∈ (0,1)} also satisfies LDP, and if so,
how to calculate its rate function?

First of all we have the following contraction principle.

Theorem 10.2. Let E,E ′ be two Polish spaces, and f : E → E ′ be continuous. Suppose {Zε : ε ∈
(0,1)} satisfies a LDP with a good rate function I, then Xε = f (Zε) satisfies LDP with rate function

I′(s′) = inf
{

I(s) : s ∈ E such that f (s) = s′
}

.

A generalization of this theorem is needed in order to deal with Wiener functionals which are only
measurable functions of Brownian motion sample paths. To this end, we introduce the following

Definition 10.3. Let {Xε
n : ε ∈ (0,1)} and {Xε : ε ∈ (0,1)} be families of random variables in a Polish

space E on (Ω ,F ,P). Then we say Xε
n converges to Xε as n→ ∞ exponentially, if for every δ > 0

lim
n→∞

limsup
ε↓0

ε logP [ρ(Xε
n ,X

ε)> δ ] =−∞ (10.3)

where ρ is the distance function on E.

In Lemma 10.4 and Lemma 10.5 below, {Xε
n : ε ∈ (0,1)} and {Xε : ε ∈ (0,1)} are families of

random variables in a Polish space (E,ρ) on a complete probability space (Ω ,F ,P), Xε
n converges

to Xε as n→ ∞ exponentially and for each n, {Xε
n : ε > 0} satisfies LDP with a good rate function In.

Lemma 10.4. Let G⊂ E be open. Then

liminf
ε↓0

ε logP [Xε ∈ G]≥− limsup
n→∞

inf
Bs(δ )

In (10.4)

for every s ∈ E and δ > 0 such that Bs(2δ )⊂ G.
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Proof. By the triangle inequality

{Xε
n ∈ Bs(δ )} ⊂ {Xε ∈ Bs(2δ )}∪{ρ(Xε

n ,X
ε)> δ}

and therefore

P [Xε
n ∈ Bs(δ )]≤ P [Xε ∈ Bs(2δ )]+P [ρ(Xε

n ,X
ε)> δ ]

≤ P [Xε ∈ G]+P [ρ(Xε
n ,X

ε)> δ ]

whenever Bs(2δ )⊂ G. Therefore

ε log(P [Xε ∈ G]+P [ρ(Xε
n ,X

ε)> δ ])≥ ε logP [Xε
n ∈ Bs(δ )] .

By Lemma 9.7

liminf
ε↓0

ε log{P [Xε ∈ G]+P [ρ(Xε
n ,X

ε)> δ ]}

≤ max
{

liminf
ε↓0

ε logP [Xε ∈ G] , liminf
ε↓0

ε logP [ρ(Xε
n ,X

ε)> δ ]

}
,

and by assumption that Xε
n → Xε exponentially as n→∞, for every c > 0, there is an number N1 such

that
limsup

ε↓0
ε logP [ρ(Xε

n ,X
ε)> δ ]≤−c ∀n≥ N1.

Hence for n > N1 we have

liminf
ε↓0

ε logP [Xε
n ∈ Bs(δ )]≤ liminf

ε↓0
ε log(P [Xε ∈ G]+P [ρ(Xε

n ,X
ε)> δ ])

≤ liminf
ε↓0

ε logP(Xε ∈ G)∨ (−c),

together with the LDP lower bound for Xε
n , we deduce that

liminf
ε↓0

ε logP [Xε ∈ G]∨ (−c)≥− inf
Bs(δ )

In (10.5)

for all n > N1. Hence

liminf
ε↓0

ε logP [Xε ∈ G]∨ (−c)≥− limsup
n→∞

inf
Bs(δ )

In (10.6)

for every c > 0. If liminfε↓0 ε logP [Xε ∈ G] =−∞ then

−c≥− limsup
n→∞

inf
Bs(δ )

In

for every c > 0, so that limsupn→∞ infBs(δ ) In(s) = ∞. Otherwise, letting c→ ∞ in (10.6) one obtains
that

liminf
ε↓0

ε logP [Xε ∈ G]≥− limsup
n→∞

inf
Bs(δ )

In,

which completes the proof.

43



Lemma 10.5. Let S⊂ E be a closed subset. Then

limsup
ε↓0

ε logP [Xε ∈ S]≤− lim
δ↓0

liminf
n→∞

inf
s∈Sδ

In(s) (10.7)

where Sδ = {s ∈ E : ρ(s,S)< δ} for every δ > 0.

Proof. By the triangle inequality we have

{Xε ∈ S} ⊂
{

Xε
n ∈ S̄δ

}
∪{ρ(Xε

n ,X
ε)> δ}

so that
P [Xε ∈ S]≤ P

[
Xε

n ∈ S̄δ

]
+P [ρ(Xε

n ,X
ε)> δ ]

and therefore
ε logP [Xε ∈ S]≤ ε log

{
P
[
Xε

n ∈ S̄δ

]
+P [ρ(Xε

n ,X
ε)> δ ]

}
.

It follows that

limsup
ε↓0

ε logP [Xε ∈ S]≤ limsup
ε↓0

ε logP
[
Xε

n ∈ S̄δ

]
∨ limsup

ε↓0
ε logP [ρ(Xε

n ,X
ε)> δ ]

for every n and δ > 0. Since Xε
n → Xε exponentially as n→ ∞, so by letting n→ ∞ in the previous

inequality we obtain

limsup
ε↓0

ε logP [Xε ∈ S]≤ limsup
n→∞

limsup
ε↓0

ε logP
[
Xε

n ∈ S̄δ

]
≤ limsup

n→∞

(
− inf

Sδ

In

)
=− liminf

n→∞
inf
Sδ

In

for every δ > 0. Finally by sending δ ↓ 0 we therefore have

limsup
ε↓0

ε logP [Xε ∈ S]≤− lim
δ↓0

liminf
n→∞

inf
Sδ

In.

As a consequence, we have the following trivial but useful corollary.

Corollary 10.6. Let {Xε : ε ∈ (0,1)} and {Y ε : ε ∈ (0,1)} be two families of random variables taking
values in E, and Y ε satisfy LDP with a good rate function I. Suppose Xε and Y ε are exponentially
close in the sense that for every δ > 0

limsup
ε↓0

ε logP [ρ(Xε ,Y ε)> δ ] =−∞

then Xε also satisfies LDP with rate function I.
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Proof. If G is open, then for every s ∈ E and δ > 0 such that Bs(2δ )⊂ G by Lemma 10.4

liminf
ε↓0

ε logP [Xε ∈ G]≥− inf
Bs(δ )

I (10.8)

which yields the lower bound of LDP

liminf
ε↓0

ε logP [Xε ∈ G]≥− inf
G

I.

According to Lemma 10.5

limsup
ε↓0

ε logP [Xε ∈ S]≤− lim
δ↓0

inf
s∈Sδ

I(s) (10.9)

for every closed set S. Since I is a good rate function, so that

lim
δ↓0

inf
s∈Sδ

I(s) = inf
S

I

we thus also have LDP upper bound for Xε .

Theorem 10.7. Let E,E ′ be two Polish spaces, fn : E → E ′ be a sequence of continuous mappings,
and I be a good rate function. Let

I′n(s
′) = inf

{
I(s) : s ∈ E and fn(s) = s′

}
where n = 1,2, · · · . Suppose fn→ f uniformly on Ic = {x : I(x)≤ c} for every c ≥ 0 as n→ ∞, so f
is well defined on {s ∈ E : I(s)< ∞}. Then

I′(s′) = inf
{

I(s) : s ∈ E such that I(s)< ∞ and f (s) = s′
}

is a good rate function.
Suppose {Xε

n : ε ∈ (0,1)} is a family of random variables in E ′ satisfying LDP with rate function
I′n, and {Xε

n : ε ∈ (0,1)} converges to {Xε : ε ∈ (0,1)} exponentially

lim
n→∞

limsup
ε↓0

ε logP
[
ρ
′(Xε

n ,X
ε)> δ

]
=−∞, (10.10)

where ρ ′ is the distance function on E ′, then {Xε : ε ∈ (0,1)} satisfies LDP with rate function I′.

As a special and useful example, we have the following corollary, which is called the contraction
principle in LDP literature such as [24].

Theorem 10.8. Let E,E ′ be two Polish spaces, and fn : E → E ′ be continuous mappings. Suppose
random variables {Zε : ε ∈ (0,1)} in E satisfies LDP with a good rate function I. Suppose

1) fn(Zε) = Xε
n converges to Xε exponentially as n→ ∞,

2) fn converges to f uniformly on Ic = {x : I(x)≤ c} for every c ≥ 0, so f is well defined on
{s ∈ E : I(s)< ∞}.

Then Xε satisfies LDP with rate function

I′(s′) = inf
{

I(s) : s ∈ E such that I(s)< ∞ and f (s) = s′
}
.
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Proof. of Theorem (10.7). [The proof is not examinable.] First of all we show that I′ is a good rate
function on E ′. Let c≥ 0 be a constant and consider I′c = {s′ : I′(s′)≤ c}. Suppose {s′n} is a sequence
in I′c, we want to show that it has a convergent sub-sequence with a limit in I′c. Since I is a good rate
function and f is a uniform limit of continuous mapping on {s ∈ E : I(s)≤C} for every C≥ 0, so for
every n we may choose sn ∈ E such that f (sn) = s′n and I(sn)≤ c+ 1

n . In particular {sn} ⊂ Ic+1. Since
Ic+1 is compact, so without loss of generality we may assume that sn→ s in E. Since I is lower-semi
continuous

I(s)≤ liminf
n→∞

I(sn)≤ c.

In particular sn→ s in Ic+1, and f is continuous on Ic+1, so that f (sn) = s′n→ f (s)≡ s′. By definition
of I′, we also have I′(s′)≤ c, so that s′ ∈ I′c, which proves that I′c is compact. By definition I′ is a good
rate function on E ′.

Next we are going to prove LDP bounds.
First we prove the lower bound. We need to show that

liminf
ε↓0

ε logP [Xε ∈ G]≥− inf
s′∈G

I′(s′) (10.11)

for every open set G⊂ E ′. According to Lemma 10.4,

liminf
ε↓0

ε logP [Xε ∈ G]≥− limsup
n→∞

inf
Bs′0

(δ )
I′n

for any δ > 0 such that Bs′0
(δ )⊂ G, so we only need to prove that

limsup
n→∞

inf
Bs′0

(δ )
I′n ≤ inf

s′∈G
I′(s′).

If infs′∈G I′(s′) = ∞ then there is nothing to prove, so we assume that l = infG I′ < ∞. For every
θ > 0, there is an s′0 ∈ G such that

l ≤ I′(s′0)≤ l +θ .

Choose δ > 0 smaller than θ , such that Bs′0
(2δ ) ⊂ G. By definition, there is an s0 ∈ E such that

I(s0)< ∞, f (s0) = s′0 and I(s0) = I′(s′0). Hence l ≤ I(s0)≤ l +θ . Since fn converges to f uniformly
on Il+θ , there is an N1 such that

ρ
′( fn(s), f (s))< θ ∀n≥ N1, s ∈ Il+θ .

In particular
ρ
′( fn(s0),s′0)< θ ∀n≥ N1.

It follows, by the definition of I′n, that

inf
Bs′0

(δ )
I′n ≤ inf

Bs′0
(θ)

I′n ≤ I′(s′0) = I(s0)≤ l +θ ∀n≥ N1

so that
limsup

n→∞

inf
Bs′0

(δ )
I′n ≤ l +θ .

Since Xε
n converges to Xε exponentially, by Lemma 10.4, we have

liminf
ε↓0

ε logP [Xε ∈ G]≥− limsup
n→∞

inf
Bs′0

(δ )
I′n ≥−l−θ
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for every θ > 0. Letting θ ↓ 0 to obtain the lower bound (10.11).
Next we prove the upper bound.
Let S ⊂ E ′ be a closed subset, and Sδ = {s′ ∈ E ′ : ρ ′(s′,S)< δ} where δ > 0. Then, by Lemma

10.5,
limsup

ε↓0
ε logP [Xε ∈ S]≤− lim

δ↓0
liminf

n→∞
inf
Sδ

I′n. (10.12)

Let
l = lim

δ↓0
liminf

n→∞
inf
Sδ

I′n.

If l = ∞ then there is nothing to prove. Therefore we assume that l < ∞. Then, for each n there is an
s′n ∈ E ′, such that ρ ′(s′n,S)≤ 1

n , and

I′n(s
′
n)≤ l +

1
n

.

For each n we may choose an sn ∈ E such that fn(sn) = s′n and I(sn)≤ l+ 1
n . Since I is a good function

and sn belongs to the compact set Il+1, thus, without loss of generality, we may assume that sn→ s.
Since fn converges uniformly on Il+1, so that fn(sn)→ s′ and f (s) = s′. Since S is closed, s′ ∈ S and
I(s)≤ limn→∞ I(sn)≤ l, so that I′(s′)≤ l. Hence

inf
s′∈S

I′(s′)≤ I′(s′)≤ l

and therefore
limsup

ε↓0
ε logP [Xε ∈ S]≤−l ≤− inf

s′∈S
I′(s′)

which completes the proof.

11 Schilder’s theorem
In this section we prove Schilder’s large deviation principle for Brownian motion in uniform topology.
There are many different proofs, we however present a proof by using an approximation procedure
which can be used to prove refined versions, and to prove large deviation principles for other stochastic
processes.

For simplicity we work with one dimensional Brownian motion, though everything we did in this
section can be applied to multi-dimensional case.

The law of the standard Brownian motion B= (Bt) with running time t ∈ [0,1] is called the Wiener
measure, denoted by P, which is a probability measure on the space E =C0([0,1]) of all continuous
path w : [0,1]→ R such that w(0) = 0. E is a Polish space with the uniform norm distance.

For every ε > 0, Γ (ε) : E → E, the scaling operation which sends a path w to
√

εw is obviously
continuous, one-to-one and onto. Let Pε be the law of

√
εB =

(√
εBt
)

t∈[0,1]. By definition

Pε = P◦Γ (ε)−1 for every ε > 0.

Define I : E→ [0,∞] by

I(w) =
1
2

ˆ 1

0
|ẇ(t)|2 dt (11.1)

if w ∈ E and its generalized derivative ẇ ∈ L2([0,1]), and I(w) = ∞ otherwise.
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Theorem 11.1. (Schilder) {Pε : ε > 0} satisfies the large deviation principle with rate function I.
That is

limsup
ε↓0

ε logPε(F)≤− inf
F

I (11.2)

for every closed subset F ⊂ E and

liminf
ε↓0

ε logPε(G)≥− inf
G

I (11.3)

for every open subset of G⊂ E.

The remaining text of the notes is devoted to the proof of Schilder’s large deviation principle.
For each n, let tk

n = k
2n be the dyadic points in [0,1], where k runs from 0 to 2n. Let En = ∏

2n

k=1R,
endowed with its norm ‖a‖En

= maxk |ak|. The natural embedding

gn : En→ E

takes an element a = (a1, · · · ,a2n) ∈ En to a continuous path w = gn(a) ∈ E given by

wt = ak−1 +2n(t− tk−1
n )(ak−ak−1), if t ∈

[
tk−1
n , tk

n

]
,

where a0 = 0. w ∈ E is the unique path taking values ak at t = tk
n and linear on

[
tk−1
n , tk

n
]

for k =
1, · · · ,2n.

The projection πn : E→ En by sending a path w∈ E to πn(w) = (ak) with ak = wtk
n

(k = 1, · · · ,2n).
Both mappings gn and πn are continuous, and πn ◦gn is the identity mapping on En, and gn ◦πn is

the identity mapping on g−1
n (En). Moreover

‖gn(a)‖E = ‖a‖En
∀a ∈ En. (11.4)

For each n, we construct a continuous mapping fn : E→ E by fn = gn ◦πn which are continuous.
By definition fn takes each path w to its polygonal approximation w(n) = fn(w) determined by

w(n)
t = wtk−1

n
+2n(t− tk−1

n )(wtk
n
−wtk−1

n
). (11.5)

Let P(n)
ε denote the distribution of Xε

n , where

Xε
n (w) =

√
εw(n) = fn(

√
εw)

for w ∈ E, under the Wiener measure P. That is

P(n)
ε = Pε ◦ f−1

n = P◦ f−1
n ◦Γ (ε)−1

which are probability measures on (E,B(E)).
Note that for fixed n,

ξk =
√

2n
(

wtk
n
−wtk−1

n

)
for k = 1, · · · ,2n

under the Wiener measure P, is a family of independent random variables with the same distribution
N(0,1). We thus can derive a large deviation principle for the distribution family

{
P(n)

ε : ε > 0
}

.
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More precisely, define bk by
√

2n (bk−bk−1) = ξk, for k = 1, · · · ,2n

with b0 = 0. That is

bk =
1√
2n

k

∑
l=1

ξl .

The distribution of b = (b1, · · · ,b2n) is denoted by vn which is a Gaussian measure on the Euclidean
space En. Let vε

n be the law of the scaled Gaussian variable
√

ε(b1, · · · ,b2n). The following is a direct
corollary of the Cramér theorem or from a simple computation.

Lemma 11.2. 1) For each ε > 0 and natural number n, gn
(√

εb
)

has the distribution P(n)
ε .

2) {vε
n : ε > 0} satisfies the large deviation principle on En with a good rate function

In(a) =
1
2

2n

∑
k=1

2n (ak−ak−1)
2 (11.6)

for any a = (a1, · · · ,a2n) ∈ En with convention that a0 = 0.

f : En→ En sending ξ = (ξk) to b = (bk) by bk =
1√
2n ∑

k
l=1 ξl , which is one to one and continuous.

The original rate function

J(x) =
1
2

2n

∑
k=1

ξ
2
k

so that
I(a) = J(x)

such that f (x) = a, that is, xk =
√

2n (ak−ak−1), x0 = 0, k = 1, · · · ,2n. Hence

I(a) =
1
2

2n

∑
k=1

2n (ak−ak−1)
2 .

Therefore, by the contraction principle, Theorem 10.2, we have

Lemma 11.3. For each n, {Pε
n : ε > 0} satisfies the large deviation principle on with a rate function

I′n(w) = inf{In(a) : a ∈ En s. t. gn(a) = w} . (11.7)

Suppose w ∈ gn(En), then there is exactly one solution a ∈ En to the equation gn(a) = w such that
ak = wtk

n
for k = 1, · · · ,2n. Therefore if w ∈ gn(En) then

I′n(w) =
1
2

2n

∑
k=1

2n
∣∣∣wtk

n
−wtk−1

n

∣∣∣2 = 1
2

ˆ 1

0
|ẇ(t)|2 dt (11.8)

where the second equality follows that w is linear on each interval
[
tk−1
n , tk

n
]

with its slope 2n(wtk
n
−

wtk−1
n

). I′n(w) = ∞ on E \gn(En).
Hence

I′n(w) =
{

1
2

´ 1
0 |ẇ(t)|

2 dt if w ∈ gn(En)
∞ otherwise.

(11.9)
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and therefore we have
I′n(w) = inf{I(x) : x ∈ E s. t. fn(x) = w} (11.10)

where we recall that

I(w) =
{

1
2

´ 1
0 |ẇ(t)|

2 dt if w ∈ H1 ,
∞ if w /∈ H1

(11.11)

where H1 is the space of all w ∈ E such that ẇ ∈ L2([0,1]).
Therefore we may rewrite the previous lemma in terms of mappings fn as the following.

Lemma 11.4. For each n, {Xε
n : ε > 0} satisfies the large deviation principle with a rate function I′n

defined by (11.10).

In order to apply the generalized contraction principle, we need to study the rate function given
by (11.11).

Lemma 11.5. The function defined by (11.11) is a good rate function on E.

Proof. [The proof is not examinable.] We show that Ic = {w : I(w) ≤ c} is compact in E for every
c > 0. If w ∈ Ic then

|wt−ws| =

∣∣∣∣ˆ t

s
ẇrdr

∣∣∣∣
≤
√

2c
√

t− s

so that Ic is bounded in E, and is equi-continuous, therefore, according to Ascoli-Arzelà’s theorem, Ic
is pre-compact. We need to show Ic is closed in E. To this end we show that for any w ∈ E

I(w) = sup
n

In(w) (11.12)

where

In(w) = I( fn(w)) =
1
2

2n

∑
k=1

2n
∣∣∣wtk

n
− xtk−1

n

∣∣∣2 .
Let w ∈ E and w(n) = fn(w). Suppose supn In(w)< ∞, then

sup
n

ˆ 1

0

∣∣∣ẇ(n)
t

∣∣∣2 dt < ∞.

Therefore, for any u ∈C∞
0 ([0,1])∣∣∣∣ˆ 1

0
u̇twtdt

∣∣∣∣ = lim
n→∞

∣∣∣∣ˆ 1

0
u̇tw

(n)
t dt

∣∣∣∣
= lim

n→∞

∣∣∣∣ˆ 1

0
utẇ

(n)
t dt

∣∣∣∣
≤

√
sup

n

ˆ 1

0

∣∣∣ẇ(n)
t

∣∣∣2 dt

√ˆ 1

0
|ut |2dt
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so that ẇ ∈ L2([0,1]), that is, w ∈ H1 and I(w) < ∞. Finally we prove (11.12) for w ∈ H1. By the
fundamental theorem in calculus∣∣∣wtk

n
−wtk−1

n

∣∣∣2 =

∣∣∣∣∣
ˆ tk

n

tk−1
n

ẇtdt

∣∣∣∣∣
2

≤ 2−n
ˆ tk

n

tk−1
n

|ẇt |2dt

it follows thus that

In(w)≤
1
2

ˆ 1

0
|ẇt |2dt = I(w) .

On the other hand, by triangle inequality∣∣∣In(w)1/2− In(w̃)1/2
∣∣∣ ≤ In(w− w̃)1/2

≤
√

I(w− w̃)

so that we only need to show (11.12) for w ∈C∞([0,1]). In this case we have

I(w) ≥ sup
n

In(w)

≥ 1
2

lim
n→∞

{
2n

∑
k=1

2n
∣∣∣wtk

n
−wtk−1

n

∣∣∣2}

=
1
2

lim
n→∞

ˆ 1

0
|ẇ(n)

t |2dt

= I(w) .

Since each In is continuous on E, I is lower-semi continuous, so that Ic is closed in E. Thus we only
need to prove (11.12).

Recall that Xε(w) =
√

εw for every w ∈ E and Xε
n = fn(Xε).

Lemma 11.6. For n ∈ N and δ > 0

P [||Xε −Xε
n ||E ≥ δ ]≤ 2n exp

{
−2nδ 2

8ε

}
. (11.13)

In particular
lim
n→∞

limsup
ε↓0

ε logP [||Xε −Xε
n ||E ≥ δ ] =−∞. (11.14)

Proof. Let Bn(δ ) = {||X− fn(X)||E ≥ δ}. Then

P [||Xε − fn(Xε)||E ≥ δ ] = Pε(Bn(δ )).

If tk
n ≤ t ≤ tk+1

n , then

|Xt− fn(X)t | =
∣∣∣Xt−Xtk

n
−2n

(
t− tk

n

)(
Xtk+1

n
−Xtk

n

)∣∣∣
≤ 2 sup

s≤ 1
2n

∣∣∣Xtk
n+s−Xtk

n

∣∣∣ .
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Hence

Pε(Bn(δ )) = Pε

{
sup

k
sup

tk
n≤t≤tk+1

n

|Xt− fn(X)t | ≥ δ

}

≤ Pε

sup
k

sup
t≤ 1

2n

∣∣∣Xtk
n+t−Xtk

n

∣∣∣≥ δ

2


= P

sup
k

sup
t≤ 1

2n

∣∣∣Xtk
n+t−Xtk

n

∣∣∣≥ δ

2
√

ε


≤

2n−1

∑
k=0

P

 sup
s≤ 1

2n

∣∣∣Xtk
n+s−Xtk

n

∣∣∣≥ δ

2
√

ε


= 2nP

 sup
s≤ 1

2n

|Xs| ≥
δ

2
√

ε

 .

Now (11.13) follows from the Gaussian tail estimate.

Lemma 11.7. fn converges uniformly to the identity mapping on every level set Ic = {w : I(w) ≤ c}
for every c > 0.

Proof. For any w ∈ Ic and n we have

|| fn(w)−w|| = max
1≤k≤2n

sup
t∈[tk−1

n ,tk
n ]

|wt− fn(w)t |

= max
1≤k≤2n

sup
t∈[tk−1

n ,tk
n ]

|wt− fn(w)t |

≤ 2 max
1≤k≤2n

sup
s≤ 1

2n

∣∣∣wtk−1
n +s−wtk−1

n

∣∣∣
= 2 max

1≤k≤2n
sup
s≤ 1

2n

∣∣∣∣∣
ˆ tk−1

n +s

tk−1
n

ẇsds

∣∣∣∣∣
≤ 2

√
1
2n max

1≤k≤2n
sup
s≤ 1

2n

√ˆ tk−1
n +s

tk−1
n

|ẇs|2ds

≤ 2
√

2c

√
1
2n

so that fn(w) goes to w uniformly on Ic.

Now Schilder’s LDP follows from the generalized contraction principle, Theorem 10.7.
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