C8.6-2020 Paper - Solutions

Question 1. Solution. (a) [4 marks BK] $P_{n} \rightarrow P$ weakly if for every $f \in C_{b}(E)$, we have $\int_{E} f(x) P_{n}(d x) \rightarrow \int_{E} f(x) P(d x)$ as $n \rightarrow \infty$, which equivalent to any of the followings:

In terms of $U_{\rho}(E)$: for every $f \in U_{\rho}(E), \int_{E} f(x) P_{n}(d x) \rightarrow \int_{E} f(x) P(d x)$ as $n \rightarrow \infty$.
In terms of closed sets. For every closed set $F, \limsup _{n \rightarrow \infty} P_{n}(F) \leq P(F)$.
In terms of open sets. Fro every open subset $G, \liminf _{n \rightarrow \infty} P_{n}(G) \geq P(G)$.
(b) $\left[8=2+6\right.$ marks BK-New] (i) $X_{n} \rightarrow X$ in probability if for every $\delta>0$,

$$
\mathbb{P}\left[\rho\left(X_{n}, X\right)>\delta\right] \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

$X_{n} \rightarrow X$ in distribution if the laws of X_{n} converges to the law of X, that is for every bounded and continuous function $f, \mathbb{E}\left[f\left(X_{n}\right)\right] \rightarrow \mathbb{E}[f(X)]$ as $n \rightarrow \infty$.
(ii) Suppose $X_{n} \rightarrow X$ in probability, and f is bounded and uniformly continuous on E, so that for every $\varepsilon>0$ there is a $\delta>0$ such that $|f(x)-f(y)|<\varepsilon$ as long as $\rho(x, y)<\delta$. Therefore

$$
\begin{aligned}
\mathbb{E}\left|f\left(X_{n}\right)-f(X)\right| & =\mathbb{E}\left[\left|f\left(X_{n}\right)-f(X)\right|: \rho\left(X_{n}, X\right)<\delta\right]+\mathbb{E}\left[\left|f\left(X_{n}\right)-f(X)\right|: \rho\left(X_{n}, X\right) \geq \delta\right] \\
& \leq \varepsilon+\mathbb{E}\left[\left|f\left(X_{n}\right)-f(X)\right|: \rho\left(X_{n}, X\right)>\frac{1}{2} \delta\right] \\
& \leq \varepsilon+2 C \mathbb{P}\left[\rho\left(X_{n}, X\right)>\frac{1}{2} \delta\right]
\end{aligned}
$$

where $C>0$ such that $|f(x)| \leq C$ for all $x \in E$ (as f is bounded). Letting $n \rightarrow \infty$ to obtain that

$$
\limsup _{n \rightarrow \infty} \mathbb{E}\left|f\left(X_{n}\right)-f(X)\right| \leq \varepsilon
$$

for every $\varepsilon>0$, and therefore one must have

$$
\limsup _{n \rightarrow \infty} \mathbb{E}\left|f\left(X_{n}\right)-f(X)\right|=0
$$

Since $\mathbb{E}\left|f\left(X_{n}\right)-f(X)\right| \geq 0$, hence $\lim _{n \rightarrow \infty} \mathbb{E}\left|f\left(X_{n}\right)-f(X)\right|=0$. It follows that, for every $f \in U_{\rho}(E)$ we have

$$
\left|\mathbb{E}\left[f\left(X_{n}\right)\right]-\mathbb{E}[f(X)]\right| \leq \mathbb{E}\left|f\left(X_{n}\right)-f(X)\right| \rightarrow 0
$$

as $n \rightarrow \infty$. Hence, by (a) (i), $X_{n} \rightarrow X$ in distribution.
(c) $[13=2+11$ marks BK-Seen $]$ A family \mathscr{L} of probability measures on $(E, \mathscr{B}(E))$ is tight, if for every $\varepsilon>0$ there is a compact subset $K_{\varepsilon} \subset E$, such that

$$
P\left[K_{\varepsilon}\right] \geq 1-\varepsilon \quad \text { for every } P \in \mathscr{L} .
$$

If P is a probability measure on $(E, \mathscr{B}(E))$, we show that $\{P\}$ is tight. In fact for every $\varepsilon>0$, since (E, ρ) is a separable metric space, there is a dense countable subset $\left\{x_{1}, x_{2}, \cdots\right\}$ of E. Therefore for every $n=1,2, \cdots$,

$$
\bigcup_{i=1}^{\infty} \bar{B}_{x_{i}}\left(2^{-n}\right)=E
$$

where $\bar{B}_{x}(r)$ denotes the closed ball centered at x with radius r. Therefore

$$
1=P(E)=P\left[\bigcup_{i=1}^{\infty} \bar{B}_{x_{i}}\left(2^{-n}\right)\right]=\lim _{k \rightarrow \infty} P\left[\bigcup_{i=1}^{k} \bar{B}_{x_{i}}\left(2^{-n}\right)\right]
$$

for every n. By definition, for every n, there is $k_{n} \in \mathbb{N}$ such that

$$
P\left[\bigcup_{i=1}^{k_{n}} \bar{B}_{x_{i}}\left(2^{-n}\right)\right]>1-\frac{\varepsilon}{2^{n}} .
$$

Let $K_{\varepsilon}=\bigcap_{n=1}^{\infty} \bigcup_{i=1}^{k_{n}} \bar{B}_{x_{i}}\left(2^{-n}\right)$. Then

$$
\begin{aligned}
P\left(E \backslash K_{\varepsilon}\right) & =P\left[\bigcup_{n=1}^{\infty}\left(E \backslash \bigcup_{i=1}^{k_{n}} \bar{B}_{x_{i}}\left(2^{-n}\right)\right)\right] \leq \sum_{n=1}^{\infty} P\left(E \backslash \bigcup_{i=1}^{k_{n}} \bar{B}_{x_{i}}\left(2^{-n}\right)\right) \\
& <\sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n}}=\varepsilon
\end{aligned}
$$

and therefore $P\left[K_{\varepsilon}\right]>1-\varepsilon$. We claim K_{ε} is compact. For every $\delta>0$, we may choose n such that $\frac{1}{2^{n}}<\delta$. Then

$$
\bigcup_{i=1}^{k_{n}} B_{x_{i}}(\delta) \supset \bigcup_{i=1}^{k_{n}} \bar{B}_{x_{i}}\left(2^{-n}\right) \supset K_{\varepsilon}
$$

which implies that K_{ε} is totally bounded. Since K_{ε} is closed, and E is complete, therefore K_{ε} is compact. According to definition, $\{P\}$ is tight.

Question 2. Solution. (a) $[15=3+2+5+5$ marks BK-Seen $]$ (i) $I: E \rightarrow[0, \infty]$ is a rate function if $\{x \in E: I(x) \leq c\}$ is closed for every c, or equivalently, I is lower semi-continuous. Such I is a good rate function if $\{x \in E: I(x) \leq c\}$ is compact for every $c \geq 0$.
$\left\{X^{\varepsilon}: \varepsilon \in(0,1)\right\}$ satisfies the weak large deviation principle with rate function I, if for every open subset $G \subset E$

$$
\liminf _{\varepsilon \downarrow 0} \varepsilon \log P\left[X^{\varepsilon} \in G\right] \geq-\inf _{G} I,
$$

(LDP lower bound), and for every compact subset $K \subset E$

$$
\limsup _{\varepsilon \downarrow 0} \varepsilon \log P[K] \leq-\inf _{K} I
$$

$\left\{X^{\varepsilon}: \varepsilon \in(0,1)\right\}$ satisfies the large deviation principle with rate function I if the previous LDP lower bounds for open sets $G \subset E$ hold, and for every closed subset $S \subset E$ we have

$$
\limsup _{\varepsilon \downarrow 0} \varepsilon \log P\left[X^{\varepsilon} \in S\right] \leq-\inf _{S} I
$$

(ii) $\left\{X^{\varepsilon}: \varepsilon \in(0,1)\right\}$ is exponentially tight, if for every $c>0$ there is a compact subset $K_{c} \subset E$ such that

$$
\limsup _{\varepsilon \downarrow 0} \varepsilon \log P\left[X^{\varepsilon} \notin K_{c}\right]<-c
$$

(iii) Suppose $\left\{X^{\varepsilon}: \varepsilon \in(0,1)\right\}$ is exponentially tight, and satisfies the weak LDP. We first show that I is a good rate function. If $c \geq 0$, we show that $I_{c}=\{x \in E: I(x) \leq c\}$ is compact. In fact, since $\left\{X^{\varepsilon}: \varepsilon \in(0,1)\right\}$ is exponentially tight, so there is a compact subset K_{c}, $\lim _{\sup _{\varepsilon \downarrow 0}} \varepsilon \log P\left[X^{\varepsilon} \notin K_{c}\right] \leq-c$. By LDP lower bound applying to the open set $E \backslash K_{c}$ we have

$$
-\inf _{E \backslash K_{c}} I \leq \liminf _{\varepsilon \downarrow 0} \varepsilon \log P\left[X^{\varepsilon} \in E \backslash K_{c}\right]=\limsup _{\varepsilon \downarrow 0} \varepsilon \log P\left[X^{\varepsilon} \notin K_{c}\right]<-c .
$$

That is $\inf _{E \backslash K_{c}} I>c$, which implies that $I_{c} \subset K_{c}$, since I is a rate function, so I_{c} is closed, together with the fact that K_{c} is compact, we deduce that I_{c} is compact too. To prove that $\left\{X^{\varepsilon}: \varepsilon \in(0,1)\right\}$ satisfies LDP, we only need to show the upper bound for any closed subset $S \subset E$. For every $c>0$ we may choose a compact subset K_{c} such that $\lim \sup _{\varepsilon \downarrow 0} \varepsilon \log P\left[X^{\varepsilon} \notin K_{c}\right] \leq-c$. Then

$$
P\left[X^{\varepsilon} \in S\right] \leq P\left[X^{\varepsilon} \in K_{c} \cap S\right]+P\left[X^{\varepsilon} \in E \backslash K_{c}\right]
$$

so that

$$
\begin{aligned}
\limsup _{\varepsilon \downarrow 0} \varepsilon \log P\left[X^{\varepsilon} \in S\right] & \leq \max \left\{\underset{\varepsilon \downarrow 0}{\limsup ^{\sin }} \log P\left[X^{\varepsilon} \in K_{c} \cap S\right], \limsup _{\varepsilon \downarrow 0} \varepsilon \log P\left[X^{\varepsilon} \in E \backslash K_{c}\right]\right\} \\
& \leq \max \left\{\limsup _{\varepsilon \downarrow 0} \varepsilon \log P\left[X^{\varepsilon} \in K_{c} \cap S\right],-c\right\} \\
& \leq \max \left\{-\inf _{K_{c} \cap S} I,-c\right\} \leq \max \left\{-\inf _{S} I,-c\right\}
\end{aligned}
$$

That is for every c we have

$$
\limsup _{\varepsilon \downarrow 0} \varepsilon \log P\left[X^{\varepsilon} \in S\right] \leq \max \left\{-\inf _{S} I,-c\right\}
$$

so by letting $c \uparrow \infty$ we may conclude that

$$
\limsup _{\varepsilon \downarrow 0} \varepsilon \log P\left[X^{\varepsilon} \in S\right] \leq-\inf _{S} I
$$

which proves the LDP upper bound.
(iv) Let G be an open subset, and S be a closed subset. Since f is continuous so $f^{-1}(G)$ is open and $f^{-1}(S)$ is closed. Thus, since X^{ε} satisfies LDP with a good rate function I, we have

$$
\liminf _{\varepsilon \downarrow 0} P\left[Y^{\varepsilon} \in G\right]=\liminf _{\varepsilon \downarrow 0} P\left[X^{\varepsilon} \in f^{-1}(G)\right] \geq-\inf _{f^{-1}(G)} I
$$

and

$$
\limsup _{\varepsilon \downarrow 0} P\left[Y^{\varepsilon} \in S\right]=\limsup _{\varepsilon \downarrow 0} P\left[X^{\varepsilon} \in f^{-1}(S)\right] \leq-\inf _{f^{-1}(S)} I .
$$

Let

$$
\varphi(x)=\inf \{I(y): f(y)=x\}=\inf \left\{I(y): y \in f^{-1}(x)\right\}
$$

with a convention that $\inf \emptyset=\infty$. Let A be a subset of E. Suppose $\inf _{f^{-1}(A)} I=\infty$, then for every $I(y)=\infty$ for every $y \in f^{-1}(A)$, that is $I(y)=\infty$ for $y \in f^{-1}(x)$ and $x \in A$, so that $\inf _{A} \varphi=\infty$. Suppose $l=\inf _{f^{-1}(A)} I<\infty$. Then

$$
\inf _{f^{-1}(A)} I=\inf _{x \in A} \inf _{y \in f^{-1}(x)} I(y)=\inf _{x \in A} \varphi(x) .
$$

We therefore have

$$
\liminf _{\varepsilon \downarrow 0} P\left[Y^{\varepsilon} \in G\right] \geq-\inf _{G} \varphi
$$

and

$$
\limsup _{\varepsilon \downarrow 0} P\left[Y^{\varepsilon} \in S\right] \leq-\inf _{S} \varphi
$$

(b) $[10=1+2+7$ marks $\mathrm{BK}+\mathrm{New}]$ (i) Let H^{1} denote the Cameron-Martin space of all continuous function h on $[0,1]$ such that $h(0)=0$ and its derivative $\dot{h} \in L^{2}[0,1]$. The functional

$$
I(x)=\frac{1}{2}\|x\|_{H^{1}}^{2}=\frac{1}{2} \int_{0}^{1}|\dot{x}(t)|^{2} d t
$$

for $x \in H^{1}$, otherwise $I(x)=\infty$.
Schilder's Theorem : $\left(\sqrt{\varepsilon} B_{t}\right)_{t \in[0,1]}$ satisfies the large deviation principle with the good rate function I, that is,

$$
\liminf _{\varepsilon \downarrow 0} \varepsilon \log P[\sqrt{\varepsilon} B . \in G] \geq-\inf _{G} I
$$

for every open subset G of $C_{0}\left([0,1], \mathbb{R}^{d}\right)$, and

$$
\limsup _{\varepsilon \downarrow 0} \varepsilon \log P[\sqrt{\varepsilon} B . \in S] \leq-\inf _{S} I
$$

for every closed subset G of $C_{0}\left([0,1], \mathbb{R}^{d}\right)$. Where the continuous function space $C_{0}\left([0,1], \mathbb{R}^{d}\right)$ is equipped with its uniform norm (and the induced metric).
(ii) Let us consider the stochastic differential equation

$$
d X_{t}=-X_{t} d t+d B_{t}, \quad X_{0}=0
$$

which has the unique strong solution given by

$$
X_{t}=e^{-t}\left[\int_{0}^{t} e^{s} d B_{s}\right]
$$

which can be rewritten as, by using integration by parts,

$$
X_{t}=-e^{-t} \int_{0}^{t} e^{s} B_{s} d s+B_{t}
$$

Therefore we define the mapping from $E=C_{0}([0,1], \mathbb{R})$ to itself which sends $x \in E$ to $f(x)=w$ where

$$
w(t)=-e^{-t} \int_{0}^{t} e^{s} x(s) d s+x(t)
$$

Clearly $w \in E$, and if $x, y \in E$, so that

$$
f(x)(t)-f(y)(t)=-e^{-t} \int_{0}^{t} e^{s}(x(s)-y(s)) d s+(x(t)-y(t))
$$

and therefore

$$
\|f(x)-f(y)\| \leq 2\|x-y\|
$$

where $\|x\|$ is the uniform norm, that is, $\|x\|=\sup _{t \in[0,1]}|x(t)|$, this shows that $f: E \rightarrow E$ is continuous. By definition, $X^{\varepsilon}=f(\sqrt{\varepsilon} B)$, so according to (i), X^{ε} satisfies LDP with the rate function given by

$$
\psi(x)=\inf \left\{I(h): h \in H^{1} \text { and } f(h)=x\right\}
$$

otherwise $\psi(x)$. Moreover $f(h)=x$ and $h \in H^{1}$, if and only if

$$
d x(t)=-x(t) d t+\dot{h}(t) d t, \quad x(0)=0
$$

If there is no such $h \in H^{1}$, then $\psi(x)=\infty$.
Question 3. Solution. (a) $[9=3+6$ marks BK-New] (i) Kolmogorov's criterion. Suppose the following two conditions are satisfied:

$$
\lim _{L \rightarrow \infty} \inf _{n} \mathbb{P}\left[\left|X_{0}^{(n)}\right| \leq L\right]=1
$$

and there are $\alpha>0, \beta>0$ and a constant $C>0$ such that

$$
\mathbb{E}\left[\left|X_{t}^{(n)}-X_{s}^{(n)}\right|^{\alpha}\right] \leq C|t-s|^{1+\beta}
$$

for all $s, t \geq 0$, then $\left\{X^{(n)}: n=1,2, \cdots\right\}$ is relatively compact, that is, the family of the laws of $\left\{X^{(n)}: n=1,2, \cdots\right\}$, which are probability measures on the continuous path space $C\left([0, \infty), \mathbb{R}^{d}\right)$, is relatively compact with respect to the Prohorov's metric. Hence, there is a sub-sequence $\left(X^{\left(n_{k}\right)}\right)$ which converges weakly.
(ii) We may apply Kolmogorov's criterion. Since $X_{0}^{(n)}=0$ so that $\mathbb{P}\left[\left|X_{0}^{(n)}\right| \leq L\right]=1$ for every $L>0$, hence the first condition in (i) is satisfied. Since $\left(\sigma_{n}\right)$ is bounded so we may assume that $\left|\sigma_{n}\right| \leq C$, so that

$$
\left|X_{t}^{(n)}-X_{s}^{(n)}\right| \leq C\left|B_{t}-B_{s}\right|+M|t-s|
$$

Now

$$
\left|X_{t}^{(n)}-X_{s}^{(n)}\right|^{4} \leq 8 C^{4}\left|B_{t}-B_{s}\right|^{4}+8 M^{4}|t-s|^{4}
$$

so that

$$
\begin{aligned}
\mathbb{E}\left[\left|X_{t}^{(n)}-X_{s}^{(n)}\right|^{4}\right] & \leq 8 C^{4} \mathbb{E}\left|B_{t}-B_{s}\right|^{4}+8 M^{4}|t-s|^{4} \\
& \leq C_{T}|t-s|^{2}
\end{aligned}
$$

for all $0 \leq s, t \leq T$, where C_{T} depends only on T, so according to Kolmogorov's criterion, $\left\{X^{(n)}: n=1,2, \cdots\right\}$ is relatively compact.

Solution. (b) $[16=6+10$ marks Seen + New] (i) Cramér's large deviation principle. Suppose

$$
M_{\mu}(\lambda)=\int_{\mathbb{R}^{d}} e^{\lambda \cdot x} \mu(d x)
$$

exists for every $\lambda=\left(\lambda_{1}, \cdots, \lambda_{d}\right) \in \mathbb{R}^{d}$, and

$$
I_{\mu}(x)=\sup _{\lambda}\left\{\lambda \cdot x-\log M_{\mu}(\lambda)\right\}
$$

Let μ_{n} be the distribution of $\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right)$ where X_{i} are i.i.d. with the same distribution μ, for $n=1,2, \cdots$. Then

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \mu_{n}(S) \leq-\inf _{S} I_{\mu}
$$

for every closed subset $S \subset \mathbb{R}^{d}$, and

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \mu_{n}(G) \geq-\inf _{G} I_{\mu}
$$

for every open subset $G \subset \mathbb{R}^{d}$.
If $\mu \sim N(0, \mathbf{1})$, then

$$
M_{\mu}(\lambda)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{\lambda \cdot x} e^{-\frac{x^{2}}{2}} d x=e^{\frac{|x|^{2}}{2}}
$$

so that

$$
\phi(x)=\sup _{\lambda}\left\{\lambda \cdot x-\frac{\lambda^{2}}{2}\right\}
$$

While the quadratic form $\lambda \cdot x-\frac{\lambda^{2}}{2}$ takes its maximum at $\lambda=x$, so that

$$
\phi(x)=\frac{|x|^{2}}{2}, \quad \text { for } x \in \mathbb{R}^{d}
$$

(ii) According to (i), Cramér's large deviation principle, μ_{n}, with the same distribution of $\frac{1}{\sqrt{n}} \xi$, $\xi \sim N(0, \mathbf{1})$, with a rate function $\phi(x)=\frac{|x|^{2}}{2}$ for $x \in \mathbb{R}^{d}$, Since in this case μ_{n} is a normal distribution $N\left(0, \frac{1}{n} \mathbf{1}\right)$, which coincides with the distribution of

$$
\frac{1}{\sqrt{n}} \xi=\left(\frac{1}{\sqrt{n}} \xi_{1}, \cdots, \frac{1}{\sqrt{n}} \xi_{d}\right)
$$

and therefore, according to Cramér's theorem

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}\left[\frac{1}{\sqrt{n}} \xi \in S\right] \leq-\inf _{S} \phi
$$

for every closed subset $S \subset \mathbb{R}^{d}$, and

$$
\liminf _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}\left[\frac{1}{\sqrt{n}} \xi \in G\right] \geq-\inf _{G} \phi
$$

for every open subset $G \subset \mathbb{R}^{d}$. Now consider

$$
f\left(Y_{1}, \cdots, Y_{d}\right)=Y_{1}^{4}+\cdots+Y_{d}^{4}
$$

which is a continuous mapping from \mathbb{R}^{d} to \mathbb{R}. Since

$$
f\left(\frac{1}{\sqrt{n}} \xi\right)=\frac{1}{n^{2}}\left(\xi_{1}^{4}+\cdots+\xi_{d}^{4}\right)
$$

so that ν_{n} is the distribution of $f\left(\frac{1}{\sqrt{n}} \xi\right)$. Hence, according to Varadhan's contraction principle, ν_{n} satisfies the large deviation principle

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \nu_{n}(S)=\frac{1}{n} \log \mathbb{P}\left[f\left(\frac{1}{\sqrt{n}} \xi\right) \in S\right] \leq-\inf _{S} \varphi
$$

for every closed subset $S \subset \mathbb{R}^{d}$, and

$$
\liminf _{n \rightarrow \infty} \frac{1}{n} \log \nu_{n}(G)=\liminf _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}\left[f\left(\frac{1}{\sqrt{n}} \xi\right) \in G\right] \geq-\inf _{G} \varphi
$$

for every open subset $G \subset \mathbb{R}^{d}$, where

$$
\varphi(z)=\inf \left\{\frac{|x|^{2}}{2}: x=\left(x_{1}, \cdots, x_{d}\right) \text { s.t. } x_{1}^{4}+\cdots+x_{d}^{4}=z\right\}
$$

with the convention that $\inf \emptyset=\infty$. Here we have used Varadhan's contraction principle.
Varadhan's Contraction Principle. If $\left(X_{n}\right)$ a sequence of random variables valued in a Polish space E which satisfies large deviation principle with rate function I, and suppose $f: E \rightarrow E^{\prime}$ is a continuous mapping from E to another Polish space E^{\prime}, then $\left(f\left(X_{n}\right)\right)$ satisfies the large deviation principle with rate function

$$
I^{\prime}\left(x^{\prime}\right)=\left\{I(x): x \in E \text { such that } f(x)=x^{\prime}\right\}
$$

