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General advice on computational projects

In Hilary term you will undertake two of the three computational
projects listed below. Each project is worth up to twenty marks, which
are split between mathematical content, programming skill, and clar-
ity of exposition. The marks will count towards the Preliminary exam-
inations; they carry the weight of one third of a paper. The deadlines
for the projects are

• 12:00 (noon), Monday, week 6: online submission of first project;

• 12:00 (noon), Monday, week 9: online submission of second project.

The projects are to be submitted online via Inspera. The projects
can be done in any order (e.g. one may submit project C in week 6
and project A in week 9). It is recommended that students famil-
iarise themselves with Inspera and all data necessary for submission
(e.g. single sign-on and examination candidate number) well in ad-
vance of the deadlines. The deadlines are strict and penalties for late
submission apply.

Your submissions should consist of one or more .py files and a
.html file produced from the main .py file via publish, as de-
scribed in chapter 5. The examiners will primarily scrutinise the
published .html file, but may modify and execute your code. The
files for your submission should be gathered into exactly one .zip or
.tar.gz file for upload.

A key difference from the problem sheets is that the project reports
should be more expository. The mathematics behind and intent of the
code written for the project must be made as clear as possible, since
marks are awarded for mathematical understanding.

When you complete your projects, you must not upload them on
the internet e.g. on web forums or in public code repositories. This is
to assist in the prevention of plagiarism.

All projects must be your own unaided work. You will be asked
to make a declaration to this effect when you submit them. The
University’s plagiarism policy applies in full, with potential penalties
for plagiarism ranging from deduction of marks to expulsion from the
University.





Frequently asked questions

Do I need to do any background reading for the projects?

No. References to the literature are included for any students who
may be interested in learning more, but are not required to solve the
problems.

Can we use TeX for our documentation?

It is not expected at this stage that students know TeX/LaTeX. How-
ever, if you are familiar with it, you are encouraged to use TeX no-
tation for writing equations. TeX notation written in comments is
rendered appropriately by publish.py. TikZ diagrams are not sup-
ported; any diagrams required by the projects should be rendered
with matplotlib.

Are we allowed to use Jupyter Notebooks?

Again, it is not expected that students are familiar with Jupyter
Notebooks. It is possible to use Jupyter Notebooks for your code de-
velopment if you prefer, but your code should ultimately be submitted
as a .py file. You can convert Jupyter Notebooks to plain Python with
jupyter nbconvert.

How important is code optimisation?

The code should not be egregiously inefficient (e.g. having drasti-
cally worse scaling in time or memory than a straightforward imple-
mentation). Beyond that, do not invest too much effort into it; code
clarity is more important than running as fast as possible. As long as
the code runs in reasonable time, it suffices. The reference solutions
for the projects each take no more than ten minutes or so to execute on
modest hardware.
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Should we determine the complexity of our algorithms in time
and/or memory?

You do not need to do this unless explicitly requested.

How should I structure my code?

A good general structure for your code is to first write out the solu-
tion idea in comments, then give the (commented) implementation,
then show the code is correct with examples. In many cases the ques-
tion will indicate what examples to run your code on.



A Primality testing

(This project relates to material in the Trinity term Prelims course M1:
Groups and Group Actions, and in the Part A option ASO: Number
Theory.)

Computing whether a natural number is prime, and identifying its
factors, are core tasks in number theory and in cryptography. As Carl
Friedrich Gauss wrote in article 329 of his magnum opus Disquisitiones
Arithmeticae (1801) (translated by Arthur A. Clarke, 19651): 1 C. F. Gauss. Disquisitiones Arithmeticae.

Yale University Press, 1965. Translation
by A. A. Clarke

The problem of distinguishing prime numbers from composite numbers
and of resolving the latter into their prime factors is known to be one of
the most important and useful in arithmetic. It has engaged the industry
and wisdom of ancient and modern geometers to such an extent that it
would be superfluous to discuss the problem at length. Nevertheless
we must confess that all methods that have been proposed thus far are
either restricted to very special cases or are so laborious and prolix that
even for numbers that do not exceed the limits of tables constructed by
estimable men, i.e. for numbers that do not require ingenious methods,
they try the patience of even the practiced calculator. … Further, the
dignity of the science itself seems to require that every possible means
be explored for the solution of a problem so elegant and so celebrated.

The two tasks Gauss mentions—primality testing and number fac-
torisation—are rather different. An algorithm is known for primality
testing (due to Agrawal, Kayal, and Saxena2) that deterministically 2 M. Agrawal, N. Kayal, and N. Saxena.

PRIMES is in P. Annals of Mathematics,
160(2):781–793, 2004

gives the correct answer with a runtime that is a polynomial func-
tion of the number of digits of the input. By contrast, the existence or
nonexistence of a polynomial-time algorithm for factorising a number
remains a major open problem in mathematics, and indeed most of
the cryptography in practical use today relies centrally on its computa-
tional difficulty.

In this project you will investigate algorithms for testing whether a
number is prime or not. For more details on this subject, see the book
of Crandall and Pomerance3. 3 R. Crandall and C. Pomerance. Prime

Numbers: a Computational Perspective.
Springer-Verlag New York, second
edition, 2010
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A.1 Trial division

Trial division, the algorithm we met in Code block 7.11 and Exercise
7.6, was first described in Fibonacci’s Liber Abaci (1202)4. In Chapter 5, 4 L. Pisano (Fibonacci). Liber Abaci.

Springer Science & Business Media,
2003. Translation by L. E. Sigler

Fibonacci writes

If it is even, then he recognises its composition. However if odd, then
it will be composite or prime …Odd numbers truly are composed of
odds alone. Whence the components of them by odds are investigated,
for which we take the beginning. Therefore when in the figure of first
place of any odd number there is the number 5, one will know 5 to be a
factor. However, if another odd figure will appear in the first place, then
one indeed takes the residue of number when divided by 9; if a zephir
[i.e. zero] results, then 9 is a factor, and if 3 or 6 is the residue, then 3 is
a factor; however if the residue will show none of these, one divides by
7; and if there will be an excess, then one again divides the number by
11; and if there is an excess, then he divides again by 13, and always he
goes on dividing in order by prime numbers until he will find a prime
number by which he can divide, and thence he will come to the square
root; if he will be able to divide by none of them, then one will judge the
number to be prime.

We will employ some convenient notation for this question. Define
a : b as

a : b :“ ra, bs X Z. (A.1.1)

We denote numbers known to be prime by p, and the number whose
primality we wish to determine by n.

Question A.1. Modify your code for Exercise 7.6 (which implements
an efficient variant of trial division) to return (flag, ndivisions),
where flag = True if the input is prime and False otherwise, and
ndivisions is the count of the number of divisions performed.
Print the output of the function applied to all n P 2 : 20. How many
divisions are performed to test the primality of 9999991111111?

Question A.2. Compute the number of divisions performed for all
numbers n P 2 : 105. By means of a plot, verify that trial division
takes about

?
n{3 divisions in the worst case to test a number n for

primality.

Expressing
?

n{3 in terms of the logarithm of n, we see that the
work involved in trial division is exponential in the number of digits.
This exponential dependence on the number of digits motivates the
search for more efficient algorithms.
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A.2 The Fermat test

The trial division algorithm is based on the definition of primality,
i.e. that n has no factors other than one and n. Ideally, we would base
a test for primality on alternative condition that is equivalent to pri-
mality, i.e. that is necessary and sufficient for primality. Finding such
conditions is tricky. Instead, we will base our next algorithm on a con-
dition that is merely necessary for primality—all prime numbers satisfy
the condition, but some composite numbers may also. The condition
is inspired by Fermat’s Little Theorem, which you will meet in Hilary
Term Groups and Group Actions.

Theorem A.2.1 (Fermat, 1640). Let p P N be prime. Let a P N such that
gcdpa, pq “ 1 (i.e. a is not a multiple of p). Then

ap´1 ” 1 mod p. (A.2.1)

This inspires the following procedure. Let n be the number we wish
to test for primality.

1. Choose a P 2 : pn ´ 2q.

2. Calculate the greatest common divisor gcdpa, nq;5 if the greatest 5 The greatest common divisor can be
efficiently computed using Euclid’s
algorithm, as in code block 4.9.

common divisor is not 1, then n is composite.

3. Calculate an´1 mod n; if it is not congruent to 1, then n is compos-
ite.

4. If it is congruent to 1, then the test is inconclusive.

We refer to conducting this procedure for a single a as a Fermat trial; a
Fermat test is to do this for a set of candidate values of a.

Of course, since a Fermat test relies on a condition that is only
necessary for primality, it can only prove that n is not prime—in other
words, this is actually a compositeness test. Nevertheless, if n passes
enough trials, it might give us confidence that n is probably prime.

Question A.3. Write a function to implement the Fermat trial for
given n and a.

Write another function to apply the Fermat test with all a in a
given list; if no list is supplied, use as default value all a P 2 : pn ´

2q in ascending order. This latter function should return a tuple
(flag, ntrials)where flag = False if the Fermat test has shown
n to not be prime and True otherwise6, and where ntrials is the 6 In other words, a number with flag

True might still be composite.number of Fermat trials performed. Print the output of the function
applied to the natural numbers n P 2 : 20, using in each case all
a P 2 : pn ´ 2q in ascending order.
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[Hint: the greatest common divisor can be computed using math.gcd.]

[Hint: in Python, the pow function takes an optional third argument.
pow(x, y, z) calculates xy mod z.]

Question A.4. Compute the first 5 odd numbers n where the Fermat
test proves compositeness with just one trial, i.e. with a “ 2.

Question A.5. For how many odd n P 3 : 10, 000 does the Fer-
mat test prove compositeness with at most five trials (using a P

2 : min p6, n ´ 2q)? What proportion of odd composite numbers in
3 : 10, 000 does this represent?

Question A.6. A Carmichael number, also called an absolute Fermat
pseudoprime, is a composite number which passes the Fermat trial
for any a P 2 : pn ´ 1q with gcdpa, nq “ 1. Compute the Carmichael
numbers up to 10, 000.

[Hint: the first Carmichael number is 561.]

In 1994, Alford, Granville & Pomerance proved that there are in-
finitely many Carmichael numbers7; for large enough n, there are 7 W. R. Alford, A. Granville, and

C. Pomerance. There are infinitely
many Carmichael numbers. Annals of
Mathematics, 139(3):703, 1994

at least n2{7 Carmichael numbers in 1 : n. This fact limits the util-
ity of the standalone Fermat test; for the Fermat test to work on a
Carmichael number, only those bases that share a factor with n will
detect its compositeness, and choosing a few a’s will likely not help
us. However, in the words of Carl Pomerance, ‘‘using the Fermat con-
gruence is so simple that it seems a shame to give up on it just because
there are a few counterexamples’’ 8. It is often used in combined algo- 8 F. Bornemann. PRIMES is in P: a

breakthrough for ‘‘Everyman’’. Notices
of the American Mathematical Society,
50(5):545–553, 2003

rithms to quickly test for compositeness with a handful of choices of a
before subjecting n to more complicated algorithms.

A.3 Miller–Rabin primality test

The Miller–Rabin test is a refinement of the Fermat test. Like the Fer-
mat test, we will computationally determine whether a specific prop-
erty that must hold for primes holds for the n in question. A determin-
istic version was introduced by Miller in 19769, with its correctness 9 G. L. Miller. Riemann’s hypothesis and

tests for primality. Journal of Computer
and System Sciences, 13(3):300–317, 1976

dependent on the (unproven) extended Riemann hypothesis; Rabin
introduced a probabilistic version in 198010. 10 M. O. Rabin. Probabilistic algorithm

for testing primality. Journal of Number
Theory, 12(1):128–138, 1980



computational mathematics 13

To motivate the Miller–Rabin trial, suppose p ą 4 is prime. Let
a P 2 : pp ´ 2q with gcdpa, pq “ 1. From Fermat’s Little Theorem, we
know that

ap´1 ´ 1 ” 0 mod p. (A.3.1)

Since p ´ 1 is even, the left-hand side is the difference of two squares,
so we can write

´

a
p´1

2 ´ 1
¯ ´

a
p´1

2 ` 1
¯

” 0 mod p. (A.3.2)

If pp ´ 1q{2 is still even we can expand the left-most term further, as
´

a
p´1

4 ´ 1
¯ ´

a
p´1

4 ` 1
¯ ´

a
p´1

2 ` 1
¯

” 0 mod p. (A.3.3)

Repeating this process yields
ˆ

a
p´1
2s ´ 1

˙ ˆ

a
p´1
2s ` 1

˙

¨ ¨ ¨

´

a
p´1

2 ` 1
¯

” 0 mod p (A.3.4)

for some s such that p ´ 1 “ 2sd with d odd. The left-hand side is di-
visible by p; we wish to assert that p must divide one of the factors. To
do so we invoke Euclid’s lemma, given as Proposition 30 in Book VII
of Euclid’s Elements (approximately 300 B.C., translated by Richard
Fitzpatrick, 200811): 11 Εκλεδης. Στοιχεα. 300 B.C. Trans-

lation by R. Fitzpatrick. Independently
publishedIf two numbers make some number by multiplying one another, and

some prime number measures the number so created from them, then it
will also measure one of the original numbers.

In modern language, we would express this as

Lemma A.3.1. If a prime p divides the product ab of two integers a and b,
then p must divide at least one of a or b.

By the primality of p, we can therefore conclude that at least one of
the following conditions must hold:

1. ad ” 1 mod p,

2. a2rd ” ´1 ” p ´ 1 mod p for some r P 0 : ps ´ 1q,

where again p ´ 1 “ 2sd.
Now let n ą 4 be the number whose primality we wish to test.

Write n ´ 1 “ 2sd. For a given a P 2 : pn ´ 2q, the Miller–Rabin trial for
n ą 4 proceeds as follows. If one of the following conditions holds:

1. ad ” 1 mod n,

2. a2rd ” ´1 ” n ´ 1 mod n for some r P 0 : ps ´ 1q,
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then the trial is inconclusive. If none of these conditions hold, then the
trial yields the conclusion that n is composite.

As with the Fermat test, the Miller–Rabin test consists of one or
more Miller–Rabin trials with different choices of a. Choosing sev-
eral bases at random gives a probabilistic primality test; Miller gave
a clever choice of deterministic bases that guarantees correctness,
subject to the extended Riemann hypothesis.

Question A.7. Write a function to implement the Miller–Rabin trial
for given n and a.

Write another function to apply the Miller–Rabin test with all a in
a given list; if no list is supplied, use as default value the single trial
a “ 2. This latter function should return a tuple (flag, ntrials)
where flag = False if the Miller–Rabin test has shown n to not be
prime and True otherwise12, and where ntrials is the number 12 In other words, a number with flag

True might still be composite.of Miller–Rabin trials performed. Print the output of the function
applied to the natural numbers n P 5 : 20, using in each case only
a “ 2.

Question A.8. Using only the single trial with base a “ 2, what
is the minimal odd composite number n for which the test does not
conclude that n is composite?

Question A.9. Using only the trials a P t2, 3u, what is the minimal
odd composite number n for which the test does not conclude that n is
composite?

Adding a single additional trial to the Miller–Rabin test greatly
extends the range of natural numbers for which the test is guaran-
teed to be accurate. For example, using a P t2, 3, 5u is guaranteed
to give the correct answer for n ă 25, 326, 001; using a P t2, 3, 5, 7u

is guaranteed to give the correct answer for n ă 3, 215, 031, 751; us-
ing a P t2, 3, 5, 7, 11u is guaranteed to give the correct answer for
n ă 2, 152, 302, 898, 74713. 13 C. Pomerance, J. L. Selfridge, and

S. S. Wagstaff. The pseudoprimes
to 25 ¨ 109. Mathematics of Compu-
tation, 35(151):1003–1026, 1980; and
G. Jaeschke. On strong pseudoprimes to
several bases. Mathematics of Computa-
tion, 61(204):915–926, 1993

Question A.10. Using trials a P t2, 3, 5, 7, 11, 13, 17u14, how much

14 With these bases, the Miller–Rabin test
is guaranteed to be correct for this n.

faster or slower is the Miller–Rabin test than trial division to verify the
primality of n “ 9999991111111?
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A.4 Concluding remarks

The current state of the art for deterministic primality testing is to
combine one Miller–Rabin trial (with base a “ 2) with another test we
have not discussed, the Lucas probable prime test. This combination is
known as the Baillie–Pomerance–Selfridge–Wagstaff (or Baillie–PSW)
test15, and is the algorithm behind the primality testing algorithms in 15 R. Baillie and S. S. Wagstaff. Lu-

cas pseudoprimes. Mathematics of
Computation, 35(152):1391–1417, 1980;
and C. Pomerance, J. L. Selfridge, and
S. S. Wagstaff. The pseudoprimes to
25 ¨ 109. Mathematics of Computation,
35(151):1003–1026, 1980

Mathematica, Maple, PARI/GP, SageMath, and other symbolic algebra
systems. The reason for the popularity of this algorithm is that no
composite number is known that (falsely) passes the Baillie–PSW test.
The construction of such a composite number, or a proof that no such
number exists, would solve a major open question in computational
number theory.





B The Kepler problem

(This project relates to material in Prelims M4: Dynamics, A7: Numerical
Analysis, and B7.1: Classical Mechanics.)

The glorious triumph of Newton’s twin discoveries of calculus and
Newtonian mechanics was that it allowed us to make physical predic-
tions by solving differential equations. Newton’s second law provides an
initial value problem for a second-order differential equation that, if
solved, describes the motion of the given system for all future time.
One of the first examples of the first written treatment of calculus,
Problema II, Solutio Casus II, Ex. I of Newton (1671)1, is to solve 1 I. Newton. The Method of Fluxions and

Infinite Series. Henry Woodfall; and
sold by John Nourse, 1671. Translated
from the Author’s Latin Original Not Yet
Made Publick. To which is Subjoin’d, a
Perpetual Comment Upon the Whole
Work, By John Colson. Published in
1736.

9y :“
dy
dt

“ 1 ´ 3t ` y ` t2 ` ty (B.0.1)

which Newton does by means of an infinite series. Indeed, in the
bitter dispute with Leibniz over the discovery of calculus, Newton
wrote2 2 I. Newton. An account of the book

entituled Commercium Epistolicum
Collinii et Aliorum, de Analysi Promota.
Philosophical Transactions of the Royal
Society of London, 342:173–224, 1715

…and by the Answer of Mr. Leibnitz to the first of those Letters, it is as
certain that he had not then found out the Reduction of Problems either
to differential Equations or to converging Series.

Of course, most differential equation initial value problems cannot
be solved exactly, and so numerical methods for their approximate
solution were (and remain) of pressing concern3. In this project you 3 Even for ordinary differential equation

initial value problems, important
mathematical and algorithmic advances
continue to this day.

will investigate numerical algorithms for computing approximate
solutions of ordinary differential equation initial value problems.
For more details on this subject, see the books of Hairer, Wanner &
Nørsett4, or Hairer, Lubich & Wanner5. 4 E. Hairer, G. Wanner, and S. P. Nørsett.

Solving Ordinary Differential Equations
I, volume 8 of Springer Series in Com-
putational Mathematics. Springer Berlin
Heidelberg, 2nd edition, 1993
5 E. Hairer, C. Lubich, and G. Wan-
ner. Geometric Numerical Integration,
volume 31 of Springer Series in Compu-
tational Matheematics. Springer-Verlag,
2006

We will focus our investigations on the two-body Kepler problem,
modelling the orbit of a single planet around a star. As discussed in
Chapter 9, the two-body problem is amenable to symbolic analysis
that does not extend to three or more bodies. However, it is best to
study the qualitative and quantitative accuracy of our numerical algo-
rithms on the simplest possible case; if an algorithm does not work for
two bodies, we cannot reasonably expect it to work for three or more.
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B.1 Equations of motion and invariants

Following section I.2 of Hairer et al.6, we choose one of the two bodies 6 E. Hairer, C. Lubich, and G. Wan-
ner. Geometric Numerical Integration,
volume 31 of Springer Series in Compu-
tational Matheematics. Springer-Verlag,
2006

to be the origin of our coordinate system. Since two-body motion re-
mains in a plane (a fact you will prove in Dynamics), we consider the
position q “ pq1, q2q and momentum p “ pp1, p2q as two-dimensional
vector-valued functions of time. Setting all physical constants to one
for convenience, the Hamiltonian for the system is

Hpp, qq “
1
2

´

p2
1 ` p2

2

¯

´
1

b

q2
1 ` q2

2

. (B.1.1)

Question B.1. Symbolically calculate with sympy the resulting sys-
tem of ordinary differential equations. (Recall (13.0.4).)

As a Hamiltonian system, the equations of motion you derive in
Question B.1 must structurally preserve the Hamiltonian, the total
energy of the system. The Kepler problem has other invariants, how-
ever7. Kepler’s second law is equivalent to the statement that the 7 In fact, the Kepler problem is maximally

superintegrable—it has as many invari-
ants of motion as is possible to have.
The concept of a system being integrable
is rather subtle; Oxford’s Nigel Hitchin,
emeritus Savilian Professor of Geometry,
gives a useful introduction in the first
few pages of
N. J. Hitchin, G. B. Segal, and R. S.

Ward. Integrable systems: Twistors, loop
groups, and Riemann surfaces, volume 4
of Oxford Graduate Texts in Mathematics.
Clarendon Press, 1999

angular momentum is conserved, which is

Lpp, qq “

¨

˚

˝

p1

p2

0

˛

‹

‚

^

¨

˚

˝

q1

q2

0

˛

‹

‚

. (B.1.2)

Question B.2. Prove by symbolic substitution with sympy that the
Hamiltonian is conserved, i.e. that its value does not change over time.

Question B.3. Prove by symbolic substitution with sympy that the
angular momentum is conserved.

These two invariants are also conserved by n-body problems.
The case n “ 2 has one further invariant, the so-called Laplace–
Runge–Lenz (LRL) vector:

App, qq “

¨

˚

˝

p1

p2

0

˛

‹

‚

^

¨

˚

˝

0
0

q1 p2 ´ q2 p1

˛

‹

‚

´
1

b

q2
1 ` q2

2

¨

˚

˝

q1

q2

0

˛

‹

‚

. (B.1.3)

Because of its more complicated form, this invariant is much less well
known, and has thus been rederived independently many times (by,
among others, Hermann, Bernoulli, Laplace, Hamilton, and Gibbs).
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The LRL vector points from the star being orbited to the point of clos-
est approach, the periapsis. The LRL vector was crucial to Pauli’s
quantum mechanical analysis of the hydrogen atom, which is a two-
body problem with a central force governed by an inverse square law,
discussed in Chapter 11.

Question B.4. Prove by symbolic substitution with sympy that the
LRL vector is conserved.

The conservation of H, L, and A encode the crucial geometric prop-
erty of Kepler’s problem, that the planet should orbit in an ellipse.
(Roughly speaking, H and L encode the shape of the ellipse, while
A encodes its orientation.) An important way to study the effective-
ness of numerical algorithms for solving differential equations is to
consider how they preserve the geometric properties encoded in the
equations; algorithms that honour the underlying geometry are stud-
ied in the field of geometric numerical integration. In our case, we are
particularly interested to what extent numerical algorithms yield dis-
cretisations that conserve H, L, and A, given in (B.1.1), (B.1.2), and
(B.1.3); if these invariants are conserved, then the discrete solution
will be the correct ellipse, but if they are not, the approximate trajec-
tory will deviate from this. Measuring the conservation error there-
fore gives insight into whether a particular numerical approximation
is unphysical or not.

B.2 Euler’s method

The simplest possible method for solving initial value problems is the
forward Euler method. Suppose we are solving

9y “ fpt, yq, (B.2.1a)
ypt0q “ y0. (B.2.1b)

Let t1 “ t0 ` ∆t with ∆t ą 0 small. Euler’s suggestion is to make the
approximation that f pt, yq is constant over rt0, t1s, with value f pt0, y0q.
Integrating the equation over this interval then yields that

ypt1q “ ypt0q ` ∆t f pt0, y0q. (B.2.2)

More generally, denoting

tn “ t0 ` n∆t, yn our approximation for yptnq, (B.2.3)

the forward Euler scheme is to iteratively compute

yn`1 “ yn ` ∆t f ptn, ynq. (B.2.4)
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The forward Euler method was proposed by Euler in Institutiones
Calculi Integralis (the Foundations of Integral Calculus) in 17688. In 8 L. Euler. Institutiones Calculi Integralis.

Academia Imperialis Scientiarum, 1768.
Translation by I. Bruce. Independently
published

Volume I, Section II, Chapter 7 (translated by Ian Bruce in 2010), Euler
writes

Concerning the approximate integration of differential equations.

Problem 85. To assign an approximate value to the complete integral of
any differential equation.

Solution. Let x and y be two variables, between which the differential
equation is proposed, and this equation shall have a form of this kind,
so that dy

dx “ V with V being some function of x and y. Now since
the complete integral is desired, this has to be interpreted thus, so that
while x is given a certain value, for example x “ a, the other variable y is
given a certain value, for example y “ b. Hence in the first place we are
to treat the question, so that we can find the value of y, when the value
of x is attributed a value differing a little from a, on putting x “ a ` ω

so that we may find y. But since shall be the smallest possible amount,
the value of y will differ minimally from b ; from which, while x only is
changed from a as far as to a ` ω , the quantity V is allowed to be looked
on as being constant. Whereby on putting x “ a and y “ b there is made
V “ A and from this very small change we will have dy

dx “ A and thus
on integrating, y “ b ` Apx ´ aq , clearly with a constant of this kind to
be added so that on putting x “ a there becomes y “ b. Hence we may
put in place x “ a ` ω and there becomes y “ b ` A.

Hence just as here from the values given initially x “ a and y “ b we
find approximately the following x “ a ` ω and y “ b ` A, thus from
these in a like manner it is allowed to progress through another very
short interval, as long as it arrives finally at values however far from the
starting value.

This is a natural first idea; if ∆t is small enough, the error in the
value of ypt‹q for some fixed t‹ converges linearly as ∆t is reduced
(i.e. if you halve the timestep, the error in the approximation also
halves). However, the forward Euler scheme does not pay heed to the
geometric structure of our problem, with disastrous physical conse-
quences, as we shall soon see.

Question B.5. Write a function to execute the forward Euler scheme
to approximate the solution of the Kepler problem with initial condi-
tions

ppt “ 0q “ r0, 2s, qpt “ 0q “ r0.4, 0s, (B.2.5)

for a specified timestep and number of timesteps.
On a single figure, plot the trajectory computed with forward Euler

with

1. 50 steps of timestep ∆t “ 0.1;
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2. 100 steps of timestep ∆t “ 0.05;

3. 200 steps of timestep ∆t “ 0.025.

For comparison, on the same figure plot also the true orbit, given in
parametric form by

q1 “ ´0.6 ` cos s, q2 “ 0.8 sin s, s P r0, 2πs. (B.2.6)

Comment on your results.

Question B.6. For the finest discretization, on separate figures plot
the computed values of H, L, and θ, where

L :“ }L}, θ :“ arg A (B.2.7)

as a function of time, where arg returns the azimuthal angle from the
positive x-axis of the vector projected to the x-y plane. Are the in-
variants conserved by the forward Euler discretisation? What are the
implications of this for the numerical approximation to the planet’s
orbit?

These results motivate the search for more sophisticated algo-
rithms.

B.3 Explicit midpoint method

Over an interval rtn, tn`1s, the forward Euler method approximates
the slope of the tangent to the solution yptq via its (known) value
at the left end-point. A natural objection to this procedure is that it
violates the symmetry inherent in the equations: whereas Newton’s laws
of motion are symmetric forward or backward in time9, the forward 9 Indeed, the invariance of the laws

of physics in time is precisely what
leads to the conservation of energy:
Noether’s Theorem, one of the most
beautiful in all of mathematics, asserts
that every differentiable symmetry of
a physical system has a corresponding
conservation law.
E. Noether. Invariante Variation-

sprobleme. Nachrichten von der
Gesellschaft der Wissenschaften zu Göt-
tingen, Mathematisch-Physikalische Klasse,
pages 235–257, 1918

Euler method is not symmetric in time. More precisely, exchanging
tn Ø tn`1, yn Ø yn`1, and ∆t Ø ´∆t in (B.2.4), we do not recover
(B.2.4)10.

10 Instead, we recover

yn`1 “ yn ` ∆t f ptn`1, yn`1q. (B.3.1)

This scheme is known as backward Euler.

This consideration of symmetry prompts us to seek a numerical
method where the slope of our approximation matches the right-hand
side of the ordinary differential equation at the midpoint of the interval,
i.e. to find yn`1 such that

yn`1 ´ yn

∆t
“ f

ˆ

tn ` tn`1

2
,

yn ` yn`1

2

˙

. (B.3.2)

The numerical method defined by (B.3.2) is clearly symmetric in time
by construction. However, it has a substantial disadvantage: to com-
pute yn`1, we need to solve (B.3.2), which in general is a nonlinear
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equation. (Notice that the right-hand side depends on the unknown
yn`1.) The method defined by (B.3.2) is described as implicit, in con-
trast to explicit methods like forward Euler (B.2.4), where one can
directly compute yn`1 from yn. This method is therefore known as
implicit midpoint.

Moreover, implicit midpoint has a more fundamental geomet-
ric property: the associated discrete system is symplectic, just as our
Hamiltonian system is. Explaining symplecticity is beyond the scope
of this project, but for our purposes the following rough idea will suf-
fice. Imagine an ordinary differential equation with y P R2. The initial
data are thus an element of R2. Imagine taking a (measurable) set A
of many different initial conditions in R2, and integrating the equa-
tions of motion up to an arbitrary fixed time T ą 0 for each a P A. This
procedure will give another set of points B Ă R2. Symplecticity means
that the area is preserved under this procedure: the area of B is exactly
the area of A, for any terminal time T. Symplecticity is crucial to the
geometry of Hamiltonian mechanics; implicit midpoint preserves
symplecticity, whereas forward Euler does not.

Implicit midpoint is therefore a very powerful and popular integra-
tor11. However, in this project we will confine our attention to explicit 11 It is especially popular for problems

where implicit integrators are necessary
for other reasons, such as the parabolic
partial differential equations you will
meet in Part A A1: Differential Equations
I.

schemes, as implementing implicit schemes requires a good knowl-
edge of the numerical solution of nonlinear equations, which you will
study in Trinity Term Constructive Mathematics. An explicit alternative
is to instead approximate

yn ` yn`1

2
« yn `

∆t
2

f ptn, ynq, (B.3.3)

i.e. we estimate the average of the initial and final states with a half-
step of forward Euler. This yields the explicit midpoint method:

yn`1 ´ yn

∆t
“ f

ˆ

tn ` tn`1

2
, yn `

∆t
2

f ptn, ynq

˙

. (B.3.4)

Unlike implicit midpoint, explicit midpoint is neither symmetric nor
symplectic, but it is nevertheless a substantial improvement over for-
ward Euler: on halving the timestep, the error in yn decreases by a
factor of 4, instead of the factor of 2 yielded by forward Euler.

Question B.7. Write a function to execute the explicit midpoint
scheme to approximate the solution of the Kepler problem. Make
an analogous plot as in Question B.5, with the same initial conditions,
timestep ∆t, and number of steps.

Question B.8. Compare on a plot a run of forward Euler with a run
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of explicit midpoint. Make the comparison fair by ensuring that both
schemes require the same number of evaluations of the right-hand
side f . Comment on your results.

Question B.9. Comment on the conservation properties of explicit
midpoint. (No plot necessary.)

B.4 Newton–Störmer–Verlet method

Is it possible to devise an explicit scheme for our problem that is both
symmetric and symplectic?

Our intuition for the explicit and implicit midpoint schemes was
that we wished the slope of our approximation at the midpoint of
the time interval rtn, tn`1s to match that specified by the ODE. This
makes sense for a generic first-order system of ODE. But we are not
solving just any first-order system of ODE—we are solving a first-
order reformulation of a problem that is fundamentally second-order
(recall Newton’s second law). In other words, our equations are of the
particular form

9p “ gpqq, (B.4.1a)
9q “ p, (B.4.1b)

which is the first-order reformulation of

:q “ gpqq. (B.4.2)

Since g tells us the second derivative of q, this instead suggests we
should find a numerical approximation that matches the second deriva-
tive at qn with the right-hand side evaluated there. That is, given qn´1

and qn, we compute the next value qn`1 such that the second deriva-
tive of the quadratic function that passes through ptn´1, qn´1q, ptn, qnq,
and ptn`1, qn`1q is gpqnqq. After some algebra, the scheme that results
is

qn`1 ´ 2qn ` qn´1 “ p∆tq2gpqnq. (B.4.3)

The method (B.4.3) has been invented many times, with different
names used in different communities12. Its most common name is 12 This historical account is drawn from

E. Hairer, C. Lubich, and G. Wanner.
Geometric numerical integration illus-
trated by the Störmer–Verlet method.
Acta Numerica, 12:399–450, 2003

the Verlet method, invented by Loup Verlet in 196713 in the context

13 L. Verlet. Computer ‘‘experiments’’
on classical fluids. I. Thermodynamical
properties of Lennard–Jones molecules.
Physical Review, 159(1):98, 1967

of molecular dynamics. It is sometimes called the Störmer method,
as Carl Störmer14 used higher-order variants of it to compute the

14 C. Störmer. Sur les trajectoires des
corpuscules électrisés. Archives des
Sciences Physiques et Naturelles, 24:5–18,
113–158, 221–247, 1907

motion of ionised particles in the Earth’s magnetic field to understand
the aurora borealis15. Loup Verlet subsequently became interested

15 For more details, see Section III.10 of
E. Hairer, G. Wanner, and S. P. Nørsett.

Solving Ordinary Differential Equations
I, volume 8 of Springer Series in Com-
putational Mathematics. Springer Berlin
Heidelberg, 2nd edition, 1993

in the history of science and discovered the method that had made
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him famous had been employed by Newton in 1687 to prove Kepler’s
second law, the conservation of angular momentum in the two-body
Kepler problem—in Theorem I of Book I of the Principia. We therefore
refer to it here as the Newton–Störmer–Verlet method.

It turns out that the direct implementation of (B.4.3) suffers from a
numerical instability in the presence of (inevitable) rounding errors16. 16 For more details, see pg. 472 of Hairer

et al. (1993).A more stable equivalent implementation arises for the first-order
system (B.4.1). Given p0 and q0, the Newton–Störmer–Verlet scheme
is to compute

pn` 1
2

“ pn `
∆t
2

gpqnq, (B.4.4)

qn`1 “ qn ` ∆tpn` 1
2
, (B.4.5)

pn`1 “ pn` 1
2

`
∆t
2

gpqn`1q. (B.4.6)

Like explicit and implicit midpoint, Newton–Störmer–Verlet is
second-order accurate: halving the timestep quarters the error. But
unlike explicit midpoint, it is both symmetric and symplectic, with
crucial qualitative advantages in the simulation of the class of prob-
lems to which it applies.

Question B.10. Write a function to execute the Newton–Störmer–Verlet
scheme to approximate the solution of the Kepler problem. Make an
analogous plot as in Question B.5, with the same initial conditions,
timestep ∆t, and number of steps.

Question B.11. Compare on a plot a run of explicit midpoint with a
run of Newton–Störmer–Verlet, both employing ∆t “ 0.05 for 1200
steps. Comment on your results.

Question B.12. Discuss the conservation properties of Newton–
Störmer–Verlet. Provide evidence for your assertions, and relate your
results to your answer for the previous question.

B.5 Concluding remarks

Hamiltonian problems (like the Kepler problem) possess an extremely
rich mathematical structure. The associated differential equations are
symplectic, conserve the Hamiltonian, and possibly conserve other
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invariants also. However, when discretising, one must in general make
a choice of structure to preserve: an approximate integrator cannot
generally preserve both symplecticity and the Hamiltonian17. For 17 G. Zhong and J. E. Marsden. Lie–

Poisson Hamilton–Jacobi theory and
Lie–Poisson integrators. Physics Letters
A, 133(3):134–139, 1988

chaotic systems, preserving symplecticity is probably the right choice,
as it is crucial for their statistical behaviour; the inevitable discreti-
sation errors mean that any individual trajectory is not particularly
meaningful, but symplecticity ensures their aggregation is.

However, for other systems, it may be preferable to choose approx-
imate schemes that exactly conserve the invariants of the system. For
example, for the Kepler problem, the trajectory of such an approxima-
tion would be confined to exactly the same ellipse as that of the true
solution, which is very appealing. More generally, the design of such
structure-preserving discretisations for physical systems such as the
Navier–Stokes equations of fluid mechanics or the Einstein field equa-
tions of general relativity is a major focus of ongoing research in the
numerical analysis of differential equations.





C Percolation

(This project relates to material in Prelims and Part A courses on Probabil-
ity and Statistics, and Part A Simulation and Statistical Programming.)

Statistical mechanics is the branch of mathematics that applies sta-
tistical and probabilistic methods to large assemblies of microscopic
entities. For example, one might consider a gas as composed of a very
large number of molecules moving in all directions and colliding with
each other. From this viewpoint we wish to derive macroscopic prop-
erties like its pressure or temperature. Of course, keeping track of the
state of each individual molecule among the trillions of trillions in a
typical cubic metre is simply impossible. One therefore instead de-
velops a theory where one considers the probability distribution of the
molecules of the gas; given knowledge of the probability distribution,
we can at any time calculate the number of molecules of a certain ve-
locity range in a certain volume of space. In 1860, Maxwell calculated
the equilibrium distribution for a gas at a given temperature, now
known as the Maxwellian1; in 1872 Boltzmann derived the equation 1 J. C. Maxwell. V. Illustrations of the

dynamical theory of gases. Part I. On
the motions and collisions of perfectly
elastic spheres. The London, Edinburgh,
and Dublin Philosophical Magazine and
Journal of Science, 19(124):19–32, 1860

governing the time evolution of the probability distribution function,
now known as the Boltzmann equation2.

2 L. Boltzmann. Weitere Studien über
das Wärmegleichgewicht unter Gas-
molekülen. Sitzungsberichte der Akademie
der Wissenschaften zu Wien, 66:275–730,
1872

The Boltzmann equation is a nonlinear integro–differential equa-
tion, where the unknown is a function in six dimensions (three of
position, three of velocity). It is therefore not terribly surprising that it
is rather hard to solve. Computational simulations are crucial to gain-
ing mathematical and physical insight into most systems of statistical
mechanics.

A major goal of statistical mechanics is to understand phase tran-
sitions. A phase transition is an abrupt, discontinuous change in the
properties of a system. For example, if we take our gas and cool it, at a
critical temperature it will (usually) turn into a liquid, with its density
and volume changing discontinuously. Phase transitions are of enor-
mous mathematical, physical, and economic importance. For example,
some materials (known as superconductors) exhibit a phase transi-
tion at a critical temperature, below which they offer no resistance to
electrical current. The discovery of a practical superconducting mate-
rial where the critical temperature is above room temperature would
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trigger a second industrial revolution3. 3 The current record at atmospheric
pressure is held by the cuprate of
mercury, barium, and calcium, which
has a critical temperature around ´140
˝C.

One route to understanding phase transitions is to consider simple
mathematical models that exhibit them. A prominent class of such
mathematical models is studied in percolation theory4. Percolation the-

4 D. Stauffer and A. Aharony. Intro-
duction to Percolation Theory. Taylor &
Francis, second edition, 1994

ory describes the properties of a graph as nodes or edges are added.
Hugo Duminil-Copin won the Fields Medal in 2022 for his work on
percolation theory; a popular account of his work was published in
Quanta magazine5. 5 Hugo Duminil-Copin wins the Fields

medal. Quanta Magazine, 2022

Figure C.1: A 10 ˆ 10 grid sam-
pled with vacancy probability
p “ 0.5. Open squares are
white; closed squares are black.

The specific percolation model we consider in this project is the
following. Consider an n ˆ n grid of squares, where each site can be
either open or closed, as in Figure C.1. We say that a site is full if it is
open and can be connected to an open site in the top row via chain of
neighbouring (left, right, up, down) open sites. If there is a full site on
the bottom row, we say the system percolates (see Figures C.2 and C.3
for examples). In other words, is there a connected open component
spanning from the top of the grid to the bottom? You might imagine
this to model the question of whether water poured on the top will
percolate to the bottom (hence the name), or whether a fire started at
one end of a forest will propagate tree-by-tree to the other.

A natural question to ask about this system is: if each site is open
with vacancy probability p, what is the probability that the system
percolates, Cppq? As we will see, the percolation probability Cppq
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Figure C.2: A 10 ˆ 10 grid sam-
pled with vacancy probability
p “ 0.5. Full squares are blue.
The system does not percolate.

Figure C.3: A 10 ˆ 10 grid sam-
pled with vacancy probability
p “ 0.5. Full squares are blue.
The system does percolate.
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exhibits a phase transition in the vacancy probability. For low values
of p, the system does not percolate; at a critical p “ pc the system
very rapidly switches to always percolating6. No analytical results are 6 In fact, in the limit of infinite grid size,

the percolation probability for a given p
is either zero or one, by Kolmogorov’s
zero-one law. For small n the transition
becomes smoother.

known characterising pc. As described by Newman & Ziff7,

7 M. E. J. Newman and R. M. Ziff.
Fast Monte Carlo algorithm for site or
bond percolation. Physical Review E,
64:016706, 2001

Percolation is one of the best-studied problems in statistical mechanics.
…It is one of the simplest and best understood examples of a phase
transition in any system, and yet there are many things about it that
are still not known. For example, despite decades of effort, no exact
solution for the site percolation problem yet exists on the simplest two-
dimensional lattice, the square lattice, and no exact results are known
on any lattice in three dimensions or above. Because of these and many
other gaps in our current understanding of percolation, numerical
simulations have found wide use in the field.

By means of such numerical simulations, Newman & Ziff computed
that the critical probability pc for large n was approximately pc «

0.592746218. 8 M. E. J. Newman and R. M. Ziff. Effi-
cient Monte Carlo algorithm and high-
precision results for percolation. Physical
Review Letters, 85(19):4104–4107, 2000

In this project you will investigate Monte Carlo algorithms for
estimating the percolation probability Cppq. Monte Carlo methods are
one of the most important and prominent tools for modern statistical
inference. In a Monte Carlo simulation, we randomly draw inputs
from a suitable probability distribution (in this case, the binomial
distribution), perform deterministic computations (in this case, decide
whether the grid percolates or not), and aggregate the results (to
compute Cppq).

C.1 Representing the state

Our first task is to generate suitable random samples of our grids.

Question C.1. Write a function make_grid(n, p) to make an n ˆ n
numpy array of Boolean values, with each site True with probability
p and False otherwise.

[Hint: this should take one line of numpy code.]

Draw a few samples to ensure that the empirical probability of a
site being open is approximately p.

Our next task is to visualise our grid status. This will be very useful
in developing the code for the simulation.

Question C.2.
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Write a function visualise_grid to visualise a grid produced by
make_gridwith matplotlib. The function should take in a Boolean
array. The output should look similar to Figure C.1: plot closed sites
in black; plot open sites in white; colour the borders of each square in
black.

[Hint: you will need to consult the matplotlib documentation and other
online resources to do this; the relevant matplotlib methods were not discussed
in Chapter 7.]

Use your function to visualise a few sample grids.

C.2 Calculating percolation

Once we have represented our grid, we now proceed to calculate
whether each site is full or not. As with our grid, we represent the full
status of each site with a numpy array of Boolean variables.

Question C.3.
Write a function visualise_fill to visualise the fill status of a

given grid. The function should take as input two Boolean arrays, the
grid and the fill status. The output should look similar to Figures C.2
and C.3. Plot closed sites in black, open unfilled sites in white, and
open filled sites in blue. Colour the borders of each square in black.

Apply your function to hand-crafted data (e.g. on a 3 ˆ 3 grid) to
verify it is working correctly. Ensure also that the visualisation code
works correctly if the fill status is all False.

We now turn to the central task of computing the full status of
each site. This is more subtle than it appears. An outline might be the
following.

1. Visit each site in the top row.

2. For each visited site, do the following:

(a) If appropriate, set the site to be full.

(b) Visit each neighbouring site (left, right, up, down).

This general approach is known in the graph theory literature as depth-
first search. It is most naturally written as a function that recursively
calls itself, but non-recursive implementations are also possible.
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Question C.4. Write a function compute_fill that takes in a grid
produced by make_grid and calculates whether each site is full or
not.

[Hint: think carefully about what should happen when a site is visited.
For example, if it is already full, it should terminate without further action.]

[Hint: it may be useful during your development to visualise the fill state
of the grid as you visit each site in the top row.]

Question C.5. Write a function percolates that returns True if the
given grid percolates, and False otherwise.

[Hint: the core logic can be written with one line of numpy.]

Draw 10 samples of a 20 ˆ 20 grid with vacancy probability p “ 0.6.
For each, visualise its fill status, titling each figure with whether that
grid percolates or not.

C.3 Monte Carlo simulation

With the percolate function in hand, we can now conduct our sta-
tistical simulation. Our goal here is to calculate Cppq, the percolation
probability as a function of the vacancy probability.

Question C.6. Take a suitable grid P Ă r0, 1s of p values. (You may
wish to increase the resolution for p P r0.4, 0.7s.) For each p P P,
draw N samples of a 20 ˆ 20 grid with vacancy probability p. For each
sample, calculate whether the grid percolates or not; the fraction of
grids that percolates is our estimate for Cppq. Plot Cppq as a function of
p.

[Hint: you will need to choose suitable N and P so that the interpolation
error and statistical error due to sampling are acceptable. The curve should
appear smooth; if it is not, try increasing N and/or refining P.]

A word on computational efficiency is in order for question C.6.
This question is the most computationally intensive across the three
projects9. When calling publish() as usual, your code actually 9 On an old laptop, the unoptimised

reference solution for question C.6 takes
approximately 9 minutes.

gets executed twice; normally this is not a problem, but here it may
be. Instead, with the latest version of publish.py it is possible to
execute
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(terminal) python publish.py percolation.py

which publishes your script, only executing it once.

C.4 Concluding remarks

The algorithms investigated in this project can be substantially im-
proved upon. For example, Newman & Ziff propose an entirely dif-
ferent approach to the simulation of site percolation that is several
million times faster for 1000 ˆ 100010. Their approach relies on an al- 10 M. E. J. Newman and R. M. Ziff.

Fast Monte Carlo algorithm for site or
bond percolation. Physical Review E,
64:016706, 2001

ternative representation of the state of the system, explicitly keeping
track of each connected cluster as a tree; with this alternative represen-
tation, entirely different statistical ensembles and search algorithms
are used.

In computational mathematics, there is a constant iteration between
programming, computation, and theory; computations motivate new
mathematical questions, and mathematical insights make new compu-
tations possible.
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