
C8.6 - 2020 Paper � Solutions

Question 1. Solution. (a) [4 marks BK] Pn → P weakly if for every f ∈ Cb(E), we have∫
E
f(x)Pn(dx) →

∫
E
f(x)P (dx) as n→ ∞, which equivalent to any of the followings:

In terms of Uρ(E): for every f ∈ Uρ(E),
∫
E
f(x)Pn(dx) →

∫
E
f(x)P (dx) as n→ ∞.

In terms of closed sets. For every closed set F , lim supn→∞ Pn(F ) ≤ P (F ).
In terms of open sets. Fro every open subset G, lim infn→∞ Pn(G) ≥ P (G).
(b) [8 = 2+6 marks BK-New] (i) Xn → X in probability if for every δ > 0,

P [ρ(Xn, X) > δ] → 0 as n→ ∞.

Xn → X in distribution if the laws of Xn converges to the law of X, that is for every bounded and
continuous function f , E[f(Xn)] → E[f(X)] as n→ ∞.

(ii) Suppose Xn → X in probability, and f is bounded and uniformly continuous on E, so that
for every ε > 0 there is a δ > 0 such that |f(x)− f(y)| < ε as long as ρ(x, y) < δ. Therefore

E |f(Xn)− f(X)| = E [|f(Xn)− f(X)| : ρ(Xn, X) < δ] + E [|f(Xn)− f(X)| : ρ(Xn, X) ≥ δ]

≤ ε+ E
[
|f(Xn)− f(X)| : ρ(Xn, X) >

1

2
δ

]
≤ ε+ 2CP

[
ρ(Xn, X) >

1

2
δ

]
where C > 0 such that |f(x)| ≤ C for all x ∈ E (as f is bounded). Letting n→ ∞ to obtain that

lim sup
n→∞

E |f(Xn)− f(X)| ≤ ε

for every ε > 0, and therefore one must have

lim sup
n→∞

E |f(Xn)− f(X)| = 0.

Since E |f(Xn)− f(X)| ≥ 0, hence limn→∞ E |f(Xn)− f(X)| = 0. It follows that, for every
f ∈ Uρ(E) we have

|E [f(Xn)]− E [f(X)]| ≤ E |f(Xn)− f(X)| → 0

as n→ ∞. Hence, by (a) (i), Xn → X in distribution.
(c) [13=2+11 marks BK-Seen] A family L of probability measures on (E,B(E)) is tight, if for

every ε > 0 there is a compact subset Kε ⊂ E, such that

P [Kε] ≥ 1− ε for every P ∈ L .

If P is a probability measure on (E,B(E)), we show that {P} is tight. In fact for every
ε > 0, since (E, ρ) is a separable metric space, there is a dense countable subset {x1, x2, · · · } of E.
Therefore for every n = 1, 2, · · · ,

∞⋃
i=1

B̄xi

(
2−n

)
= E,

where B̄x(r) denotes the closed ball centered at x with radius r. Therefore

1 = P (E) = P

[ ∞⋃
i=1

B̄xi

(
2−n

)]
= lim

k→∞
P

[
k⋃

i=1

B̄xi

(
2−n

)]

for every n. By de�nition, for every n, there is kn ∈ N such that

P

[
kn⋃
i=1

B̄xi

(
2−n

)]
> 1− ε

2n
.
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Let Kε =
⋂∞

n=1

⋃kn

i=1 B̄xi
(2−n). Then

P (E \Kε) = P

[ ∞⋃
n=1

(
E \

kn⋃
i=1

B̄xi

(
2−n

))]
≤

∞∑
n=1

P

(
E \

kn⋃
i=1

B̄xi

(
2−n

))

<

∞∑
n=1

ε

2n
= ε

and therefore P [Kε] > 1 − ε. We claim Kε is compact. For every δ > 0, we may choose n such
that 1

2n < δ. Then
kn⋃
i=1

Bxi (δ) ⊃
kn⋃
i=1

B̄xi

(
2−n

)
⊃ Kε

which implies that Kε is totally bounded. Since Kε is closed, and E is complete, therefore Kε is
compact. According to de�nition, {P} is tight.

Question 2. Solution. (a) [15 =3+2+5+5 marks BK-Seen] (i) I : E → [0,∞] is a rate function
if {x ∈ E : I(x) ≤ c} is closed for every c, or equivalently, I is lower semi-continuous. Such I is a
good rate function if {x ∈ E : I(x) ≤ c} is compact for every c ≥ 0.

{Xε : ε ∈ (0, 1)} satis�es the weak large deviation principle with rate function I, if for every
open subset G ⊂ E

lim inf
ε↓0

ε logP [Xε ∈ G] ≥ − inf
G
I,

(LDP lower bound), and for every compact subset K ⊂ E

lim sup
ε↓0

ε logP [K] ≤ − inf
K
I.

{Xε : ε ∈ (0, 1)} satis�es the large deviation principle with rate function I if the previous LDP
lower bounds for open sets G ⊂ E hold, and for every closed subset S ⊂ E we have

lim sup
ε↓0

ε logP [Xε ∈ S] ≤ − inf
S
I.

(ii) {Xε : ε ∈ (0, 1)} is exponentially tight, if for every c > 0 there is a compact subset Kc ⊂ E
such that

lim sup
ε↓0

ε logP [Xε /∈ Kc] < −c.

(iii) Suppose {Xε : ε ∈ (0, 1)} is exponentially tight, and satis�es the weak LDP. We �rst
show that I is a good rate function. If c ≥ 0, we show that Ic = {x ∈ E : I(x) ≤ c} is com-
pact. In fact, since {Xε : ε ∈ (0, 1)} is exponentially tight, so there is a compact subset Kc,
lim supε↓0 ε logP [Xε /∈ Kc] ≤ −c. By LDP lower bound applying to the open set E \Kc we have

− inf
E\Kc

I ≤ lim inf
ε↓0

ε logP [Xε ∈ E \Kc] = lim sup
ε↓0

ε logP [Xε /∈ Kc] < −c.

That is infE\Kc
I > c, which implies that Ic ⊂ Kc, since I is a rate function, so Ic is closed, together

with the fact that Kc is compact, we deduce that Ic is compact too. To prove that {Xε : ε ∈ (0, 1)}
satis�es LDP, we only need to show the upper bound for any closed subset S ⊂ E. For every c > 0
we may choose a compact subset Kc such that lim supε↓0 ε logP [Xε /∈ Kc] ≤ −c. Then

P [Xε ∈ S] ≤ P [Xε ∈ Kc ∩ S] + P [Xε ∈ E \Kc]

so that

lim sup
ε↓0

ε logP [Xε ∈ S] ≤ max

{
lim sup

ε↓0
ε logP [Xε ∈ Kc ∩ S] , lim sup

ε↓0
ε logP [Xε ∈ E \Kc]

}

≤ max

{
lim sup

ε↓0
ε logP [Xε ∈ Kc ∩ S] ,−c

}

≤ max

{
− inf

Kc∩S
I,−c

}
≤ max

{
− inf

S
I,−c

}
.
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That is for every c we have

lim sup
ε↓0

ε logP [Xε ∈ S] ≤ max
{
− inf

S
I,−c

}
so by letting c ↑ ∞ we may conclude that

lim sup
ε↓0

ε logP [Xε ∈ S] ≤ − inf
S
I

which proves the LDP upper bound.
(iv) Let G be an open subset, and S be a closed subset. Since f is continuous so f−1(G) is

open and f−1(S) is closed. Thus, since Xε satis�es LDP with a good rate function I, we have

lim inf
ε↓0

P [Y ε ∈ G] = lim inf
ε↓0

P
[
Xε ∈ f−1(G)

]
≥ − inf

f−1(G)
I

and
lim sup

ε↓0
P [Y ε ∈ S] = lim sup

ε↓0
P
[
Xε ∈ f−1(S)

]
≤ − inf

f−1(S)
I.

Let
φ(x) = inf {I(y) : f(y) = x} = inf

{
I(y) : y ∈ f−1(x)

}
with a convention that inf Ø = ∞. Let A be a subset of E. Suppose inff−1(A) I = ∞, then for
every I(y) = ∞ for every y ∈ f−1(A), that is I(y) = ∞ for y ∈ f−1(x) and x ∈ A, so that
infA φ = ∞. Suppose l = inff−1(A) I <∞. Then

inf
f−1(A)

I = inf
x∈A

inf
y∈f−1(x)

I(y) = inf
x∈A

φ(x).

We therefore have
lim inf

ε↓0
P [Y ε ∈ G] ≥ − inf

G
φ

and
lim sup

ε↓0
P [Y ε ∈ S] ≤ − inf

S
φ.

(b) [10=1+2+7 marks BK+New] (i) Let H1 denote the Cameron-Martin space of all continuous
function h on [0, 1] such that h(0) = 0 and its derivative ḣ ∈ L2[0, 1]. The functional

I(x) =
1

2
∥x∥2H1 =

1

2

∫ 1

0

|ẋ(t)|2 dt

for x ∈ H1, otherwise I(x) = ∞.
Schilder's Theorem : (

√
εBt)t∈[0,1] satis�es the large deviation principle with the good rate

function I, that is,
lim inf

ε↓0
ε logP

[√
εB· ∈ G

]
≥ − inf

G
I

for every open subset G of C0([0, 1],Rd) , and

lim sup
ε↓0

ε logP
[√
εB· ∈ S

]
≤ − inf

S
I

for every closed subset G of C0([0, 1],Rd) . Where the continuous function space C0([0, 1],Rd) is
equipped with its uniform norm (and the induced metric).

(ii) Let us consider the stochastic di�erential equation

dXt = −Xtdt+ dBt, X0 = 0,

which has the unique strong solution given by

Xt = e−t

[∫ t

0

esdBs

]
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which can be rewritten as, by using integration by parts,

Xt = −e−t

∫ t

0

esBsds+Bt.

Therefore we de�ne the mapping from E = C0([0, 1],R) to itself which sends x ∈ E to f(x) = w
where

w(t) = −e−t

∫ t

0

esx(s)ds+ x(t).

Clearly w ∈ E, and if x, y ∈ E, so that

f(x)(t)− f(y)(t) = −e−t

∫ t

0

es(x(s)− y(s))ds+ (x(t)− y(t)).

and therefore
∥f(x)− f(y)∥ ≤ 2 ∥x− y∥

where ∥x∥ is the uniform norm, that is, ∥x∥ = supt∈[0,1] |x(t)|, this shows that f : E → E is

continuous. By de�nition, Xε = f(
√
εB), so according to (i), Xε satis�es LDP with the rate

function given by
ψ(x) = inf

{
I(h) : h ∈ H1 and f(h) = x

}
otherwise ψ(x). Moreover f(h) = x and h ∈ H1, if and only if

dx(t) = −x(t)dt+ ḣ(t)dt, x(0) = 0.

If there is no such h ∈ H1, then ψ(x) = ∞.

Question 3. Solution. (a) [9=3+6 marks BK-New] (i) Kolmogorov's criterion. Suppose the
following two conditions are satis�ed:

lim
L→∞

inf
n

P
[∣∣∣X(n)

0

∣∣∣ ≤ L
]
= 1

and there are α > 0, β > 0 and a constant C > 0 such that

E
[∣∣∣X(n)

t −X(n)
s

∣∣∣α] ≤ C|t− s|1+β

for all s, t ≥ 0, then
{
X(n) : n = 1, 2, · · ·

}
is relatively compact, that is, the family of the laws of{

X(n) : n = 1, 2, · · ·
}
, which are probability measures on the continuous path space C([0,∞),Rd),

is relatively compact with respect to the Prohorov's metric. Hence, there is a sub-sequence
(
X(nk)

)
which converges weakly.

(ii) We may apply Kolmogorov's criterion. Since X
(n)
0 = 0 so that P

[∣∣∣X(n)
0

∣∣∣ ≤ L
]
= 1 for every

L > 0, hence the �rst condition in (i) is satis�ed. Since (σn) is bounded so we may assume that
|σn| ≤ C, so that ∣∣∣X(n)

t −X(n)
s

∣∣∣ ≤ C|Bt −Bs|+M |t− s|.

Now ∣∣∣X(n)
t −X(n)

s

∣∣∣4 ≤ 8C4|Bt −Bs|4 + 8M4|t− s|4

so that

E
[∣∣∣X(n)

t −X(n)
s

∣∣∣4] ≤ 8C4E|Bt −Bs|4 + 8M4|t− s|4

≤ CT |t− s|2

for all 0 ≤ s, t ≤ T , where CT depends only on T , so according to Kolmogorov's criterion,{
X(n) : n = 1, 2, · · ·

}
is relatively compact.
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Solution. (b) [16= 6+10 marks Seen+New] (i) Cramér's large deviation principle. Suppose

Mµ(λ) =

∫
Rd

eλ·xµ(dx)

exists for every λ = (λ1, · · · , λd) ∈ Rd, and

Iµ(x) = sup
λ

{λ · x− logMµ(λ)} .

Let µn be the distribution of 1
n (X1 + · · · +Xn) where Xi are i.i.d. with the same distribution µ,

for n = 1, 2, · · · . Then
lim sup
n→∞

1

n
logµn (S) ≤ − inf

S
Iµ

for every closed subset S ⊂ Rd, and

lim sup
n→∞

1

n
logµn (G) ≥ − inf

G
Iµ

for every open subset G ⊂ Rd.
If µ ∼ N(0,1), then

Mµ(λ) =
1√
2π

∫
R
eλ·xe−

x2

2 dx = e
|x|2
2

so that

ϕ(x) = sup
λ

{
λ · x− λ2

2

}
.

While the quadratic form λ · x− λ2

2 takes its maximum at λ = x, so that

ϕ(x) =
|x|2

2
, for x ∈ Rd.

(ii) According to (i), Cramér's large deviation principle, µn, with the same distribution of 1√
n
ξ,

ξ ∼ N(0,1), with a rate function ϕ(x) = |x|2
2 for x ∈ Rd, Since in this case µn is a normal

distribution N(0, 1
n1), which coincides with the distribution of

1√
n
ξ =

(
1√
n
ξ1, · · · ,

1√
n
ξd

)
and therefore, according to Cramér's theorem

lim sup
n→∞

1

n
logP

[
1√
n
ξ ∈ S

]
≤ − inf

S
ϕ

for every closed subset S ⊂ Rd, and

lim inf
n→∞

1

n
logP

[
1√
n
ξ ∈ G

]
≥ − inf

G
ϕ

for every open subset G ⊂ Rd. Now consider

f(Y1, · · · , Yd) = Y 4
1 + · · ·+ Y 4

d

which is a continuous mapping from Rd to R. Since

f(
1√
n
ξ) =

1

n2
(
ξ41 + · · ·+ ξ4d

)
so that νn is the distribution of f( 1√

n
ξ). Hence, according to Varadhan's contraction principle, νn

satis�es the large deviation principle

lim sup
n→∞

1

n
log νn (S) =

1

n
logP

[
f(

1√
n
ξ) ∈ S

]
≤ − inf

S
φ
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for every closed subset S ⊂ Rd, and

lim inf
n→∞

1

n
log νn (G) = lim inf

n→∞

1

n
logP

[
f(

1√
n
ξ) ∈ G

]
≥ − inf

G
φ

for every open subset G ⊂ Rd, where

φ(z) = inf

{
|x|2

2
: x = (x1, · · · , xd) s.t. x41 + · · ·+ x4d = z

}
with the convention that inf Ø = ∞. Here we have used Varadhan's contraction principle.

Varadhan's Contraction Principle. If (Xn) a sequence of random variables valued in a Polish
space E which satis�es large deviation principle with rate function I, and suppose f : E → E′ is a
continuous mapping from E to another Polish space E′, then (f(Xn)) satis�es the large deviation
principle with rate function

I ′(x′) = {I(x) : x ∈ E such that f(x) = x′} .
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