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Introduction

1. What is mathematical logic for?

• Provides a uniform, unambiguous
language for mathematics;

• gives a precise formal definition of a
proof;

• explains and guarantees exactness,
rigour and certainty in mathematics;

• establishes the foundations of
mathematics.

B1 (Foundations)
= B1.1 (Logic) + B1.2 (Set theory)

N.B.: Course does not teach you to think logically,

but it explores what it means to think logically.
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2. Historical motivation

• 19th cent.:

Search for conceptual foundations in

analysis: attempts to formalise the notions

of infinity, infinitesimal, limit, ...

“The definitive clarification of the

nature of the infinite has become

necessary, not merely for the special

interests of the individual sciences but

for the honour of human

understanding itself.” – Hilbert 1926

• Hilbert’s 2nd Problem, 1900 ICM address:

prove consistency of an axiom system for

arithmetic.

“I am convinced that it must be

possible to find a direct proof for the

compatibility of the arithmetical

axioms.” – Hilbert 1900

Lec 1 - 2/7



2. Historical motivation (cont)

• Early attempts to formalise mathematics:

- Cantor’s naive set theory;

- Frege’s Begriffsschrift and Grundgesetze.

For any expressible property P (x), Frege’s

system posited the existence of the set

{x : P (x)}.

• Russell’s paradox:

consider the set R := {s : s 6∈ s}

R ∈ R ⇒ R 6∈ R contradiction
R 6∈ R ⇒ R ∈ R contradiction

; fundamental crisis in the foundations of

mathematics
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3. Hilbert’s Program

1. find a uniform formal language for all

mathematics

2. find a complete system of inference

rules/ deduction rules

3. find a complete system of mathematical

axioms

4. prove that the resulting system is

consistent, i.e. does not lead to

contradictions

? complete: every mathematical sentence can be
proved or disproved using 2. and 3.

? 1., 2. and 3. should be
finitary/effective/computable/algorithmic
so, e.g., in 3. you can’t take as axioms
the system of all true sentences in mathematics
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4. Solutions to Hilbert’s program

Step 1. (formal language for mathematics)

possible in the framework of

ZF = Zermelo-Fraenkel set theory or

ZFC = ZF + Axiom of Choice

(this is an empirical fact)

; B1.2 Set Theory

Step 2. (complete proof system)

possible in 1st-order logic:

Gödel’s Completeness Theorem

; B1.1 Logic - this course

Step 3. (complete axiom system)

not possible (; C1.2):

Gödel’s 1st Incompleteness Theorem:

there is no effective axiomatization

of arithmetic

Step 4. (proving consistency)

not possible (; C1.2):

Gödel’s 2nd Incompleteness Theorem
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5. Decidability

Step 3. of Hilbert’s program fails:

there is no effective axiomatization

for the entire body of mathematics

But: many important parts of mathematics

are completely and effectively axiomatizable;

they are decidable, i.e. there is an

algorithm = program = effective procedure

to decide whether a sentence is true or false

; allows proofs by computer

Example: Th(C; +, ·), the 1st-order theory
of the field C.

Axioms = field axioms
+ all non-constant polynomials have a zero
+ the characteristic is 0

Every algebraic property of C follows from

these axioms.

Similarly for Th(R).

; C1.1 Model Theory Lec 1 - 6/7



6. Why mathematical logic?

1. Language and deduction rules are tailored

for mathematical objects and

mathematical ways of reasoning

2. The method is mathematical:

we will develop logic as a calculus with

sentences and formulas

⇒ Logic is itself a mathematical

discipline,

not meta-mathematics or philosophy,

no ontological questions like

what is a number?

3. Logic has applications in other areas of

mathematics, and also in theoretical

computer science
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PART I:
Propositional Calculus

1. The language of
propositional calculus

... is a very coarse language with limited

expressive power;

... allows you to break a complicated sentence

down into its subclauses, but not any further;

... will be refined in PART II Predicate

Calculus, the true language of 1st order logic;

... is nevertheless well suited for entering

formal logic.
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1.1 Propositional variables

The propositional calculus implements logic
of the following kind:

• 1. Socrates is alive or Socrates is dead.
2. Socrates is not alive.
Therefore: Socrates is dead.

• 1. If Socrates is a vampire and vampires
are immortal, then Socrates is not dead.
2. Socrates is dead.
Therefore: Either Socrates is not a
vampire, or vampires are not immortal.

We use propositional variables to denote
propositions - e.g. p0 for ”Socrates is a
vampire”.

A proposition is something which can be true
or false.
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1.2 The alphabet
of propositional calculus

The alphabet of the propositional language

Lprop consists of the following symbols:

the propositional variables p0, p1, . . . , pn, . . .

negation ¬ - the unary connective not

four binary connectives →, ∧, ∨, ↔
implies, and, or and if and only if

respectively

two punctuation marks ( and )

left parenthesis and right parenthesis.

Note that these are abstract symbols.

Note also that we use →, and not ⇒. Lec 2 - 3/8



1.3 Strings

• A string (of Lprop)
is any finite sequence of symbols from the
alphabet of Lprop.

• Examples

(i) → p17()
(ii) ((p0 ∧ p1)→ ¬p2)
(iii) ))¬)p32

• The length of a string is the number of
symbols in it.
So the strings in the examples have
length 4,10,5 respectively.
(A propositional variable has length 1.)

• We now single out from all strings those
which make grammatical sense
(formulas).
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1.4 Formulas
The notion of a formula of Lprop is defined

(recursively) by the following rules:

I. Every propositional variable is a formula.

II. If the string A is a formula then so is ¬A.

III. If the strings A and B are both formulas

then so are the strings

(A→ B) read A implies B
(A ∧B) read A and B
(A ∨B) read A or B
(A↔ B) read A if and only if B.

IV. Nothing else is a formula,

i.e. a string φ is a formula if and only if φ can

be obtained from propositional variables by

finitely many applications of the formation

rules II. and III.
Lec 2 - 5/8



Examples

• The string ((p0 ∧ p1)→ ¬p2) is a formula

(Example (ii) in 1.3).

Proof:

p0

==
==

==
==

==
==

==
==

==
=

p1

qqqqqqqqqqqqqqqqqqqqqqqqqqqqq
p2

II.III.

(p0 ∧ p1)

LLLLLLLLLLLLLLLLLLLLLLLLLLLL
¬p2

uuuuuuuuuuuuuuuuuuuuuuuuu

III.

((p0 ∧ p1)→ ¬p2)

2

• Parentheses are important, e.g.

(p0 ∧ (p1 → ¬p2)) is a different formula

and p0∧ (p1 → ¬p2) is not a formula at all.
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Examples

• The strings → p17() and ))¬)p32 from

Example (i) and (iii) in 1.3 are not

formulas.

Indeed, if φ is a formula, then φ arises

from one of I., II, or III., and so one of

the following must hold:

1. φ is a propositional variable.

2. The first symbol of φ is ¬.

3. The first symbol of φ is (.
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The unique readability theorem

A formula can be constructed in only one

way:

For each formula φ exactly one of the

following holds

(a) φ is pi for some unique i ∈ N;

(b) φ is ¬ψ for some unique formula ψ;

(c) φ is (ψ ? χ) for some unique pair of

formulas ψ, χ and a unique binary connective

? ∈ {→,∧,∨,↔}.

Proof: Problem sheet 1.
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2. Valuations

In natural language, the truth or falsity of a

sentence using logical connectives is

determined by the truth or falsity of its

subclauses:

“Socrates is dead or Socrates is a vampire” is

true because “Socrates is dead” is true.

The propositional calculus abstracts this to a

recursive definition of the truth value

T (‘true’) or F (‘false’) of a formula φ in

terms of the truth values of the propositional

variables occuring in φ.
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2.1 Definition
1. A valuation v is a function

v : {p0, p1, p2, . . .} → {T, F}.
2. Given a valuation v we extend v uniquely
to a function

ṽ : Form(Lprop) → {T, F}.

(Form(Lprop) denotes the set of all formulas of Lprop)

defined recursively as follows:

(i) If φ is a formula of length 1, i.e. a
propositional variable, then ṽ(φ) := v(φ).

(ii) If φ is a formula of length n > 1, and ṽ has
been defined on formulas of length < n:
by the Unique Readability Theorem,

either φ = ¬ψ1 for a unique ψ1,
or φ = (ψ1 ? ψ2) for a unique pair ψ1, ψ2

and a unique ? ∈ {→,∧,∨,↔}.
Then the ψi are formulas of length < n,
and we define ṽ(φ) in terms of the ṽ(ψi)
by the truth tables on the following slide.
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Truth Tables

Define ṽ(φ) by the following truth tables:

Negation

ψ ¬ψ
T F
F T

i.e. if ṽ(ψ) = T then ṽ(¬ψ) = F

and if ṽ(ψ) = F then ṽ(¬ψ) = T

Binary Connectives

ψ χ ψ → χ ψ ∧ χ ψ ∨ χ ψ ↔ χ

T T T T T T
T F F F T F
F T T F T F
F F T F F T

so, e.g., if ṽ(ψ) = F and ṽ(χ) = T

then ṽ(ψ ∨ χ) = T etc.
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Remark: These truth tables correspond

roughly to our ordinary use of the words

‘not’, ‘if - then’, ‘and’, ‘or’ and ‘if and only

if’, except, perhaps, the truth table for

implication (→).

2.2 Example

Construct the full truth table for the formula

φ := ((p0 ∨ p1)→ ¬(p1 ∧ p2))

ṽ(φ) only depends on v(p0), v(p1) and v(p2).

po p1 p2 (p0 ∨ p1) (p1 ∧ p2) ¬(p1 ∧ p2) φ

T T T T T F F
T T F T F T T
T F T T F T T
T F F T F T T
F T T T T F F
F T F T F T T
F F T F F T T
F F F F F T T
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2.3 Example Truth table for

φ := ((p0 → p1)→ (¬p1 → ¬p0))

p0 p1 (p0 → p1) ¬p1 ¬p0 (¬p1 → ¬p0) φ

T T T F F T T
T F F T F F T
F T T F T T T
F F T T T T T
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3. Logical Validity

3.1 Definition

• A valuation v satisfies a formula φ

if ṽ(φ) = T .

• A formula φ is logically valid
if φ is satisfied by every valuation
(e.g. Example 2.3, not Example 2.2).
Such a φ is also called a tautology.
Notation: |= φ

• A formula φ is satisfiable
if φ is satisfied by some valuation. So:

φ is satisfiable iff ¬φ is not a tautology.

• A formula φ is a logical consequence of
a formula ψ if, for every valuation v:

if ṽ(ψ) = T then ṽ(φ) = T .

Notation: ψ |= φ
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3.2 Lemma ψ |= φ if and only if |= (ψ → φ).

Proof. ‘⇒’: Assume ψ |= φ.

Let v be any valuation.

• If ṽ(ψ) = T then (by def.) ṽ(φ) = T ,

so then ṽ((ψ → φ)) = T by tt →.

(‘tt ?’ refers to the truth table of the connective ?)

• If ṽ(ψ) = F then ṽ((ψ → φ)) = T by tt →.

Thus, for every valuation v, ṽ((ψ → φ)) = T ,

so |= (ψ → φ).

‘⇐’: Conversely, suppose |= (ψ → φ).

Let v be any valuation s.t. ṽ(ψ) = T .

Since ṽ((ψ → φ)) = T , also ṽ(φ) = T by tt →.

Hence ψ |= φ.
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3.3 Definition Let Γ be any (possibly
infinite) set of formulas and let φ be any
formula.
Then φ is a logical consequence of Γ
if, for every valuation v:

If ṽ(ψ) = T for all ψ ∈ Γ then ṽ(φ) = T .

Notation: Γ |= φ

Note:

|= φ ⇔ ∅ |= φ,

ψ |= φ ⇔ {ψ} |= φ.

Lemma 3.2 generalises to:

3.4 Lemma
Γ ∪ {ψ} |= φ if and only if Γ |= (ψ → φ).

Proof. Similar to the proof of Lemma 3.2.
Exercise.
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3.5 Example

|= ((p0 → p1)→ (¬p1 → ¬p0)) (Ex. 2.3)
Hence (p0 → p1) |= (¬p1 → ¬p0) by 3.2
Hence {(p0 → p1),¬p1} |= ¬p0 by 3.4

3.6 Example

φ |= (ψ → φ)

Proof. For any v:

if ṽ(φ) = T then, by tt →, ṽ((ψ → φ)) = T

(no matter what ṽ(ψ) is).
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4. Logical Equivalence

4.1 Definition

Two formulas φ, ψ are logically equivalent

if φ |= ψ and ψ |= φ,

i.e. if ṽ(φ) = ṽ(ψ) for every valuation v.

Notation: φ |==| ψ

Exercise: φ |==| ψ if and only if |= (φ↔ ψ).

4.2 Lemma

(i) For any formulas φ, ψ

(φ ∨ ψ) |==| ¬(¬φ ∧ ¬ψ).

(ii) Hence every formula is logically equivalent

to one without ‘∨’.

Lec 4 - 1/12



Proof. (i) Either use truth tables,

or observe that for any valuation v:

ṽ(¬(¬φ ∧ ¬ψ)) = F
iff ṽ((¬φ ∧ ¬ψ)) = T by tt ¬
iff ṽ(¬φ) = ṽ(¬ψ) = T by tt ∧
iff ṽ(φ) = ṽ(ψ) = F by tt ¬
iff ṽ(φ ∨ ψ) = F by tt ∨

(ii) Induction on the length of the formula φ.

Clear for length 1.

For the induction step observe that

if ψ |==| ψ′ then ¬ψ |==| ¬ψ′,

and (φ ∨ ψ) |==| ¬(¬φ ∧ ¬ψ) by (i),

and for (φ ? ψ) where ? is not ∨ observe:

if φ |==| φ′ and ψ |==| ψ′ then

(φ ? ψ) |==| (φ′ ? ψ′).
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4.3 Some convenient notation

If φ1, . . . , φn are formulas, we can write their
disjunction as

(. . . ((φ1 ∨ φ2) ∨ φ3) . . . ∨ φn).

This is rather cumbersome notation, so we
abbreviate it to

n∨
i=1

φi.

Formally, we make the following recursive
definitions:

1∨
i=1

φi = φ1 and
1∧
i=1

φi = φ1,

and for n > 1,

n∨
i=1

φi = (
n−1∨
i=1

∨φn) and
n∧
i=1

φi = (
n−1∧
i=1

∧φn).

So ṽ(
∨n
i=1 φi) = T iff for some i, ṽ(φi) = T

and ṽ(
∧n
i=1 φi) = T iff for all i, ṽ(φi) = T .
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4.4 Some logical equivalences

Let A,B,Ai be formulas. Then

1. ¬(A ∨B) |==| (¬A ∧ ¬B)
More generally,

¬
n∨
i=1

Ai |==|
n∧
i=1

¬Ai,

hence also

¬
n∧
i=1

Ai |==|
n∨
i=1

¬Ai.

These are called De Morgan’s Laws.

2. (A→ B) |==| (¬A ∨B)

3. (A↔ B) |==| ((A→ B) ∧ (B → A))

4. (A ∨B) |==| ((A→ B)→ B)

5. (φ ∧
∨n
i=1ψi) |==|

∨n
i=1(φ ∧ ψi)

(“∧ distributes over ∨”;
similarly, ∨ distributes over ∧.)
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5. Adequacy of the Connectives

The connectives ¬ (unary) and

→,∧,∨,↔ (binary) are the logical part of our

language for propositional calculus.

Question:

• Do we have “enough connectives”?

• That is, can we express everything which

is logically conceivable using only these

connectives?

• More precisely, is every possible truth

table implemented by some formula of

Lprop?

Answer: yes.
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5.1 Definition

(i) We denote by Vn the set of all functions

v : {p0, . . . , pn−1} → {T, F},
i.e. “partial” valuations assigning values
only to the first n propositional variables.
Note #Vn = 2n.

(ii) An n-ary truth function is a function

J : Vn → {T, F}.
There are precisely 22n such functions.

(iii) Let Formn(Lprop) be the set of formulas
which contain only propositional variables
from the set {p0, . . . , pn−1}.

Then any φ ∈ Formn(Lprop) determines
the truth function

Jφ : Vn → {T, F}
v 7→ ṽ(φ).

(So Jφ corresponds to the truth table for
φ.)
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5.2 Theorem

Our language Lprop is adequate,

i.e. for every n > 0 and every truth function

J : Vn → {T, F} there is some

φ ∈ Formn(Lprop) with Jφ = J.

Proof: Let J : Vn → {T, F} be any n-ary

truth function.

If J(v) = F for all v ∈ Vn take φ := (p0 ∧ ¬p0).

Then, for all v ∈ Vn: Jφ(v) = ṽ(φ) = F = J(v).

Otherwise let U := {v ∈ Vn | J(v) = T} 6= ∅.
For each v ∈ U and each i < n define the

formula

ψvi :=

{
pi if v(pi) = T
¬pi if v(pi) = F

and let ψv :=
∧n−1
i=0 ψ

v
i .
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Then for any valuation w ∈ Vn one has the

following equivalence (?):

w̃(ψv) = T iff
for all i < n :
w̃(ψvi ) = T

(by tt ∧)

iff w = v (by def. of ψvi )

Now define φ :=
∨
v∈U ψ

v.

Then for any valuation w ∈ Vn:

w̃(φ) = T iff for some v ∈ U : w̃(ψv) = T (by tt ∨)
iff for some v ∈ U : w = v (by (?))
iff w ∈ U
iff J(w) = T

Hence Jφ(w) = J(w) for all w ∈ Vn;

i.e. Jφ = J.

2
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5.3 Definition

(i) A formula which is a conjunction of pi’s

and ¬pi’s is called a conjunctive clause

- e.g. ψv in the proof of 5.2.

(ii) A formula which is a disjunction of

conjunctive clauses is said to be in

disjunctive normal form (‘dnf’)

- e.g. φ in the proof of 5.2.

So in fact the proof of 5.2 yields the

following stronger statement:
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5.4 Theorem - ‘The dnf-Theorem’

For any truth function

J : Vn → {T, F}

there is a formula φ ∈ Formn(Lprop) in dnf

with Jφ = J.

In particular, every formula is logically

equivalent to one in dnf.
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5.5 Definition

Suppose S is a set of (truth-functional)

connectives – so each s ∈ S is given by some

truth table.

(i) Write Lprop[S] for the language with

connectives S instead of {¬,→,∧,∨,↔}
and define Form(Lprop[S]) and

Formn(Lprop[S]) accordingly.

(ii) We say that S is adequate (or

truth-functionally complete) if for all

n ≥ 1 and for all n-ary truth functions J

there is some φ ∈ Formn(Lprop[S]) with

Jφ = J.
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5.6 Examples

1. S = {¬,∧,∨} is adequate, by the

dnf-Theorem.

2. Hence, by Lemma 4.2(i), S = {¬,∧} is

adequate:

(φ ∨ ψ) |==| ¬(¬φ ∧ ¬ψ)

Similarly, S = {¬,∨} is adequate:

(φ ∧ ψ) |==| ¬(¬φ ∨ ¬ψ)

3. We can express ∨ in terms of → (4.4.4),

so {¬,→} is adequate.

4. S = {∨,∧,→} is not adequate:

any φ ∈ Form(Lprop[S]) has T in the top

row of tt φ, so no such φ gives Jφ = J¬p0.

5. There are precisely two binary

connectives, say ↑ and ↓, such that

S = {↑} and S = {↓} are adequate.
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6. A deductive system for
propositional calculus

• We introduced ‘logical consequence’ –

Γ |= φ means: whenever (each formula

of) Γ is true, so is φ.

• But we don’t know yet how to give an

actual proof of φ from the hypotheses Γ.

• A proof of φ should be a finite sequence

φ1, φ2, . . . , φn of statements such that

φn = φ, and for each i = 1, . . . , n:

- either φi ∈ Γ,

- or φi is some axiom (which should

clearly be true),

- or φi should follow from previous φj’s

by some rule of inference.
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6.1 Definition

Let L0 := Lprop[{¬,→}] (which is an adequate

language). Then the system L0 consists of

the following axioms and rules:

Axioms

An axiom of L0 is any formula of the

following form (α, β, γ ∈ Form(L0)):

A1 (α→ (β → α))

A2 ((α→ (β → γ))→ ((α→ β)→ (α→ γ)))

A3 ((¬β → ¬α)→ (α→ β))

Rules of inference

Just one rule, modus ponens:

MP For any α, β ∈ Form(L0):

From α and (α→ β), infer β.

Lec 5 - 2/8



6.2 Definition
Let Γ ⊆ Form(L0).

• A finite sequence α1, . . . , αm ∈ Form(L0) is
a proof (or deduction/derivation) in L0
of αm from the hypotheses Γ
if for each i = 1, . . . ,m, at least one of the
following holds:

(a) αi is an axiom of L0.
(b) αi ∈ Γ.
(c) αi follows by MP from earlier formulas,

i.e. there are j, k < i such that
αj = (αk → αi).

• α ∈ Form(L0) is provable from Γ if there
is a proof α1, . . . , αm = α of α from Γ.

We denote this by:

Γ ` α.

In the case Γ = ∅, we just write

` α,
and we say that α is a theorem (of the
system L0).
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6.3 Example For any φ ∈ Form(L0)

(φ→ φ)

is a theorem of L0.

Proof:

α1 (φ→ (φ→ φ))
[A1 with α = β = φ]

α2 (φ→ ((φ→ φ)→ φ))
[A1 with α = φ, β = (φ→ φ)]

α3 ((φ→ ((φ→ φ)→ φ))
→ ((φ→ (φ→ φ))→ (φ→ φ)))

[A2 with α = φ, β = (φ→ φ), γ = φ]

α4 ((φ→ (φ→ φ))→ (φ→ φ))
[MP α2, α3]

α5 (φ→ φ)
[MP α1, α4]

Thus, α1, α2, . . . , α5 is a deduction of (φ→ φ)
in L0.

2
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6.4 Example

For any φ, ψ ∈ Form(L0):

{φ,¬φ} ` ψ

Proof:

α1 (¬φ→ (¬ψ → ¬φ))

[A1 with α = ¬φ, β = ¬ψ]

α2 ¬φ [∈ Γ]

α3 (¬ψ → ¬φ) [MP α1, α2]

α4 ((¬ψ → ¬φ)→ (φ→ ψ))

[A3 with α = φ, β = ψ]

α5 (φ→ ψ) [MP α3, α4]

α6 φ [∈ Γ]

α7 ψ [MP α5, α6]

2
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6.5 The Soundness Theorem for L0

L0 is sound, i.e. for any Γ ⊆ Form(L0) and

for any α ∈ Form(L0):

If Γ ` α then Γ |= α.

In particular, any theorem of L0 is a

tautology.

Proof:

We show by induction on m:

(?) If α has a proof of length m from Γ in L0,

then Γ |= α.

For m = 0, there is nothing to prove (no

proof has length 0).

So suppose m ≥ 1 and (?) holds for all

m′ < m, and suppose α1, . . . , αm is a proof in

L0. We have to show that Γ |= αm.
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Case 1: αm is an axiom.

One verifies by truth tables (exercise) that

our axioms are tautologies, so Γ |= αm.

Case 2: αm ∈ Γ.

Then Γ |= αm.

Case 3: αm is obtained by MP.

So say i, j < m and αj = (αi → αm).

By the inductive hypothesis,

since α1, . . . , αi is a proof of length i < m,

we have Γ |= αi.

Similarly Γ |= αj, i.e. Γ |= (αi → αm).

But {αi, (αi → αm)} |= αm by Lemma 3.4,

and it follows (from the definition of |=) that

Γ |= αm.

2
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For the proof of the converse

Completeness Theorem

If Γ |= α then Γ ` α.

we first prove

6.6 The Deduction Theorem for L0

For any Γ ⊆ Form(L0) and

for any α, β ∈ Form(L0):

If Γ ∪ {α} ` β then Γ ` (α→ β).
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6.6 The Deduction Theorem for L0

For any Γ ⊆ Form(L0) and

for any α, β ∈ Form(L0):

If Γ ∪ {α} ` β then Γ ` (α→ β).

Proof:

We prove by induction on m:

If α1, . . . , αm is a proof in L0 from Γ ∪ {α}
then Γ ` (α→ αi) for all i ≤ m.

For m = 0, this holds trivially. So suppose

m > 0.

IH: Holds for m− 1.

Then Γ ` (α→ αi) for i < m,

and we must show Γ ` (α→ αm).
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Case 1: αm is an Axiom

Then ` (α→ αm), indeed:

1 αm [Axiom]
2 (αm → (α→ αm)) [Instance of A1]
3 (α→ αm) [MP 1,2]

is a proof of (α→ αm) from hypotheses ∅.

Note generally that if ∆ ` ψ and ∆′ ⊇∆,

then also ∆′ ` ψ.

Thus Γ ` (α→ αm).

Case 2: αm ∈ Γ ∪ {α}
If αm ∈ Γ then same proof as above works

(with justification on line 1 changed to ‘∈ Γ’).

If αm = α, then, by Example 6.3, ` (α→ αm),

hence Γ ` (α→ αm).
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Case 3: αm is obtained by MP from some

earlier αj, αk, i.e. there are j, k < m such that

αj = (αk → αm).

By IH, we have

Γ ` (α→ αk)
and Γ ` (α→ αj),
i.e. Γ ` (α→ (αk → αm))
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So say

β1, . . . , βr−1, (α→ αk)

and

γ1, . . . , γs−1, (α→ (αk → αm))

are proofs in L0 from Γ.

Then

1 β1
... ...

r-1 βr−1
r (α→ αk)

r+1 γ1
... ...

r+s-1 γs−1
r+s (α→ (αk → αm))

r+s+1 ((α→ (αk → αm))→
((α→ αk)→ (α→ αm))) [A2]

r+s+2 ((α→ αk)→ (α→ αm)) [MP r+s, r+s+1]

r+s+3 (α→ αm) [MP r, r+s+2]

is a proof of (α→ αm) in L0 from Γ. 2
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6.7 Remarks

• Only needed instances of A1, A2 and the

rule MP.

So any system that includes A1, A2 and

MP satisfies the Deduction Theorem.

• Proof gives a precise algorithm for

converting any proof showing Γ ∪ {α} ` β
into one showing Γ ` (α→ β).

• Converse is easy:

If Γ ` (α→ β) then Γ ∪ {α} ` β.

Proof:
... ... proof from Γ
r α→ β

r+1 α [∈ Γ ∪ {α}]
r+2 β [MP r, r+1]

2
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6.8 Example of use of DT

If Γ ` (α→ β) and Γ ` (β → γ)

then Γ ` (α→ γ).

Proof:

By the deduction theorem (‘DT’), it suffices

to show that Γ ∪ {α} ` γ.

... ... proof from Γ
r (α→ β)

r+1 ...
... ... proof from Γ

r+s (β → γ)
r+s+1 α [∈ Γ ∪ {α}]
r+s+2 β [MP r, r+s+1]

r+s+3 γ [MP r+s, r+s+2]

2

From now on we may treat DT as an

additional inference rule in L0.
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6.9 Definition
The sequent calculus SQ is the system
where a proof (or derivation) of
φ ∈ Form(L0) from Γ ⊆ Form(L0) is a finite
sequence of sequents,
i.e. expressions of the form

∆ `SQ ψ

with ∆ ⊆ Form(L0),
such that Γ `SQ φ is the last sequent,
and each sequent is obtained from previous
sequents according to the following rules:

Ass: If ψ ∈∆ then infer ∆ `SQ ψ.

MP: From ∆ `SQ ψ and ∆′ `SQ (ψ → χ)
infer ∆ ∪∆′ `SQ χ.

DT: From ∆ ∪ {ψ} `SQ χ
infer ∆ `SQ (ψ → χ).

PC: From ∆ ∪ {¬ψ} `SQ χ
and ∆′ ∪ {¬ψ} `SQ ¬χ,
infer ∆ ∪∆′ `SQ ψ.
(‘PC’ stands for proof by contradiction.)

Note: no axioms.
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6.10 Example of a proof in SQ

1 ¬β `SQ ¬β [Ass]

2 (¬β → ¬α) `SQ (¬β → ¬α) [Ass]

3 (¬β → ¬α),¬β `SQ ¬α [MP 1,2]

4 α,¬β `SQ α [Ass]

5 (¬β → ¬α), α `SQ β [PC 3,4]

6 (¬β → ¬α) `SQ (α→ β) [DT 5]

7 `SQ ((¬β → ¬α)→ (α→ β)) [DT 6]

So `SQ A3.

Notation: To avoid confusion, we sometimes

write ‘Γ `L0
φ’ for ‘Γ ` φ in L0’

6.11 Theorem

L0 and SQ are equivalent, i.e. for all Γ, φ:

Γ `L0
φ iff Γ `SQ φ.

Proof: Omitted
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The following lemma is a key step in the

proof of 6.11; it shows that L0 implements

the rule (PC) of the sequence calculus. It is

the only place in the proof of the

completeness theorem where (A3) is used.

6.12 Lemma

For any α, β ∈ Form(L0),

` ((¬α→ ¬β)→ ((¬α→ β)→ α)).

Proof: Omitted.
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7. Consistency, Completeness and
Compactness

7.1 Definition

Γ ⊆ Form(L0) is inconsistent

if for some formula α,

Γ ` α and Γ ` ¬α.

Otherwise, Γ is consistent.

E.g. ∅ is consistent by soundness of L0,

since for no α are both α and ¬α tautologies.

7.2. Lemma

If Γ 6` φ then Γ ∪ {¬φ} is consistent.

Proof: Suppose Γ ∪ {¬φ} is inconsistent,

say Γ ∪ {¬φ} ` α and Γ ∪ {¬φ} ` ¬α.

Then by the deduction theorem,

Γ ` (¬φ→ α) and Γ ` (¬φ→ ¬α).

By 6.12 and MP twice, Γ ` φ.

2
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7.3 Lemma

Suppose Γ is consistent and Γ ` φ.

Then Γ ∪ {φ} is consistent.

Proof: Suppose not. Then for some α

Γ ∪ {φ} ` α
Γ ∪ {φ} ` ¬α

}
⇒DT

Γ ` (φ→ α)
Γ ` (φ→ ¬α)

Γ`φ⇒MP
Γ ` α
Γ ` ¬α ,

contradicting consistency of Γ.

2

7.4 Definition

Γ ⊆ Form(L0) is maximal consistent if

(i) Γ is consistent, and

(ii) for every φ, either Γ ` φ or Γ ` ¬φ.
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7.5 Theorem

Suppose Γ is consistent. Then there is a

maximal consistent Γ′ ⊇ Γ.

Proof:

Form(L0) is countable, say

Form(L0) = {φ1, φ2, φ3, . . .}.

Construct consistent sets

Γ0 ⊆ Γ1 ⊆ Γ2 ⊆ . . .

as follows:

• Γ0 := Γ.

• Given consistent Γn, let

Γn+1 :=

{
Γn ∪ {φn+1} if Γn ` φn+1
Γn ∪ {¬φn+1} if Γn 6` φn+1

Then Γn+1 is consistent by 7.3 and 7.2.
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Now let Γ′ :=
⋃∞
n=0 Γn.

Then Γ′ is consistent:

Any proof of Γ′ ` α and Γ′ ` ¬α would use

only finitely many formulas from Γ′, so for

some n, Γn ` α and Γn ` ¬α – contradicting

the consistency of Γn.

Finally, Γ′ is maximal consistent: for all n,

either φn ∈ Γ′ or ¬φn ∈ Γ′,
so in particular either Γ′ ` φn or Γ′ ` ¬φn.

2

(Note that this proof did not use Zorn’s

Lemma; countability of the language was

crucial for this.)
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7.6 Lemma

Suppose Γ is maximal consistent.

Then for every ψ, χ ∈ Form(L0):

(a) Γ ` ¬ψ iff Γ 6` ψ.

(b) Γ ` (ψ → χ) iff either Γ 6` ψ or Γ ` χ.

Proof:

(a) ‘⇒’: by consistency.

‘⇐’: by maximality.

(b) ‘⇒’: Suppose Γ ` (ψ → χ) but Γ ` ψ and Γ 6` χ.

By MP, Γ ` χ, contradicting consistency.

‘⇐’: Suppose Γ 6` ψ. Then Γ ` ¬ψ by (a).

Γ ` (¬ψ → (ψ → χ)) (Problem sheet 2 Q3)

⇒MP Γ ` (ψ → χ).

Suppose Γ ` χ.

Γ ` (χ→ (ψ → χ)) (Axiom A1)

⇒MP Γ ` (ψ → χ).

2
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7.7 Theorem

Suppose Γ is maximal consistent.

Then Γ is satisfiable.

Proof:

Define a valuation v by

v(pi) = T iff Γ ` pi.

Claim: for all φ ∈ Form(L0):

ṽ(φ) = T iff Γ ` φ.

Proof by induction on the length n of φ.

If n = 1, then φ = pi for some i and we are

done by the definition of v.
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Suppose n = length(φ) > 1.

IH: Claim true for all n′ < n.

Case 1: φ = ¬ψ

ṽ(φ) = T iff ṽ(ψ) = F tt ¬
iff Γ 6` ψ IH

iff Γ ` ¬ψ 7.6(a)

iff Γ ` φ

Case 2: φ = (ψ → χ)

ṽ(φ) = T iff ṽ(ψ) = F or ṽ(χ) = T tt →
iff Γ 6` ψ or Γ ` χ IH

iff Γ ` (ψ → χ) 7.6(b)

iff Γ ` φ

So ṽ(φ) = T for all φ ∈ Γ, i.e. v satisfies Γ.

2
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7.8 Corollary

Let Γ ⊆ Form(L0). Then

Γ is consistent if and only if Γ is satisfiable.

Proof:

⇒: By 7.5 + 7.7:

If Γ is consistent,

then by 7.5 it extends to a maximal

consistent set,

which by 7.7 is satisfiable,

hence also Γ is satisfiable.

⇐: By soundness:

Suppose Γ inconsistent,

say Γ ` α and Γ ` ¬α.

Then Γ |= α and Γ |= ¬α by soundness,

so Γ is not satisfiable.

2
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7.9 The Completeness Theorem

If Γ |= φ then Γ ` φ.

Proof:

Suppose Γ 6` φ.

⇒ by 7.2, Γ ∪ {¬φ} is consistent

⇒ by 7.8, Γ ∪ {¬φ} is satisfiable

⇒ there is some valuation v such that

ṽ(ψ) = T for ψ ∈ Γ, but ṽ(φ) = F

⇒ Γ 6|= φ. 2

7.10 Corollary

(7.9 Completeness + 6.5 Soundness)

Γ |= φ iff Γ ` φ
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7.11 The Compactness Theorem for L0

Γ ⊆ Form(L0) is satisfiable iff every finite

subset of Γ is satisfiable.

Proof: By 7.8, this is equivalent to:

Γ ⊆ Form(L0) is consistent iff every finite

subset of Γ is consistent.

But indeed, by finiteness of proofs,

Γ ` α and Γ ` ¬α iff already

Γ0 ` α and Γ0 ` ¬α for some finite Γ0 ⊆ Γ.

2
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PART II:

PREDICATE CALCULUS

So far:
• Logic of the connectives ¬,∧,∨,→,↔, . . .

(as used in mathematics).
• Logical validity in terms of truth tables.
• Found axioms and rule of inference

yielding a sound and complete proof
system. Deduced compactness.

Now:
• Look more deeply into the structure of

propositions used in mathematics.
• Analyse grammatically correct use of

functions, relations, constants, variables
and quantifiers.
• Define logical validity in this refined

language.
• Isolate axioms and rules of inference

(beyond those of propositional calculus)
used in mathematical arguments.
• Prove: soundness, completeness,

compactness.
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8. The language of (first-order)
predicate calculus

A countable first-order language L consists
of the following disjoint sets:

• for each k ≥ 1, a countable set of k-ary
predicate (or relation) symbols;
• for each k ≥ 1, a countable set of k-ary

function symbols;
• a countable set of constant symbols.

These symbols are called the non-logical
symbols of L.

The alphabet of L consists of its non-logical
symbols along with the following disjoint set
of logical symbols:

• Connectives: →,¬
• Quantifier: ∀ (‘for all’)
• Variables: x0, x1, x2, . . .

• 3 punctuation marks: , ( )
• Equality symbol:

.
=
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8.1 Definition

(a) The terms of L are defined recursively as
follows:
(i) Every variable is a term.
(ii) Every constant symbol is a term.
(iii) If f is a k-ary function symbol, and

t1, . . . , tk are terms, then so is the string

f(t1, . . . , tk).

(b) An atomic formula of L is any string of
the form

P (t1, . . . , tk) or t1
.

= t2

where k ≥ 1, P ∈ L is a k-ary relation
symbol, and all ti are terms.

(c) The formulas of L are defined recursively
as follows:
(i) Any atomic formula is a formula.
(ii) If φ, ψ are formulas, then so are ¬φ and

(φ→ ψ).
(iii) If φ is a formula, then for any variable

xi so is ∀xiφ.
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8.2 Examples The most general countable
language has a countably infinite set of
symbols of each type:

Lpred := {(P (k)
i )i,k>0, (f

(k)
i )i,k>0, (ci)i>0},

where each P
(k)
i is a k-ary predicate symbol,

each f
(k)
i is a k-ary function symbol,

and each ci is a constant symbol.

• The following are all Lpred-terms:

c3 x5 f
(1)
3 (c2) f

(2)
1 (x1, f

(1)
1 (c37))

• f(3)
2 (x1, x2) is not a term (wrong arity).

• P (3)
2 (x4, c2, f

(2)
3 (c1, x2)) and

f
(2)
1 (c5, x2)

.
= x3 are atomic formulas.

• ∀x1f
(2)
2 (x1, c7)

.
= x2 and ∀x2P

(1)
1 (x3) are

non-atomic formulas.

8.3 Exercise
We have unique readability for terms, for
atomic formulas, and for formulas.
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A more typical example of a language

appearing in mathematics is

Lo.ring := {<, ·,+,−,0,1},

where < is a binary relation symbol,

·, +, and − are binary function symbols,

and 0 and 1 are constant symbols.

We call this the language of ordered rings.

When dealing with binary symbols, we will

allow ourselves to use infix notation as an

abbreviation, so e.g.

∀x0 x0 < x0 + 1

abbreviates the Lo.ring-formula

∀x0 <(x0,+(x0,1)).
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8.4 Interpretations and logical validity

(Informal discussion)

• Consider the following {f}-formula, with f

a unary function symbol:

φ1 : ∀x1∀x2(x1
.

= x2 → f(x1)
.

= f(x2)).

Interpreting
.

= as equality, ∀ as ‘for all’,
and f as some unary function,
φ1 should always be true.
We write

|= φ1

and say ‘φ1 is logically valid’.

• Consider the following {g}-formula, with g

a binary function symbol:

φ2 : ∀x1∀x2(g(x1, x2)
.

= g(x2, x1)→ x1
.

= x2)

Then φ2 may be true or false, depending
on the situation:
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- If we interpret g as + on N,

then φ2 becomes false,

since e.g. 1+2=2+1, but 1 6= 2.

So in this interpretation, φ2 is false and

¬φ2 is true. Write

〈N; +〉 |= ¬φ2

- If we interpret g as subtraction on R,

then φ2 becomes true:

if x1 − x2 = x2 − x1, then 2x1 = 2x2, and

hence x1 = x2.

So

〈R;−〉 |= φ2
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8.5 Free and bound variables
(Informal discussion)

There is a further complication: Consider the
{P}-formula

φ3 : ∀x0P (x1, x0).

Specifying the interpretation is not enough to
determine whether or not φ3 holds.

For example, in 〈N;≤〉:
- If we put x1 = 0 then φ3 is true;
- if we put x1 = 2 then φ3 is false.

So it depends on the value we assign to x1
(like in propositional calculus: the truth value
of (p0 ∧ p1) depends on the valuation).

In φ3 we can assign a value to x1 because x1
occurs free in φ3.

For x0, however, it makes no sense to assign
a particular value; because x0 is bound in φ3
by the quantifier ∀x0.
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9. Interpretations and Assignments

9.1 Definition

Let L be a language. An interpretation of L
is an L-structure

A := 〈A; (fA)f∈Fct(L), (P
A)P∈Pred(L), (c

A)c∈Const(L)〉,

where:

• A is a non-empty set, the domain of A;

• For f ∈ L a k-ary function symbol,

fA : Ak → A is a k-ary function;

• For P ∈ L a k-ary predicate symbol,

PA is a k-ary relation on A, i.e. PA ⊆ Ak;

• For c ∈ L a constant symbol, cA ∈ A.
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9.2 Definition

Let L be a language and let A = 〈A; . . .〉 be

an L-structure.

(1) An assignment in A is a function

v : {x0, x1, . . .} → A

(2) v determines an assignment

ṽ = ṽA : Terms(L)→ A

defined recursively as follows:

(i) ṽ(xi) := v(xi) for all i = 0,1, . . .;

(ii) ṽ(c) := cA for each constant symbol

c ∈ L;

(iii) ṽ(f(t1, . . . , tk)) := fA(ṽ(t1), . . . , ṽ(tk))

for each k-ary function symbol f ∈ L.

(3) v determines a valuation

ṽ = ṽA : Form(L)→ {T, F}

as follows:
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Define ṽ on formulas recursively:

• On atomic formulas:

- For each k-ary predicate symbol P ∈ L
and for all ti ∈ Term(L):

ṽ(P (t1, . . . , tk)) =

{
T if (ṽ(t1), . . . , ṽ(tk)) ∈ PA
F otherwise.

- For all t1, t2 ∈ Term(L):

ṽ(t1
.

= t2) =

{
T if ṽ(t1) = ṽ(t2)
F otherwise.

• ṽ(¬ψ) = T iff ṽ(ψ) = F

• ṽ(ψ → χ) = T iff ṽ(ψ) = F or ṽ(χ) = T

• ṽ(∀xiψ) = T iff ṽ?(ψ) = T for all

assignments v? agreeing with v except

possibly at xi.

Notation: Write A |= φ[v] for ṽA(φ) = T ,

read ‘φ is true in A under the assignment v’.
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9.3 Example
Consider A = 〈Z; ·〉 as an {f}-structure (f a
binary function symbol). Let v be the
assignment v(xi) = i(∈ Z) for i = 0,1, . . ., and
let

φ = ∀x0∀x1(f(x0, x2)
.

= f(x1, x2)→ x0
.

= x1)

Then A |= φ[v]; indeed:

A |= φ[v]
iff for all v? with v?(xi) = i for i 6= 0
A |= ∀x1(f(x0, x2)

.
= f(x1, x2)→ x0

.
= x1)[v?]

iff for all v?? with v??(xi) = i for i 6= 0,1
A |= (f(x0, x2)

.
= f(x1, x2)→ x0

.
= x1)[v??]

iff for all v?? with v??(xi) = i for i 6= 0,1
v??(x0) · v??(x2) = v??(x1) · v??(x2)
implies v??(x0) = v??(x1)

iff for all a, b ∈ Z, a · 2 = b · 2 implies a = b,
which is true.

However, with v′(xi) = 0 for all i, we would
have finished with
... iff for all a, b ∈ Z, a · 0 = b · 0 implies a = b,
which is false. So A 6|= φ[v′].
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9.4 Example

Let P be a unary predicate symbol, L = {P},
A an L-structure,

φ = (∀x0P (x0)→ P (x1)),

and v any assignment in A. Then A |= φ[v].

Proof:

A |= φ[v] iff

A |= ∀x0P (x0)[v] implies A |= P (x1)[v].

Now suppose A |= ∀x0P (x0)[v]. Then for all

v? which agree with v except possibly at x0,

A |= P (x0)[v?].

In particular, for v?(xi) =

{
v(xi) if i 6= 0
v(x1) if i = 0

we have PA(v?(x0)), and hence v(x1) ∈ PA,

i.e. A |= P (x1)[v]. 2
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9.5 Definition

Let L be a language.

• An L-formula φ is logically valid (‘|= φ’)

if A |= φ[v] for all L-structures A and for

all assignments v in A.

• φ ∈ Form(L) is satisfiable if A |= φ[v] for

some L-structure A and for some

assignment v in A.

• For Γ ⊆ Form(L) and φ ∈ Form(L),

φ is a logical consequence of Γ, written

Γ |= φ, if for all L-structures A and for all

assignments v in A with A |= ψ[v] for all

ψ ∈ Γ, also A |= φ[v].

• φ, ψ ∈ Form(L) are logically equivalent if

{φ} |= ψ and {ψ} |= φ.

Example: |= φ for φ from Example 9.4.
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Note:

The symbol ‘|=’ is now used in two ways:

• Γ |= φ means: φ is a logical consequence

of Γ.

• A |= φ[v] means: φ is satisfied in the

L-structure A under the assignment v.

This shouldn’t give rise to confusion, since it

will always be clear from the context whether

there is a set Γ of L-formulas or an

L-structure A in front of ‘|=’.
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9.6 Some abbreviations

We use . . . as abbreviation for . . .
(α ∨ β) ((α→ β)→ β)
(α ∧ β) ¬(¬α ∨ ¬β)
(α↔ β) ((α→ β) ∧ (β → α))
∃xiφ ¬∀xi¬φ

9.7 Lemma

For any L-structure A and any assignment v

in A one has

A |= (α ∨ β)[v] iff A |= α[v] or A |= β[v]
A |= (α ∧ β)[v] iff A |= α[v] and A |= β[v]
A |= (α↔ β)[v] iff ṽ(α) = ṽ(β)
A |= ∃xiφ[v] iff for some assignment

v? agreeing with v
except possibly at xi
A |= φ[v?]

Proof: Easy exercise.
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10. Free and bound variables

Recall Example 9.3: The formula

φ = ∀x0∀x1(f(x0, x2)
.

= f(x1, x2)→ x0
.

= x1)

• is true in 〈Z; ·〉 under any assignment v

with v(x2) = 2,

• but false when v(x2) = 0.

Whether or not A |= φ[v] depends on v(x2)

but not on v(x0) or v(x1).

This is because all occurrences of x0 and x1

in φ are subordinate to the corresponding

quantifiers ∀x0 and ∀x1.

We say that these occurrences are bound,

while the occurrence of x2 is free.
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10.1 Definition
Let L be a first-order language, φ an
L-formula, and x ∈ {x0, x1, . . .} a variable.

An occurrence of x in φ is free, if
(i) φ is atomic; or

(ii) φ = ¬ψ resp. φ = (χ→ ρ),
and the occurrence of x is free in ψ resp.
in χ or in ρ; or

(iii) φ = ∀xiψ, and x 6= xi, and the occurrence
of x is free in ψ.

The variables which occur free in φ are called
the free variables of φ,
Free(φ) := {xi : xi occurs free in φ}.

An occurrence which is not free is bound.
In particular, if φ = ∀xiψ, then any occurrence
of xi in φ is bound.

10.2 Example

(∃x0P ( x0︸︷︷︸
bnd

, x1︸︷︷︸
free

)∨∀x1(P ( x0︸︷︷︸
free

, x1︸︷︷︸
bnd

)→ ∃x0P ( x0︸︷︷︸
bnd

, x1︸︷︷︸
bnd

)))
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10.3 Lemma

Let L be a language, let A be an L-structure,
let v1, v2 be assignments in A, and let φ be

an L-formula.

Suppose v1(xi) = v2(xi) for every variable xi
with a free occurrence in φ.

Then

A |= φ[v1] iff A |= φ[v2].

Proof:

For φ atomic: exercise.

Now use induction on the length of φ.

If φ = ¬ψ or φ = (χ→ ρ), this is

straightforward.
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So say φ = ∀xiψ.
IH: Assume the Lemma holds for ψ.

Suppose A |= ∀xiψ[v1]. (?)
We want to show A |= ∀xiψ[v2]. So suppose
v?2 agrees with v2 except possibly at xi;
we want to show A |= ψ[v?2].

Let v?1(xj) :=

{
v1(xj) if j 6= i
v?2(xi) if j = i

Then v?1 agrees with v1 except possibly at xi.
So by (?), A |= ψ[v?1].

Now suppose xj occurs free in ψ.
We show v?2(xj) = v?1(xj).
If j = i, this is by definition of v?1.
If j 6= i, then xj occurs free in φ, so

v?2(xj) = v2(xj) = v1(xj) = v?1(xj).

So by IH, A |= ψ[v?2], as required

2
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10.4 Corollary
Let L be a language, and let α, β ∈ Form(L).
Assume the variable xi has no free occurrence
in α (i.e. xi /∈ Free(α)). Then

|= (∀xi(α→ β)→ (α→ ∀xiβ)).

Proof:
Let A be an L-structure and let v be an
assignment in A such that
A |= ∀xi(α→ β)[v]. (?)

To show: A |= (α→ ∀xiβ)[v].

So suppose A |= α[v].
To show: A |= ∀xiβ[v].

So let v? be an assignment agreeing with v

except possibly at xi.
To show: A |= β[v?].

xi is not free in α ⇒10.3 A |= α[v?]
(?) ⇒ A |= (α→ β)[v?]
⇒ A |= β[v?]. 2
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10.5 Definition

A formula σ with no free (occurrences of)

variables is called a statement or a

sentence.

Then (by 10.3) for any L-structure A,

whether or not A |= σ[v] does not depend on

the choice of assignment v.

So we write

A |= σ

if A |= σ[v] for some/all v.

Say: σ is true in A, or A is a model of σ.

(; ‘Model Theory’)

Lec 10 - 6/9



10.6 Example

Let L = {f, c} be a language, where f is a

binary function symbol, and c is a constant

symbol.

Consider the sentences (writing x, y, z for

x0, x1, x2)

σ1 : ∀x∀y∀zf(x, f(y, z))
.

= f(f(x, y), z)
σ2 : ∀x∃y(f(x, y)

.
= c ∧ f(y, x)

.
= c)

σ3 : ∀x(f(x, c)
.

= x ∧ f(c, x)
.

= x)

and let σ = (σ1 ∧ σ2 ∧ σ3)

Let A = 〈A; ·, e〉 be an L-structure (i.e. · is an

interpretation of f , and e is an interpretation

of c).

Then A |= σ iff A is a group.
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10.7 Example

Let L = {E} with E a binary relation symbol.

Consider

τ1 : ∀xE(x, x)
τ2 : ∀x∀y(E(x, y)↔ E(y, x))
τ3 : ∀x∀y∀z(E(x, y)→ (E(y, z)→ E(x, z)))

Then for any L-structure 〈A;R〉:
〈A;R〉 |=

∧
i τi iff R is an equivalence relation

on A.

Note: Many mathematical concepts can be

naturally expressed by first-order formulas.
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10.8 Example

Let < be a binary predicate symbol,
L := {<}. Consider the sentence

σ := ∀x∀y∀z (¬x < x

∧ (x < y ∨ x .
= y ∨ y < x)

∧ ((x < y ∧ y < z)→ x < z)

∧ (x < y → ∃w (x < w ∧ w < y))

∧ ∃w w < x

∧ ∃w x < w).

This axiomatises a dense linear order

without endpoints. In particular, 〈Q;<〉 |= σ

and 〈R;<〉 |= σ.

But: ‘Completeness’ of 〈R;<〉 is not captured
by the first-order language L, but rather in
second-order terms, meaning that we also
allow quantification over subsets of R:

∀A,B ⊆ R(A < B → ∃c ∈ R(A ≤ {c} ≤ B)),

writing A < B to mean that a < b for every
a ∈ A and every b ∈ B, similarly for A ≤ B.
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11. Substitution

Discussion: Let A be an L-structure,

φ ∈ Form(L), and suppose A |= ∀xiφ.

If c is a constant symbol in L, then

A |= φ[c/xi] where φ[c/xi] is the result of

replacing each free instance of xi in φ with c.

We would like to say more generally that

|= ∀xiφ→ φ[t/xi]

for a term t, but we have to be careful:
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11.1 Example

Let L contain a constant symbol c, and let

φ := ∃x0¬x0
.

= x1.

Then A |= ∀x1φ for any L-structure A with at

least two elements,

and then also A |= φ[c/x1] = ∃x0¬x0
.

= c.

However, if were to define φ[x0/x1] in the

same way, we would obtain ∃x0¬x0
.

= x0,

which does not hold in any A.

Problem: the variable x0 has become bound

in the substitution.
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11.2 Definition

For φ ∈ Form(L), a variable xi, and a term

t ∈ Term(L), the result of substituting t for

xi in φ is the formula

(φ)[t/xi]

which is obtained by replacing each free

occurrence of xi in φ with the string t,

as long as this does not lead to new bound

occurrences of variables being introduced;

if it does, we say that (φ)[t/xi] is undefined.

We can restate this as a recursive definition:
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(i) If φ is atomic, (φ)[t/xi] is the result of

replacing each instance of xi in φ with t.

(ii) (¬ψ)[t/xi] := ¬(ψ)[t/xi]

(undefined if (ψ)[t/xi] is).

(iii) ((ψ → χ))[t/xi] := ((ψ)[t/xi]→ (χ)[t/xi])

(undefined if (ψ)[t/xi] or (χ)[t/xi] is).

(iv) (∀xiψ)[t/xi] := ∀xiψ.

(v) If j 6= i, (∀xjψ)[t/xi] := ∀xj(ψ)[t/xi] unless

xj occurs in t and xi occurs free in ψ, in

which case (∀xjψ)[t/xi] is undefined.

Notation: When no ambiguity could result,

we often write φ[t/xi] for (φ)[t/xi].
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Let L be a first-order language, A an

L-structure.

11.3 Definition

For v an assignment in A and t ∈ Term(L),

define

vt/xi(xj) :=

{
v(xj) if j 6= i
ṽ(t) if j = i

11.4 Substitution Lemma

Let v be an assignment in an L-structure A.

Let φ ∈ Form(L), t ∈ Term(L), and suppose

φ[t/xi] is defined.

Then A |= φ[t/xi][v] iff A |= φ[vt/xi] .
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Proof:

Case 1 φ atomic:

First, for u ∈ Term(L) define:

u[t/xi] := the term obtained by replacing

each occurrence of xi in u by t.

Then ṽt/xi(u) = ṽ(u[t/xi]).

(Exercise)

Now if φ = P (t1, . . . , tk) for a k-ary relation

symbol P in L, then:

A |= φ[vt/xi]

iff (ṽt/xi(t1), . . . , ṽt/xi(tk)) ∈ PA

iff (ṽ(t1[t/xi]), . . . , ṽ(tk[t/xi])) ∈ PA
iff A |= P (t1[t/xi], . . . , tk[t/xi])[v]
iff A |= φ[t/xi][v]

If φ = t1
.

= t2, a similar argument applies.
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IH: Lemma holds for shorter formulas.

Case 2 φ = ¬ψ or φ = (ξ → ρ):

Follows directly from IH.

Case 3 φ = ∀xiψ:

Then φ[t/xi] = φ.

xi /∈ Free(φ),

so v and vt/xi agree on all x ∈ Free(φ),

so by Lemma 10.3,

A |= φ[vt/xi] iff A |= φ[v] iff A |= φ[t/xi][v]

as required.
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Case 4 φ = ∀xjψ, j 6= i:
Then φ[t/xi] = ∀xj(ψ)[t/xi].
If xi does not occur free in ψ, then
φ[t/xi] = φ, and we conclude exactly as in the
previous case.
So suppose xi occurs free in ψ.
Then since φ[t/xi] is defined, xj does not
occur in t. Hence:

Claim: If v∗ agrees with v except maybe at
xj, then ṽ∗(t) = ṽ(t), so v∗t/xi

agrees with vt/xi
except maybe at xj.
Conversely, if v′ agrees with vt/xi except
maybe at xj then v′ = v∗t/xi

for some such v∗.

Now: A |= φ[t/xi][v]
⇔ A |= ∀xj(ψ)[t/xi][v]
⇔ A |= ψ[t/xi][v

∗] for all v∗ agreeing with v
except maybe at xj,
⇔ A |= ψ[v∗t/xi

] for all v∗ agreeing with v
except maybe at xj (by IH),
⇔ A |= ψ[v′] for all v′ agreeing with vt/xi
except maybe at xj (by the Claim),
⇔ A |= φ[vt/xi].
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11.5 Corollary

For any φ ∈ Form(L) and t ∈ Term(L) such

that φ[t/xi] is defined,

|= (∀xiφ→ φ[t/xi]).

Proof: Let v be an assignment in an

L-structure A.

Suppose A |= ∀xiφ[v].

Then A |= φ[vt/xi], since vt/xi agrees with v

except maybe at xi.

Hence A |= φ[t/xi][v] by the Substitution

Lemma (11.4).

2
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12. A formal system for Predicate
Calculus

12.1 Definition

Associate to each first-order language L the

formal system K(L) with the following

axioms and rules:

Axioms

For any α, β, γ ∈ Form(L), t ∈ Term(L), and

i, j ∈ N, the following are axioms:

A1 (α→ (β → α)).

A2 ((α→ (β → γ))→ ((α→ β)→ (α→ γ))).

A3 ((¬β → ¬α)→ (α→ β)).

A4 (∀xiα→ α[t/xi]) if α[t/xi] is defined.

A5 (∀xi(α→ β)→ (α→ ∀xiβ)) if xi 6∈ Free(α).

A6 ∀xi xi
.

= xi.

A7 (xi
.

= xj → (φ→ φ′)), where φ is atomic

and φ′ is obtained from φ by replacing

some (i.e. one or more) occurrences of xi
in φ by xj.
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Rules
MP (Modus Ponens): From α and (α→ β)

infer β.
Gen (Generalisation): For any variable xi, from

α infer ∀xiα.

Let Sent(L) be the set of L-sentences.

If Σ ⊆ Sent(L), a formula φ ∈ Form(L) is
provable from hypotheses Σ, written

Σ ` φ,
if there is a sequence of L-formulas (a
derivation or proof) φ1, . . . , φn with φn = φ

such that for each i ≤ n:

• (A1-A7) φi is an axiom, or
• (Hyp) φi ∈ Σ, or
• (MP) φk = (φj → φi) for some j, k < i, or
• (Gen) φi = ∀xkφj for some j < i and some
k ∈ N.

` φ abbreviates ∅ ` φ.
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12.3 Example Swapping variables

Suppose Free(φ) = {xi}.
Then {∀xiφ} ` ∀xjφ[xj/xi]

1 ∀xiφ [∈ Σ]

2 (∀xiφ→ φ[xj/xi]) [A4]

3 φ[xj/xi] [MP 1,2]

4 ∀xjφ[xj/xi] [(Gen)]
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12.4 Soundness Theorem for Pred. Calc.

If Σ ` φ then Σ |= φ.

Proof: By induction on length of a proof.

First we show that A1-A7 are logically valid.

For A1, A2, and A3, this is immediate.

A4 and A5: Cor 11.5 resp. Cor 10.4.

A6: easy exercise.

A7: Suppose φ is atomic, and φ′ results from

replacing some instances of xi with xj.

Let A be an L-structure and v an assignment

in A such that

A |= xi
.

= xj[v] and A |= φ[v].

We want to show that A |= φ′[v].

Now v(xi) = v(xj),

so ṽ(t′) = ṽ(t) for any term t′ obtained from t

by replacing zero or more occurrences of xi
by xj
(easy induction on terms).
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If φ = P (t1, . . . , tk) then say φ′ = P (t′1, . . . , t
′
k).

A |= φ[v] iff (ṽ(t1), . . . , ṽ(tk)) ∈ PA
iff (ṽ(t′1), . . . , ṽ(t′k)) ∈ PA
iff A |= P (t′1, . . . , t

′
k)[v]

iff A |= φ′[v] as required

Similarly if φ is t1
.

= t2.

MP: For any A and v:

if A |= α[v] and A |= (α→ β)[v] then A |= β[v];

so: if Σ |= α and Σ |= (α→ β) then Σ |= β.

Generalisation:
Suppose Σ |= ψ;
we want to show Σ |= ∀xiψ.

So let A be such that A |= σ for all σ ∈ Σ,
and let v be an arbitrary assignment on A.
We must show A |= ∀xiψ[v].
So let v? agree with v except maybe at xi.
We must show A |= ψ[v?].
But since Σ |= ψ, we have A |= ψ[v′] for any
assignment v′, in particular for v∗. 2
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12.5 Deduction Theorem for Pred. Calc.

Let Σ ⊆ Sent(L), and ψ ∈ Sent(L), and

φ ∈ Form(L).

If Σ ∪ {ψ} ` φ then Σ ` (ψ → φ).

Proof: Same as for prop. calc. (Theorem

6.6); induction on the length of a proof, with

one more case:

IH: Σ ` (ψ → φj)

to show: Σ ` (ψ → ∀xiφj),

where generalisation (Gen) has been used to

infer ∀xiφj from φj.

By IH and Gen: Σ ` ∀xi(ψ → φj)

A5 ` (∀xi(ψ → φj)→ (ψ → ∀xiφj)), since

xi 6∈ Free(ψ) = ∅.
So by MP, Σ ` (ψ → ∀xiφj) as required.

2
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12.6 Lemma

Let α be a tautology of the Propositional
Calculus with propositional variables among
p0, . . . , pn, let ψ0, . . . , ψn ∈ Form(L),
and let α′ be the L-formula obtained from α

by replacing each occurrence of pi by ψi.
Then ` α′.

Proof:

By completeness of L0, there is a proof
α1, ..., αn−1, α in L0.

Since A1, A2, A3 and MP are in K(L),
substituting ψi for pi in each αi yields a proof
α′1, ..., α

′
n−1, α

′ in K(L). 2

A formula α′ as in Lemma 12.6 is called a
tautology of L. (Note that all tautologies
are logical validities, but not vice versa.)

By the lemma, we may freely introduce
tautologies in our proofs in K(L).
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12.7 Example Suppose

(∃xiφ→ ψ) ∈ Sent(L). Then

{(∃xiφ→ ψ)} ` ∀xi(φ→ ψ)

Proof: Let Σ = {(∃xiφ→ ψ),¬ψ}

1 (¬∀xi¬φ→ ψ) [∈ Σ]

2 ((¬∀xi¬φ→ ψ)→ (¬ψ → ∀xi¬φ)) [taut.]

3 (¬ψ → ∀xi¬φ) [MP 1,2]

4 ¬ψ [∈ Σ]

5 ∀xi¬φ [MP 3,4]

6 (∀xi¬φ→ ¬φ) [A4]

7 ¬φ [MP 5,6]

(In line 6, we used that (¬φ)[xi/xi] = ¬φ.)

Hence Σ ` ¬φ. So

(∃xiφ→ ψ) ` (¬ψ → ¬φ) [DT]

(∃xiφ→ ψ) ` (φ→ ψ) [A3, MP]

(∃xiφ→ ψ) ` ∀xi(φ→ ψ) [Gen]

2
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13. The Completeness Theorem for
Predicate Calculus

Let L be a countable first-order language.

13.1 Theorem (Gödel)

Let Σ ⊆ Sent(L) and φ ∈ Form(L).

If Σ |= φ then Σ ` φ.

Here, Σ ` φ means that φ is provable from

hypotheses Σ in the proof system K(L).

In outline, our proof strategy is much as in

the propositional case:

• Reduce to: consistent ⇒ satisfiable.

• Show: any consistent Σ extends to

“maximal consistent witnessing” Σ′.
• Show: maximal consistent witnessing ⇒

satisfiable.
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Call Σ ⊆ Sent(L) consistent (in K(L)) if for

no τ ∈ Sent(L) do we have both

Σ ` τ and Σ ` ¬τ .

Remark

If Σ is inconsistent, then Σ ` χ for any

χ ∈ Sent(L), since (τ → (¬τ → χ)) is a

tautology.

13.2 Lemma

Every consistent set of sentences has a

model.

i.e. if Σ ⊆ Sent(L) is consistent then for

some L-structure A,

A |= σ for every σ ∈ Σ.

c.f. Lemma 7.8.
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Proof of Theorem 13.1 from Lemma 13.2

First we treat the case of a sentence

σ ∈ Sent(L).

Σ |= σ ⇒ Σ ∪ {¬σ} has no model

⇒(13.2) Σ ∪ {¬σ} is not consistent

⇒ Σ ∪ {¬σ} ` τ and Σ ∪ {¬σ} ` ¬τ for some τ

⇒DT Σ ` (¬σ → τ) and Σ ` (¬σ → ¬τ).

But Σ ` ((¬σ → τ)→ ((¬σ → ¬τ)→ σ)) [taut]

⇒ Σ ` σ [MP twice]

Now let φ ∈ Form(L), and say

Free(φ) = {xi1, ..., xin}.
Let σ := ∀xi1...∀xinφ.

If Σ |= φ then Σ |= σ, so Σ ` σ by the above.

But then by repeatedly applying (A4) and

(MP), we obtain Σ ` φ, as required.

213.2 ⇒ 13.1
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To prove Lemma 13.2, we want to introduce

an additional assumption.

13.2’ Lemma:

Suppose Σ ⊆ Sent(L) is consistent and L
contains infinitely many constant symbols not

appearing in Σ. Then Σ has a model.

We deduce Lemma 13.2 for arbitrary L and Σ

from Lemma 13.2’ as follows.

Let C = {c0, c1, ...} be a set of distinct

symbols disjoint from L, and define the

extended language L′ := L ∪ C in which each

ci is a constant symbol.
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13.3 Lemma

If Σ ⊆ Sent(L) and τ ∈ Sent(L) is provable

from Σ in K(L′), then τ is provable from Σ in

K(L).

Proof

Exercise sheet 4, Question 3(b). 2

Proof of Lemma 13.2 from Lemma 13.2’:

By Lemma 13.3, since Σ ⊆ Sent(L) is

consistent in K(L), it is also consistent in

K(L′);

indeed, otherwise (via the tautology

(τ → (¬τ → χ))) any χ ∈ Sent(L) is provable

from Σ in K(L′) and hence in K(L),

contradicting consistency in K(L).

By Lemma 13.2’ applied with L′ in place of

L, there is an L′-structure A′ satisfying Σ.

Let A be the L-structure obtained from A′ by

“forgetting” the new constants C.

Then A satisfies Σ, as required. 213.2’ ⇒ 13.2
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13.4 Definition

• Σ ⊆ Sent(L) is called maximal
consistent if Σ is consistent, and for any
ψ ∈ Sent(L): Σ ` ψ or Σ ` ¬ψ.

• Σ ⊆ Sent(L) is called witnessing if for all
ψ ∈ Form(L) with Free(ψ) ⊆ {xi} and such
that Σ ` ∃xiψ, there is some constant
symbol c ∈ L such that Σ ` ψ[c/xi]

To prove Lemma 13.2’, it suffices to prove
the following two lemmas:

13.5 Lemma
Every maximal consistent witnessing set
Σ ⊆ Sent(L) has a model.

13.6 Lemma
If Σ ⊆ Sent(L) is consistent and L contains
infinitely many constant symbols not
appearing in Σ, then Σ extends to a maximal
consistent witnessing set Σ′ ⊆ Sent(L).
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For the proof of 13.6 we need two further

lemmas.

13.7 Lemma

If Σ ⊆ Sent(L) is consistent, then for any

sentence ψ, either Σ ∪ {ψ} or Σ ∪ {¬ψ} is

consistent.

Proof: Exercise – as in the proof of Theorem

7.5. 2.
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13.8 Lemma

Assume Σ ⊆ Sent(L) is consistent, and

Σ ` ∃xiψ ∈ Sent(L), and c is a constant

symbol of L which does not occur in ψ nor in

any σ ∈ Σ.

Then Σ ∪ {ψ[c/xi]} is consistent.

Proof:

It suffices to show that if c does not occur in

χ ∈ Sent(L) and Σ ∪ {ψ[c/xi]} ` χ,

then already Σ ` χ. Indeed:

If Σ ∪ {ψ[c/xi]} were inconsistent then (via

the tautology (α→ (¬α→ β))) we would have

for any χ that Σ ∪ {ψ[c/xi]} ` χ and

Σ ∪ {ψ[c/xi]} ` ¬χ;

picking χ in which c does not occur, it would

follow that Σ ` χ and Σ ` ¬χ, contradicting

consistency of Σ.
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So suppose Σ ∪ {ψ[c/xi]} ` χ ∈ Sent(L) and c

does not occur in χ. Recall we also assumed

that c does not occur in Σ or ψ.

By DT, Σ ` (ψ[c/xi]→ χ)

It follows that Σ ` (ψ → χ)

(Exercise Sheet 4 Question 3(a)).

By Gen, Σ ` ∀xi(ψ → χ).

It follows that Σ ` (∃xiψ → χ)

(Exercise Sheet 4 Question 2).

But we assumed Σ ` ∃xiψ,

so by MP, Σ ` χ, as required.

213.8
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Proof of 13.6:

Let Σ ⊆ Sent(L) be consistent, and suppose

L contains infinitely many constant symbols

not appearing in Σ.

We show that Σ extends to a maximal

consistent witnessing set.

Sent(L) is countable; say

Sent(L) = {τ1, τ2, τ3, . . .}.

Construct finite sets ∆i ⊆ Sent(L)

∆0 ⊆∆1 ⊆∆2 ⊆ . . .

such that Σ ∪∆n is consistent for each n ≥ 0,

as follows:
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Let ∆0 := ∅. Then Σ ∪∆0 = Σ is consistent.

If ∆n has been constructed let

∆′n :=


∆n ∪ {τn+1} if Σ ∪∆n ∪ {τn+1}

is consistent
∆n ∪ {¬τn+1} otherwise.

Then Σ ∪∆′n is consistent by Lemma 13.7.

If ¬τn+1 ∈∆′n or if τn+1 is not of the form
∃xiψ, let ∆n+1 := ∆′n.

Otherwise, i.e. if τn+1 = ∃xiψ ∈∆′n:
Choose a constant symbol c ∈ L which occurs
in no formula in Σ ∪∆′n ∪ {ψ}
(possible since ∆′n ∪ {ψ} is finite).
Let ∆n+1 := ∆′n ∪ {ψ[c/xi]}.
By Lemma 13.8, Σ ∪∆n+1 is consistent.

Let Σ′ := Σ ∪
⋃
n≥0 ∆n.

Then Σ′ is maximal consistent (as in 7.5),
and Σ′ is witnessing by construction.

213.6
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To finish the proof of completeness, it

remains to prove:

13.5 Lemma

Every maximal consistent witnessing set

Σ ⊆ Sent(L) has a model.

Proof:

A term is closed if no variable appears in it.

Let T be the set of closed L-terms.

Define an equivalence relation E on T by

t1Et2 iff Σ ` t1
.

= t2

(This is an equivalence relation – see Sheet 4

Question 1(b).)

Let T/E be the set of equivalence classes t/E

for t ∈ T .
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Define an L-structure A with domain T/E by

cA := c/E

fA(t1/E, . . . , tk/E) := f(t1, . . . , tk)/E

PA := {(t1/E, ..., tk/E) | Σ ` P (t1, . . . , tk)}

(for c a constant symbol, f a k-ary function

symbol, and P a k-ary predicate symbol).

Note: tA = t/E for any t ∈ T .

Exercise: The definitions above do not

depend on representatives, i.e. if ti/E = t′i/E
for i = 1, . . . k then:

• f(t1, . . . , tk)/E = f(t′1, . . . , t
′
k)/E

• Σ ` P (t1, . . . , tk)⇔ Σ ` P (t′1, . . . , t
′
k)

This follows from A7 and A4; see Sheet 4

Question 1(c).



We conclude by showing: A |= Σ.

We show more generally that for any

σ ∈ Sent(L),

A |= σ iff Σ ` σ.

We prove this by induction on the number of

symbols among {¬,→, ∀} in σ.

• σ = P (t1, ..., tk). Then:

A |= σ ⇔ (tA1 , ..., t
A
k ) ∈ PA

⇔ (t1/E, ..., tk/E) ∈ PA

⇔ Σ ` σ.

• σ = t1
.

= t2. Then:

A |= σ ⇔ tA1 = tA2
⇔ t1/E = t2/E

⇔ Σ ` σ.
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• σ = ¬τ :

A |= ¬τ
iff A 6|= τ [def. of ‘|=’]

iff Σ 6` τ [IH]

iff Σ ` ¬τ [Σ max. cons.]

• σ = (τ → ρ):

A |= (τ → ρ)
iff A 6|= τ or A |= ρ [def. ‘|=’]

iff Σ 6` τ or Σ ` ρ [IH]

iff not (Σ ` τ and Σ 6` ρ)
iff not (Σ ` τ and Σ ` ¬ρ) [Σ max. cons.]

iff Σ 6` ¬(τ → ρ) [taut. (see below)]

iff Σ ` (τ → ρ) [Σ max. cons.]

where the penultimate line uses the

following tautologies:

(τ → (¬ρ→ ¬(τ → ρ)))

(¬(τ → ρ)→ τ)

(¬(τ → ρ)→ ¬ρ).
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• σ = ∀xiφ:

By the Substitution Lemma 11.4,

A |= φ[t/xi]⇔ A |= φ[vt] where vt is any

assignment with vt(xi) = tA = t/E.

So since the domain of A is T/E,

A |= ∀xiφ iff for all t ∈ T , A |= φ[t/xi].

Now for t ∈ T : φ[t/xi] ∈ Sent(L), so by IH,

A |= φ[t/xi] iff Σ ` φ[t/xi].

So to show Σ ` ∀xiφ iff A |= ∀xiφ, it

suffices to show:

Σ ` ∀xiφ iff for all t ∈ T , Σ ` φ[t/xi].
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We prove:
Σ ` ∀xiφ iff for all t ∈ T , Σ ` φ[t/xi].

⇒: A4 + MP.

For the converse, first note:

{∀xi¬¬φ} ` ∀xiφ; (?)

indeed, by A4 we have {∀xi¬¬φ} ` ¬¬φ;
conclude using the tautology (¬¬φ→ φ) and
Gen.

Now suppose Σ 6` ∀xiφ.
Then Σ 6` ∀xi¬¬φ, by (?).
So by maximality, Σ ` ¬∀xi¬¬φ,
i.e. Σ ` ∃xi¬φ.
Since Σ is witnessing, Σ ` (¬φ)[c/xi] for some
constant symbol c.
Then since Σ is consistent, Σ 6` φ[c/xi].
But c ∈ T , so it is not the case that for all
t ∈ T , Σ ` φ[t/xi]. 213.5

This concludes our proof of the Completeness
Theorem 13.1.
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In fact, our proof of completeness yields a

stronger result.

13.9 Definition: A structure is countable if

its domain is countable (i.e. finite or

countably infinite).

The model constructed in Lemma 13.5 is

countable, because the set T of closed terms

is, so we have actually proven the following

strengthening of Lemma 13.2:

13.10 Weak downwards

Löwenheim-Skolem Theorem

Every consistent set of sentences has a

countable model.
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Exactly as in the propositional case, we

deduce compactness from completeness and

soundness.

13.11 Compactness Theorem:

A set of sentences Σ ⊆ Sent(L) has a model

if and only if every finite subset Σ0 ⊆fin Σ has

a model.
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14. Prenex normal form

A formula is in prenex normal form (PNF)

if it is of the form

Q1xi1Q2xi2 · · ·Qkxik ψ,

where each Qi is a quantifier

(i.e. either ∀ or ∃), and where

ψ is a formula containing no quantifiers.

14.1 PNF-Theorem

Every φ ∈ Form(L) is logically equivalent to

an L-formula in PNF.

Proof: Induction on φ

(working in the language with ∀, ∃,¬,∧,

recalling that {¬,∧} is adequate for

propositional logic):

• φ atomic: φ is already in PNF.
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• φ = ¬χ with χ in PNF:

say φ = ¬Q1xi1Q2xi2 · · ·Qkxik ψ.

Then φ |==| Q−1 xi1 · · ·Q
−
k xik ¬ψ,

where Q− = ∃ if Q = ∀,
and Q− = ∀ if Q = ∃.

• φ = (χ ∧ ρ) with χ, ρ in PNF:

Note that ∀xiα |==| ∀xjα[xj/xi]

if xj does not occur in α.

Swapping variables in this way, we may

assume that the variables quantified over

in χ do not occur in ρ, and vice versa.

But then, e.g.

(∀x1α ∧ ∃x2β) |==| ∀x1∃x2(α ∧ β). 2
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15 Applications of the Completeness Theorem

Throughout, L denotes a countable first-order language.

15.1 Elementary equivalence

Definition 15.1.

• An L-theory is a set of L-sentences Σ ⊆ Sent(L).

• Let A be an L-structure. Then the (first-order) theory of A is the
L-theory

Th(A) = ThL(A) := {σ ∈ Sent(L) | A |= σ},

the set of all L-sentences true in A.

• L-structures A and B are elementarily equivalent, written A ≡ B, if
Th(A) = Th(B).

Exercise 15.2. An L-theory Σ ⊆ Sent(L) is maximal consistent if and only if Σ
has a model and A ≡ B for any two models A and B of Σ.

15.2 Axiomatisations

Definition 15.3. An axiomatisation of the theory Th(A) of an L-structure
A is a maximal consistent subset of Th(A); i.e. a set of sentences which hold of
A and which suffice to deduce any sentence which holds of A.

Recall Hilbert’s programme from Lecture 1. Now we have established the
Completeness Theorem, the programme would call for us to find “finitary” (i.e.
computable) axiomatisations of the structures in mathematics.

In general this is impossible: Gödel’s first incompleteness theorem shows that
already the theory of arithmetic Th(〈N; +, ·〉) has no computable axiomatisation.
But for some interesting structures it is possible, as we will now begin to see.
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15.3 A criterion for maximal consistency

Definition 15.4. Let A = 〈A; . . .〉 and B = 〈B; . . .〉 be L-structures. An
isomorphism of A with B is a bijection θ : A→ B such that

• θ(cA) = cB for c a constant symbol;

• θ(fA(a1, . . . , ak)) = fB(θ(a1), . . . , θ(ak)) for f a k-ary function symbol
and ai ∈ A;

• (a1, . . . , ak) ∈ PA ⇔ (θ(a1), . . . , θ(ak)) ∈ PB for P a k-ary relation symbol
and ai ∈ A.

We write A ∼= B to mean that there exists such an isomorphism.

Exercise 15.5. A ∼= B implies A ≡ B.
The converse fails (e.g. due to Löwenheim-Skolem).

Theorem 15.6. Suppose Σ ⊆ Sent(L) has a unique countable model up to
isomorphism, i.e. Σ is consistent and if A,B � Σ are countable then A ∼= B.

Then Σ is maximal consistent.

Proof. Let A,B � Σ. We conclude by showing A ≡ B.
Both A and B are infinite. By Weak Downward Löwenheim-Skolem (The-

orem 13.10), there are countable A′ ≡ A and B′ ≡ B. Then A′,B′ � Σ, so
A′ ∼= B′, and so A′ ≡ B′ by Exercise 15.5. Hence A ≡ A′ ≡ B′ ≡ B.

Remark 15.7. The converse fails. We will see an example in the next lecture.

Example 15.8. Let L= := ∅, the language with no non-logical symbols. For
n ≥ 2, set τn := ∃x1 . . . ∃xn

∧
1≤i<j≤n ¬xi

.
= xj . Then the models of

Σ∞ := {τn : n ≥ 2}

are precisely the infinite L=-structures (i.e. the infinite sets). By Theorem 15.6,
Σ∞ is maximal consistent.

15.4 Example: axiomatising Th(〈Q;<〉)
Definition 15.9. Let L< := {<} and let σDLO be the following L<-sentence,
whose models are the dense linear orderings without endpoints:

σDLO := ∀x ∀y ∀z (¬x < x

∧ (x < y ∨ x = y ∨ y < x)

∧ ((x < y ∧ y < z)→ x < z)

∧ (x < y → ∃w (x < w ∧ w < y))

∧ ∃w w < x

∧ ∃w x < w).

Note that 〈Q;<〉 � σDLO, and also 〈R;<〉 � σDLO.

Theorem 15.10 (Cantor). σDLO has a unique countable model up to isomor-
phism (so any countable model is isomorphic to 〈Q;<〉).
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Proof. (“Back-and-forth argument”)
Let M,N � σDLO be countable. By the non-existence of endpoints, each is

infinite.
A partial isomorphism θ : M 99K N is a partially defined injective map

such that for all a, b ∈ dom(θ),

M � a < b ⇔ N � θ(a) < θ(b).

Enumerate the domains of M and N as (mi)i∈N and (ni)i∈N respectively.
We recursively construct a chain of partial isomorphisms θi : M 99K N such
that

dom(θi) is finite, and for all j < i, we have mj ∈ dom θi and nj ∈ im θi. (*)

Let θ0 := ∅.
Given θi satisfying (*), we first extend θi by finding n ∈ N such that setting

θ′i(mi) := n yields a partial isomorphism θ′i :M 99K N with dom θ′i = dom θ ∪
{mi}.

Say dom(θi) = {a1, . . . , as} with M � ak < al for 1 ≤ k < l ≤ s, and
similarly im(θi) = {b1, . . . , bs} with N � bk < bl for 1 ≤ k < l ≤ s. There are
four cases:

(i) mi = ak (some k ∈ [1, s]): set n := bk.

(ii) mi < a1: let n ∈ N be such that n < b1 (n exists, since N has no
endpoint).

(iii) mi > as: let n ∈ N be such that n > bs (n exists, since N has no
endpoint).

(iv) aj < mi < aj+1 (some j ∈ [1, s−1]): let n ∈ N be such that ai < n < ai+1

(n exists, since N is dense).

In all cases, θ′i is a partial isomorphism.
Symmetrically, (θ′i)

−1 : N 99K M extends to θ′′i : N 99K M with ni ∈
dom θi

′′;
then θi+1 := (θ′′i )−1 :M 99K N is a partial isomorphism satisfying (*).

Then θ :=
⋃

i θi :M
∼=−→ N is an isomorphism.

Applying Theorem 15.6, we obtain:

Corollary 15.11. {σDLO} is maximal consistent. Hence {σDLO} axiomatises
Th(〈Q;<〉).

Corollary 15.12. Completeness of a linear order is not a first-order property:
there is no L<-theory Σ such that the models of Σ are precisely the complete
linear orders.

Proof. Suppose such a Σ exists. Then 〈R;<〉 � Σ since 〈R;<〉 is a complete
linear order. But 〈R;<〉 ≡ 〈Q;<〉, since both satisfy the maximal complete
theory {σDLO}, so then also 〈Q;<〉 � Σ. But 〈Q;<〉 is not a complete linear
order, contradicting the desired property of Σ.
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16 An algebraic application (non-examinable)

16.1 ACF

Let Lring := {+,−, ·, 0̄, 1̄}. Let ACF be the Lring-theory whose models are
precisely the algebraically closed fields:

ACF := [Field axioms] ∪{∀z0, . . . , zn

(
¬zn

.
= 0̄→ ∃x

n∑
i=0

zix
i .= 0̄

)
: n ≥ 1}.

Let
ACF0 := ACF ∪ {¬n̄ .

= 0̄ : n ∈ N},

where for n ≥ 1, n̄ := 1̄+ . . .+1̄ (n times). So the models of ACF0 are precisely
the algebraically closed fields of characteristic 0. In particular, 〈C; +,−, ·, 0, 1〉 �
ACF0. We aim to show that ACF0 is maximally consistent, i.e. axiomatises
Th(〈C; +,−, ·, 0, 1〉).

We can prove this analogously to the case of 〈Q;<〉, but working with un-
countable sets.

From now on, we assume the axiom of choice. We will explain this and
the related notion of the cardinality (“size”) |A| of a set A in the Set Theory
course; for now it suffices to know that |A| = |B| if and only if there exists a
bijection A→ B, and cardinalities are linearly ordered.

Fact 16.1. Any characteristic 0 algebraically closed field 〈K; +,−, ·, 0, 1〉 �
ACF0 with the same cardinality as C is isomorphic to 〈C; +,−, ·, 0, 1〉.

Sketch proof. A subset A ⊆ K is algebraically independent if there are no
non-trivial polynomial relations between its elements, i.e. f(a1, . . . , an) 6= 0 for
any f ∈ Z[X1, . . . , Xn] \ {0} and {a1, . . . , an} ⊆ A.

Then just as for linear independence in vector spaces, an algebraically closed
field has a well-defined dimension (“transcendence degree”) which is the cardi-
nality of any maximal algebraically independent subset, this dimension deter-
mines an algebraically closed field of a given characteristic up to isomorphism,
and the dimension of an uncountable ACF is equal to its cardinality.

Fact 16.2. Let L be a possibly uncountable first-order language, i.e. with sets
of constant, function, and relation symbols of arbitrary cardinality. Let |L| be
the cardinality of the language, i.e. that of the alphabet.

1



16 AN ALGEBRAIC APPLICATION (NON-EXAMINABLE) 2

Let Σ ⊆ Sent(L), and suppose any finite subset of Σ has a model. Then Σ
has a model of cardinality (i.e. with domain of cardinality) ≤ |L|.

Sketch proof. Our proof for countable L mostly goes through directly.
The only place we used the countability assumption was in extending a con-

sistent set Σ to a maximal consistent witnessing set. We can use Zorn’s lemma
here in the uncountable case – the union of a chain of consistent witnessing
sets containing Σ is still consistent and witnessing, so there exists a maximal
such with respect to inclusion, which (as in the proof in the countable case) is
maximal consistent witnessing.

Corollary 16.3. ACF0 is maximal consistent, hence axiomatises Th(C).

Proof. Let A � ACF0. Note that A is infinite, since it has characteristic 0.
Let C = {ca : a ∈ C} be a set of constant symbols of cardinality |C|, and let

L′ := Lring ∪ C. Let Σ := ThLring(A) ∪ {¬ca
.
= cb : a, b ∈ C, a 6= b} ⊆ Sent(L′).

Then since A is infinite, any finite subset of Σ has as model A with the finitely
many ca which appear interpreted as distinct elements. So by Fact 16.2, Σ has
a model B of cardinality ≤ |L′| = |C|. Considering the interpretations of the ca,
we actually have |B| = |C|. Let B′ be the Lring structure obtained from B by
ignoring the ca. Then by Fact 16.1, B′ ∼= C. So A ≡ B′ ≡ C.

So we conclude that any two models of ACF0 are elementary equivalent, so
ACF0 is maximal consistent.

Theorem 16.4 (Ax-Grothendieck). Let F : Cn → Cn be a polynomial map,
i.e. F (a1, . . . , an) = (F1(a1, . . . , an), . . . , Fn(a1, . . . , an)), where Fi ∈ C[X].

If F is injective, then F is surjective.

Proof. Fact: The algebraic closure of the finite field Fp is the union of a chain
of finite subfields, Falg

p =
⋃

k Fpk! .

Claim 16.5. Let p be prime. Any injective polynomial map F : (Falg
p )n →

(Falg
p )n is surjective.

Proof. Let k0 be such that the coefficients of F are in Fpk0! .
Let k ≥ k0. Then F (Fpk!

n) ⊆ Fpk!
n, and so by injectivity, finiteness of Fpk!

n,
and the pigeonhole principle, F (Fpk!

n) = Fpk!
n.

Hence F ((Falg
p )n) = (Falg

p )n.

Let n, d ∈ N. Let σn,d be an Lring-sentence expressing that any injective
polynomial map F : Kn → Kn consisting of polynomials of degree ≤ d is
surjective:

σn,d := ∀z1,0, . . . , zn,d (∀x, y ((
∧
i

∑
j

zi,jxi
j .

=
∑
j

zi,jyi
j)→

∧
i

xi
.
= yi)

→ ∀y ∃x
∧
i

∑
j

zi,jxi
j .

= yi).

Suppose C 6� σn,d. Then by maximal consistency of ACF0, ACF0 � ¬σn,d.
Then by compactness, for some m ∈ N,

ACF ∪ {¬ī .= 0̄ : 0 < i < m} � ¬σn,d.

So if p > m is prime, Falg
p � ¬σn,d. But this contradicts the Claim.


