C8.6 - 2020 Paper — Solutions

Question 1. Solution (a) [4 marks BK] P, — P weakly if for every f € Cy(E), we have
[ f(@)Pa(dz) — [, f(x)P(dx) as n —> oo Wthh equlvalent to any of the followings:

In terms of U,(E): for every f € U,(E), [, f(x)Py(dx) = [, f(x)P(dz) as n — oc.

In terms of closed sets. For every closed set F, hm SUp,, oo Pn(F ) < P(F).

In terms of open sets. Fro every open subset G, liminf, . P,(G) > P(G).

(b) [8 = 2+6 marks BK-New] (i) X,, = X in probability if for every § > 0,

Plp(Xpn, X) >0] >0 asn— oc.

X, — X in distribution if the laws of X, converges to the law of X, that is for every bounded and
continuous function f, E[f(X,)] — E[f(X)] as n — oc.

(ii) Suppose X,, — X in probability, and f is bounded and uniformly continuous on E, so that
for every £ > 0 there is a § > 0 such that |f(z) — f(y)| < € as long as p(z,y) < d. Therefore

E1F(X0) ~ £ = £ (X,) ~ FX)]: oK X) < 8] + E[F(5) ~ ()] (X0 X) 2 8
< e +E|1£(X) = 001 oK, X) > 3]

1
<e+2CP [p(Xn, X) > 25}

where C' > 0 such that |f(x)| < C for all z € E (as f is bounded). Letting n — oo to obtain that

limsupE |f(X,) — f(X)| <e

n—oo

for every € > 0, and therefore one must have

limsup E |£(Xa) — £(X)| = 0.

n—oo

Since E|f(X,) — f(X)| > 0, hence lim,, o E|f(X,) — f(X)| = 0. It follows that, for every
f € Uy(FE) we have
[E[f(X)] = E[f(X)]| <E[f(Xn) - f(X)| =0
as n — oo. Hence, by (a) (i), X,, — X in distribution.
(c) [13=2+11 marks BK-Seen] A family .Z of probability measures on (F, Z(F)) is tight, if for
every € > 0 there is a compact subset K. C E, such that

PIK.]>1—¢ forevery Pe Z.

If P is a probability measure on (F,%(F)), we show that {P} is tight. In fact for every
€ > 0, since (E, p) is a separable metric space, there is a dense countable subset {x, x5, -} of E.
Therefore for every n =1,2,---,
o

where B, (r) denotes the closed ball centered at = with radius r. Therefore




Let K. = (22, U, By, (27™). Then

[0 G| Sr s Goe)

P(E\ K:) =

and therefore P [K.] > 1 —e. We claim K. is compact. For every § > 0, we may choose n such
that 5+ < 4. Then

C:s-

B (27" D K.

U B,,
1
which implies that K. is totally bounded. Since K. is closed, and FE is complete, therefore K, is
compact. According to definition, {P} is tight.

.
Il

Question 2. Solution. (a) [15 =3+2+5+5 marks BK-Seen] (i) I : E — [0, o] is a rate function
if {x € E: I(z) < c} is closed for every ¢, or equivalently, I is lower semi-continuous. Such I is a
good rate function if {x € E : I(z) < ¢} is compact for every ¢ > 0.
{X¢:e€(0,1)} satisfies the weak large deviation principle with rate function I, if for every
open subset G C E
liminfelog P[X® € G] > —inf I,
el0 G

(LDP lower bound), and for every compact subset K C F

limsupelog P [K] < — mf I
el0
{X¢:e€(0,1)} satisfies the large deviation principle with rate function I if the previous LDP
lower bounds for open sets G C E hold, and for every closed subset S C E we have
limsupelog P[X® € S] < —inf 1.
€l0 S
(ii) {X*© :e € (0,1)} is exponentially tight, if for every ¢ > 0 there is a compact subset K. C F
such that
limsupelog P [X° ¢ K.| < —
el0
(iii) Suppose {X¢:e € (0,1)} is exponentially tight, and satisfies the weak LDP. We first
show that I is a good rate function. If ¢ > 0, we show that I, = {x € E: I(x) < ¢} is com-
pact. In fact, since {X°:e € (0,1)} is exponentially tight, so there is a compact subset K.,
limsup, |y elog P[X® ¢ K ] < —c. By LDP lower bound applying to the open set E \ K. we have
- 1{1f I< hmlnfalogP [X® € E\ K] =limsupelog P[X® ¢ K.| <
E\K. 10
That is inf g\ . I > ¢, which implies that I. C K., since I is a rate function, so /. is closed, together
with the fact that K, is compact, we deduce that I. is compact too. To prove that {X¢:e € (0,1)}
satisfies LDP, we only need to show the upper bound for any closed subset S C E. For every ¢ > 0
we may choose a compact subset K. such that limsup, ,elog P [X® ¢ K. < —c. Then

P[X*eS|<P[X*eK.NS|+P[X*eE\K,]
so that

limsupelog P [X® € S] < max {limsupelogP[XE € K.NS],limsupelog P [X* € E\KC]}
el0 0 el0

< max {limsupelogP [X® e K.nS], —c}
0

§max{— inf I,—c}ﬁmax{—inf],—c}.
K.NS S



That is for every ¢ we have

limsupelog P [X° € 5] < max{—inf[,—c}
el0 S

so by letting ¢ 1 co we may conclude that

limsupelog P[X® € S] < —infT
€0 S
which proves the LDP upper bound.
(iv) Let G be an open subset, and S be a closed subset. Since f is continuous so f~(G) is
open and f~1(S) is closed. Thus, since X¢ satisfies LDP with a good rate function I, we have

liminf P[Y* € G] =liminf P [X° € f7'(G)] > — inf I
el0 €l0 ()]

and
limsup P[Y* € S] = limsup P [X° € f(S)] < —

€l0 el0 fll(s) '
Let
p() =inf {I(y): fly) =a} =inf {I(y):y € f(2)}

with a convention that inf @ = oco. Let A be a subset of E. Suppose inf;-1(4) 1 = oo, then for
every I(y) = oo for every y € f~1(A), that is I(y) = oo for y € f~!(z) and # € A, so that
inf4 ¢ = oco. Suppose [ = infy-1(4) I < oo. Then

inf [ = inf inf [ = inf
nf I=jof inf () = iof o(z).

We therefore have
liminf P[Y*® € G] > —info
el0 G

and

limsup P[Y*® € §] < —infe.
€0 S

(b) [10=1+4-2+47 marks BK+New] (i) Let H' denote the Cameron-Martin space of all continuous
function h on [0, 1] such that h(0) = 0 and its derivative h € L?[0,1]. The functional

1) = 5 lell? = 5 /\ B[ di

for z € H', otherwise I(x) = cc.
Schilder’s Theorem : (\/gBt)te[o 1] satisfies the large deviation principle with the good rate
function I, that is,
liminfelog P |v/eB. € G| > —inf I
iminfelog [VeB. € G] > in

for every open subset G of Cy([0,1],R?) , and

limsupelog P [VeB. € S] < —igf]
el0

for every closed subset G of Cy([0,1],R%) . Where the continuous function space Co([0, 1], R9) is
equipped with its uniform norm (and the induced metric).
(ii) Let us consider the stochastic differential equation

dXt - —Xtdt + dBt, Xo = O,

which has the unique strong solution given by

t
X, =e¢t {/ eSdBS]
0



which can be rewritten as, by using integration by parts,
t
X; = —e_t/ e’ B.ds + B;.
0

Therefore we define the mapping from E = Cy([0, 1],R) to itself which sends « € E to f(x) = w
where

w(t) = —e_t/o ez(s)ds + x(t).

Clearly w € E, and if xz,y € F, so that

and therefore

1f(2) = F)l < 2lz —yll

where ||z|| is the uniform norm, that is, [[z[| = supycp ) [z(t)], this shows that f : B — E is
continuous. By definition, X¢ = f(1/eB), so according to (i), X¢ satisfies LDP with the rate
function given by

¢(z) =inf {I(h) : h € H' and f(h) =z}

otherwise (x). Moreover f(h) = x and h € H!, if and only if
dz(t) = —x(t)dt + h(t)dt, 2(0) = 0.
If there is no such h € H*, then v(x) = oo.

Question 3. Solution. (a) [9=3+46 marks BK-New] (i) Kolmogorov’s criterion. Suppose the
following two conditions are satisfied:

lim infP HX(()")

L—oo n

< L} —1
and there are o > 0, 8 > 0 and a constant C > 0 such that

E||x" - x™

«@
] < Ot — 5|78

for all s,t > 0, then {X(”) n=12--- } is relatively compact, that is, the family of the laws of
{X™ :n=1,2,--}, which are probability measures on the continuous path space C([0, 00), R%),
is relatively compact with respect to the Prohorov’s metric. Hence, there is a sub-sequence (X (”k))
which converges weakly.

ii) We may apply Kolmogorov’s criterion. Since X{™ = 0 so that P || X ™
0 0

< L} =1 for every

L > 0, hence the first condition in (i) is satisfied. Since (o,) is bounded so we may assume that
lon| < C, so that

X xfo

< CO|B; — By| + Mt — 5.

Now A
’Xt(”) XM <804 B, — By|* + 8M4Jt — 5|t

so that

4

E UXt(") —xm } < 8C'E|B; — B,[* + 8M*|t — s|*
< Crplt — s|?

for all 0 < s,t < T, where Cp depends only on T, so according to Kolmogorov’s criterion,
{X™ :n =12} is relatively compact.



Solution. (b) [16= 6-+10 marks Seen+New] (i) Cramér’s large deviation principle. Suppose

e
Rd

I(z) = Sl)l\p {A-z—logM,(N)}.

exists for every A = (A1,---,\g) € R?, and

Let p, be the distribution of %(Xl + .-+ X,,) where X; are i.i.d. with the same distribution pu,
forn=1,2,---. Then
lim sup — log pn (S) < — igf 1,

n—oo

for every closed subset S C R%, and

1
i —1 > —inf ]
1msupn0gun(G)_ inf 1,

n— oo
for every open subset G’ C R,
If w ~ N(0,1), then

)\w —Z_ L=

M, (N T dr = e

g

o) =sup {1 x_”}.

I\ 2

so that

While the quadratic form A - x — % takes its maximum at A = z, so that

|z d
¢(x):77 for z € R“.

(ii) According to (i), Cramér’s large deviation principle, p,, with the same distribution of ﬁf ,

¢ ~ N(0,1), with a rate function ¢(z) = % for # € R?, Since in this case j, is a normal
distribution N(0,21), which coincides with the distribution of

1 1 1
%E - (\/ﬁgla 7\/5511)
and therefore, according to Cramér’s theorem

) -
_— <
\/ﬁfeS_ < 1réf¢

1
limsup — log P [
n

n—roo

for every closed subset S C R¢, and

1 1 1
liminf —loglP | — > —inf
im inf — Jog [\/EQ“EG__ 1g¢

for every open subset G C R?. Now consider
f(Yh'" aYd) :Y14+"'+Yd4

which is a continuous mapping from R? to R. Since
1
=&+ +&)

so that v, is the distribution of f( ﬁf) Hence, according to Varadhan’s contraction principle, v,
satisfies the large deviation principle

limsupllogyn (S) = llog]P’ {f(
n n

n—oo

1
%E) € S} < —igfgo



for every closed subset S C R¢, and

1 1 1
o1 e b >
hnrgloréfnlogyn(G) hnnigfnlog]?{f(\/ﬁf)eG]_ 12&,0

for every open subset G C R?, where

2
go(z):inf{@:x:(xl,-~-,wd) s.t. x‘f+-~~+x3:z}

with the convention that inf @ = co. Here we have used Varadhan’s contraction principle.

Varadhan’s Contraction Principle. If (X,,) a sequence of random variables valued in a Polish
space FE which satisfies large deviation principle with rate function I, and suppose f : E — E’ is a
continuous mapping from E to another Polish space E’, then (f(X,,)) satisfies the large deviation
principle with rate function

I'(2’) = {I(z) : z € E such that f(z) =2'}.



