B1.1 Logic

 Lecture 1

 Lecture 1}

Martin Bays

(Slides adapted from slides written by Prof. J. Koenigsmann)

Oxford, MT 2023

Introduction

1. What is mathematical logic for?

- Provides a uniform, unambiguous language for mathematics;
- gives a precise formal definition of a proof;
- explains and guarantees exactness, rigour and certainty in mathematics;
- establishes the foundations of mathematics.

$$
\begin{gathered}
\text { B1 (Foundations) } \\
=\text { B1.1 (Logic) }+ \text { B1.2 (Set theory) }
\end{gathered}
$$

N.B.: Course does not teach you to think logically, but it explores what it means to think logically.

2. Historical motivation

- 19th cent.:

Search for conceptual foundations in analysis: attempts to formalise the notions of infinity, infinitesimal, limit, ...
"The definitive clarification of the nature of the infinite has become necessary, not merely for the special interests of the individual sciences but for the honour of human understanding itself." - Hilbert 1926

- Hilbert's 2nd Problem, 1900 ICM address: prove consistency of an axiom system for arithmetic.
"I am convinced that it must be possible to find a direct proof for the compatibility of the arithmetical axioms." - Hilbert 1900

2. Historical motivation (cont)

- Early attempts to formalise mathematics:
- Cantor's naive set theory;
- Frege's Begriffsschrift and Grundgesetze.

For any expressible property $P(x)$, Frege's system posited the existence of the set

$$
\{x: P(x)\} .
$$

- Russell's paradox:

consider the set $R:=\{s: s \notin s\}$

$$
\begin{aligned}
& R \in R \Rightarrow R \notin R \\
& \text { contradiction } \\
& R \notin R \Rightarrow R \in R \text { contradiction }
\end{aligned}
$$

\leadsto fundamental crisis in the foundations of mathematics

3. Hilbert's Program

1. find a uniform formal language for all mathematics
2. find a complete system of inference rules/ deduction rules
3. find a complete system of mathematical axioms
4. prove that the resulting system is consistent, i.e. does not lead to contradictions

* complete: every mathematical sentence can be proved or disproved using 2. and 3 .
\star 1., 2. and 3. should be finitary/effective/computable/algorithmic so, e.g., in 3. you can't take as axioms
the system of all true sentences in mathematics

4. Solutions to Hilbert's program

Step 1. (formal language for mathematics)
possible in the framework of
ZF $=$ Zermelo-Fraenkel set theory or
$\mathbf{Z F C}=\mathbf{Z F}+$ Axiom of Choice
(this is an empirical fact)
$~ B 1.2$ Set Theory
Step 2. (complete proof system)
possible in 1st-order logic:
Gödel's Completeness Theorem
\sim B1.1 Logic - this course
Step 3. (complete axiom system)
not possible (\sim C1.2):
Gödel's 1st Incompleteness Theorem:
there is no effective axiomatization
of arithmetic
Step 4. (proving consistency)
not possible (\sim C1.2):
Gödel's 2nd Incompleteness Theorem

5. Decidability

Step 3. of Hilbert's program fails:
there is no effective axiomatization
for the entire body of mathematics
But: many important parts of mathematics are completely and effectively axiomatizable; they are decidable, i.e. there is an
algorithm $=$ program $=$ effective procedure to decide whether a sentence is true or false \leadsto allows proofs by computer

Example: $T h(\mathbb{C} ;+, \cdot)$, the 1st-order theory of the field \mathbb{C}.

Axioms $=$ field axioms

+ all non-constant polynomials have a zero
+ the characteristic is 0

Every algebraic property of \mathbb{C} follows from these axioms.
Similarly for $T h(\mathbb{R})$.
\sim C1.1 Model Theory

6. Why mathematical logic?

1. Language and deduction rules are tailored for mathematical objects and mathematical ways of reasoning
2. The method is mathematical: we will develop logic as a calculus with sentences and formulas
\Rightarrow Logic is itself a mathematical discipline,
not meta-mathematics or philosophy, no ontological questions like what is a number?
3. Logic has applications in other areas of mathematics, and also in theoretical computer science

PART I:

 Propositional Calculus

 Propositional Calculus}

1. The language of propositional calculus

... is a very coarse language with limited expressive power;
... allows you to break a complicated sentence down into its subclauses, but not any further;
... will be refined in PART II Predicate
Calculus, the true language of 1st order logic;
... is nevertheless well suited for entering formal logic.

1.1 Propositional variables

The propositional calculus implements logic of the following kind:

- 1. Socrates is alive or Socrates is dead.

2. Socrates is not alive.

Therefore: Socrates is dead.

- 1. If Socrates is a vampire and vampires are immortal, then Socrates is not dead. 2. Socrates is dead.

Therefore: Either Socrates is not a vampire, or vampires are not immortal.

We use propositional variables to denote propositions - e.g. p_{0} for ${ }^{\prime \prime}$ Socrates is a vampire".

A proposition is something which can be true or false.

1.2 The alphabet of propositional calculus

The alphabet of the propositional language $\mathcal{L}_{\text {prop }}$ consists of the following symbols:
the propositional variables $p_{0}, p_{1}, \ldots, p_{n}, \ldots$
negation \neg - the unary connective not
four binary connectives $\rightarrow, \wedge, \vee, \leftrightarrow$ implies, and, or and if and only if respectively

two punctuation marks (and)

 left parenthesis and right parenthesis.Note that these are abstract symbols.
Note also that we use \rightarrow, and not \Rightarrow. Lec $2-3 / 8$

1.3 Strings

- A string (of $\left.\mathcal{L}_{\text {prop }}\right)$
is any finite sequence of symbols from the alphabet of $\mathcal{L}_{\text {prop }}$.
- Examples
(i) $\rightarrow p_{17}()$
(ii) $\left(\left(p_{0} \wedge p_{1}\right) \rightarrow \neg p_{2}\right)$
(iii))) $\neg) p_{32}$
- The length of a string is the number of symbols in it.
So the strings in the examples have length 4,10,5 respectively. (A propositional variable has length 1.)
- We now single out from all strings those which make grammatical sense (formulas).

1.4 Formulas

The notion of a formula of $\mathcal{L}_{\text {prop }}$ is defined (recursively) by the following rules:
I. Every propositional variable is a formula.
II. If the string A is a formula then so is $\neg A$.
III. If the strings A and B are both formulas then so are the strings
$(A \rightarrow B)$ read A implies B
$(A \wedge B)$ read A and B
$(A \vee B)$ read A or B
$(A \leftrightarrow B)$ read A if and only if B.
IV. Nothing else is a formula,
i.e. a string ϕ is a formula if and only if ϕ can be obtained from propositional variables by finitely many applications of the formation rules II. and III.

Examples

- The string $\left(\left(p_{0} \wedge p_{1}\right) \rightarrow \neg p_{2}\right)$ is a formula (Example (ii) in 1.3). Proof:

- Parentheses are important, e.g. ($p_{0} \wedge\left(p_{1} \rightarrow \neg p_{2}\right)$) is a different formula and $p_{0} \wedge\left(p_{1} \rightarrow \neg p_{2}\right)$ is not a formula at all.

Examples

- The strings $\rightarrow p_{17}()$ and $\left.\left.)\right) \neg\right) p_{32}$ from Example (i) and (iii) in 1.3 are not formulas.

Indeed, if ϕ is a formula, then ϕ arises from one of I., II, or III., and so one of the following must hold:

1. ϕ is a propositional variable.
2. The first symbol of ϕ is \neg.
3. The first symbol of ϕ is (.

The unique readability theorem

A formula can be constructed in only one way:

For each formula ϕ exactly one of the following holds
(a) ϕ is p_{i} for some unique $i \in \mathbb{N}$;
(b) ϕ is $\neg \psi$ for some unique formula ψ;
(c) ϕ is $(\psi \star \chi)$ for some unique pair of formulas ψ, χ and a unique binary connective $\star \in\{\rightarrow, \wedge, \vee, \leftrightarrow\}$.

Proof: Problem sheet 1.

2. Valuations

In natural language, the truth or falsity of a sentence using logical connectives is determined by the truth or falsity of its subclauses:
"Socrates is dead or Socrates is a vampire" is true because "Socrates is dead" is true.

The propositional calculus abstracts this to a recursive definition of the truth value T ('true') or F ('false') of a formula ϕ in terms of the truth values of the propositional variables occuring in ϕ.

2.1 Definition

1. A valuation v is a function

$$
v:\left\{p_{0}, p_{1}, p_{2}, \ldots\right\} \rightarrow\{T, F\} .
$$

2. Given a valuation v we extend v uniquely to a function

$$
\tilde{v}: \operatorname{Form}\left(\mathcal{L}_{\text {prop }}\right) \rightarrow\{T, F\} .
$$

(Form $\left(\mathcal{L}_{\text {prop }}\right)$ denotes the set of all formulas of $\left.\mathcal{L}_{\text {prop }}\right)$
defined recursively as follows:
(i) If ϕ is a formula of length 1, i.e. a propositional variable, then $\widetilde{v}(\phi):=v(\phi)$.
(ii) If ϕ is a formula of length $n>1$, and \widetilde{v} has been defined on formulas of length $<n$: by the Unique Readability Theorem, either $\phi=\neg \psi_{1}$ for a unique ψ_{1}, or $\quad \phi=\left(\psi_{1} \star \psi_{2}\right)$ for a unique pair ψ_{1}, ψ_{2} and a unique $\star \in\{\rightarrow, \wedge, \vee, \leftrightarrow\}$.
Then the ψ_{i} are formulas of length $<n$, and we define $\widetilde{v}(\phi)$ in terms of the $\widetilde{v}\left(\psi_{i}\right)$ by the truth tables on the following slide.

Truth Tables

Define $\widetilde{v}(\phi)$ by the following truth tables:

Negation

ψ	$\neg \psi$
T	F
F	T

i.e. if $\widetilde{v}(\psi)=T$ then $\widetilde{v}(\neg \psi)=F$ and if $\widetilde{v}(\psi)=F$ then $\widetilde{v}(\neg \psi)=T$

Binary Connectives

ψ	χ	$\psi \rightarrow \chi$	$\psi \wedge \chi$	$\psi \vee \chi$	$\psi \leftrightarrow \chi$
T	T	T	T	T	T
T	F	F	F	T	F
F	T	T	F	T	F
F	F	T	F	F	T

so, e.g., if $\widetilde{v}(\psi)=F$ and $\widetilde{v}(\chi)=T$
then $\widetilde{v}(\psi \vee \chi)=T$ etc.

Remark: These truth tables correspond roughly to our ordinary use of the words 'not', 'if - then', 'and', 'or' and 'if and only if', except, perhaps, the truth table for implication (\rightarrow).

2.2 Example

Construct the full truth table for the formula

$$
\phi:=\left(\left(p_{0} \vee p_{1}\right) \rightarrow \neg\left(p_{1} \wedge p_{2}\right)\right)
$$

$\widetilde{v}(\phi)$ only depends on $v\left(p_{0}\right), v\left(p_{1}\right)$ and $v\left(p_{2}\right)$.

p_{o}	p_{1}	$p_{2} \\|\left(p_{0} \vee p_{1}\right)$	$\left(p_{1} \wedge p_{2}\right)$	$\neg\left(p_{1} \wedge p_{2}\right)$	ϕ	
T	T	T	T	T	F	F
T	T	F	T	F	T	T
T	F	T	T	F	T	T
T	F	F	T	F	T	T
F	T	T	T	T	F	F
F	T	F	T	F	T	T
F	F	T	F	F	T	T
F	F	F	F	F	T	T

2.3 Example Truth table for

$$
\phi:=\left(\left(p_{0} \rightarrow p_{1}\right) \rightarrow\left(\neg p_{1} \rightarrow \neg p_{0}\right)\right)
$$

p_{0}	p_{1}	$\left(p_{0} \rightarrow p_{1}\right)$	$\neg p_{1}$	$\neg p_{0}$	$\left(\neg p_{1} \rightarrow \neg p_{0}\right)$	ϕ
T	T	T	F	F	T	T
T	F	F	T	F	F	T
F	T	T	F	T	T	T
F	F	T	T	T	T	T

3. Logical Validity

3.1 Definition

- A valuation v satisfies a formula ϕ if $\tilde{v}(\phi)=T$.
- A formula ϕ is logically valid if ϕ is satisfied by every valuation (e.g. Example 2.3, not Example 2.2).

Such a ϕ is also called a tautology.
Notation: $=\phi$

- A formula ϕ is satisfiable
if ϕ is satisfied by some valuation. So:
ϕ is satisfiable iff $\neg \phi$ is not a tautology.
- A formula ϕ is a logical consequence of a formula ψ if, for every valuation v :

$$
\text { if } \widetilde{v}(\psi)=T \text { then } \widetilde{v}(\phi)=T .
$$

Notation: $\psi \models \phi$
3.2 Lemma $\psi \models \phi$ if and only if $\models(\psi \rightarrow \phi)$.

Proof. ' \Rightarrow ': Assume $\psi \models \phi$.
Let v be any valuation.

- If $\widetilde{v}(\psi)=T$ then (by def.) $\widetilde{v}(\phi)=T$, so then $\widetilde{v}((\psi \rightarrow \phi))=T$ by $\mathrm{tt} \rightarrow$.
('tt *' refers to the truth table of the connective *)
- If $\widetilde{v}(\psi)=F$ then $\widetilde{v}((\psi \rightarrow \phi))=T$ by $\mathrm{tt} \rightarrow$.

Thus, for every valuation $v, \widetilde{v}((\psi \rightarrow \phi))=T$, so $\vDash(\psi \rightarrow \phi)$.
' \Leftarrow ': Conversely, suppose $\vDash(\psi \rightarrow \phi)$.
Let v be any valuation s.t. $\widetilde{v}(\psi)=T$. Since $\widetilde{v}((\psi \rightarrow \phi))=T$, also $\widetilde{v}(\phi)=T$ by $\mathrm{tt} \rightarrow$. Hence $\psi \models \phi$.
3.3 Definition Let Γ be any (possibly infinite) set of formulas and let ϕ be any formula.
Then ϕ is a logical consequence of Γ if, for every valuation v :

$$
\text { If } \widetilde{v}(\psi)=T \text { for all } \psi \in \Gamma \text { then } \widetilde{v}(\phi)=T \text {. }
$$

Notation: $\Gamma \models \phi$
Note:

$$
\begin{gathered}
\models \phi \Leftrightarrow \emptyset \models \phi, \\
\psi \models \phi \Leftrightarrow\{\psi\} \models \phi .
\end{gathered}
$$

Lemma 3.2 generalises to:

3.4 Lemma

$\Gamma \cup\{\psi\} \models \phi$ if and only if $\Gamma \models(\psi \rightarrow \phi)$.

Proof. Similar to the proof of Lemma 3.2. Exercise.

3.5 Example

$\vDash\left(\left(p_{0} \rightarrow p_{1}\right) \rightarrow\left(\neg p_{1} \rightarrow \neg p_{0}\right)\right)$
Hence $\left(p_{0} \rightarrow p_{1}\right) \models\left(\neg p_{1} \rightarrow \neg p_{0}\right)$
(Ex. 2.3)
by 3.2
Hence $\left\{\left(p_{0} \rightarrow p_{1}\right), \neg p_{1}\right\} \models \neg p_{0}$

3.6 Example

$$
\phi \models(\psi \rightarrow \phi)
$$

Proof. For any v :
if $\tilde{v}(\phi)=T$ then, by tt $\rightarrow, \widetilde{v}((\psi \rightarrow \phi))=T$ (no matter what $\widetilde{v}(\psi)$ is).

4. Logical Equivalence

4.1 Definition

Two formulas ϕ, ψ are logically equivalent if $\phi=\psi$ and $\psi \models \phi$,
i.e. if $\widetilde{v}(\phi)=\widetilde{v}(\psi)$ for every valuation v.

Notation: $\phi==\psi$

Exercise: $\phi==\psi$ if and only if $\models(\phi \leftrightarrow \psi)$.

4.2 Lemma

(i) For any formulas ϕ, ψ

$$
(\phi \vee \psi) \models=\neg(\neg \phi \wedge \neg \psi) .
$$

(ii) Hence every formula is logically equivalent to one without ' \vee '.

Proof. (i) Either use truth tables,

 or observe that for any valuation v :$$
\begin{array}{ll}
& \widetilde{v}(\neg(\neg \phi \wedge \neg \psi))=F \\
\text { iff } & \widetilde{v}((\neg \phi \wedge \neg \psi))=T
\end{array} \quad \text { by tt } \neg,
$$

(ii) Induction on the length of the formula ϕ.

Clear for length 1.
For the induction step observe that

$$
\text { if } \psi \models=\psi^{\prime} \text { then } \neg \psi \models=\neg \psi^{\prime} \text {, }
$$

and $(\phi \vee \psi) \models=\neg \neg(\neg \phi \wedge \neg \psi)$ by (i), and for $(\phi \star \psi)$ where \star is not \vee observe:

$$
\begin{gathered}
\text { if } \phi==\phi^{\prime} \text { and } \psi \models=\psi^{\prime} \text { then } \\
(\phi \star \psi) \models==\left(\phi^{\prime} \star \psi^{\prime}\right) .
\end{gathered}
$$

4.3 Some convenient notation

If $\phi_{1}, \ldots, \phi_{n}$ are formulas, we can write their disjunction as

$$
\left(\ldots\left(\left(\phi_{1} \vee \phi_{2}\right) \vee \phi_{3}\right) \ldots \vee \phi_{n}\right) .
$$

This is rather cumbersome notation, so we abbreviate it to

$$
\bigvee_{i=1}^{n} \phi_{i} .
$$

Formally, we make the following recursive definitions:

$$
\bigvee_{i=1}^{1} \phi_{i}=\phi_{1} \text { and } \bigwedge_{i=1}^{1} \phi_{i}=\phi_{1}
$$

and for $n>1$,

$$
\bigvee_{i=1}^{n} \phi_{i}=\left(\bigvee_{i=1}^{n-1} \vee \phi_{n}\right) \text { and } \bigwedge_{i=1}^{n} \phi_{i}=\left(\bigwedge_{i=1}^{n-1} \wedge \phi_{n}\right)
$$

So $\widetilde{v}\left(\bigvee_{i=1}^{n} \phi_{i}\right)=T$ iff for some $i, \widetilde{v}\left(\phi_{i}\right)=T$ and $\widetilde{v}\left(\bigwedge_{i=1}^{n} \phi_{i}\right)=T$ iff for all $i, \widetilde{v}\left(\phi_{i}\right)=T$.

4.4 Some logical equivalences

Let A, B, A_{i} be formulas. Then

1. $\neg(A \vee B) \vDash=(\neg A \wedge \neg B)$

More generally,

$$
\neg \bigvee_{i=1}^{n} A_{i} \models==\bigwedge_{i=1}^{n} \neg A_{i},
$$

hence also

$$
\neg \bigwedge_{i=1}^{n} A_{i} \models==\bigvee_{i=1}^{n} \neg A_{i} .
$$

These are called De Morgan's Laws.
2. $(A \rightarrow B) \models=(\neg A \vee B)$
3. $(A \leftrightarrow B) \models=((A \rightarrow B) \wedge(B \rightarrow A))$
4. $(A \vee B) \vDash==((A \rightarrow B) \rightarrow B)$
5. $\left(\phi \wedge \bigvee_{i=1}^{n} \psi_{i}\right) \models==\bigvee_{i=1}^{n}\left(\phi \wedge \psi_{i}\right)$
(" \wedge distributes over \vee ";
similarly, \vee distributes over \wedge.)

5. Adequacy of the Connectives

The connectives \neg (unary) and
$\rightarrow, \wedge, \vee, \leftrightarrow$ (binary) are the logical part of our language for propositional calculus.

Question:

- Do we have "enough connectives"?
- That is, can we express everything which is logically conceivable using only these connectives?
- More precisely, is every possible truth table implemented by some formula of $\mathcal{L}_{\text {prop }}$?

Answer: yes.

5.1 Definition

(i) We denote by V_{n} the set of all functions

$$
v:\left\{p_{0}, \ldots, p_{n-1}\right\} \rightarrow\{T, F\}
$$

i.e. "partial" valuations assigning values only to the first n propositional variables. Note $\# V_{n}=2^{n}$.
(ii) An n-ary truth function is a function

$$
J: V_{n} \rightarrow\{T, F\} .
$$

There are precisely $2^{2^{n}}$ such functions.
(iii) Let $\operatorname{Form}_{n}\left(\mathcal{L}_{\text {prop }}\right)$ be the set of formulas which contain only propositional variables from the set $\left\{p_{0}, \ldots, p_{n-1}\right\}$.

Then any $\phi \in \operatorname{Form}_{n}\left(\mathcal{L}_{\text {prop }}\right)$ determines the truth function

$$
\begin{aligned}
J_{\phi}: \begin{aligned}
V_{n} & \rightarrow\{T, F\} \\
v & \mapsto \widetilde{v}(\phi)
\end{aligned} .
\end{aligned}
$$

(So J_{ϕ} corresponds to the truth table for ϕ.

5.2 Theorem

Our language $\mathcal{L}_{\text {prop }}$ is adequate,
i.e. for every $n>0$ and every truth function
$J: V_{n} \rightarrow\{T, F\}$ there is some
$\phi \in \operatorname{Form}_{n}\left(\mathcal{L}_{\text {prop }}\right)$ with $J_{\phi}=J$.
Proof: Let $J: V_{n} \rightarrow\{T, F\}$ be any n-ary truth function.

If $J(v)=F$ for all $v \in V_{n}$ take $\phi:=\left(p_{0} \wedge \neg p_{0}\right)$. Then, for all $v \in V_{n}: J_{\phi}(v)=\widetilde{v}(\phi)=F=J(v)$.

Otherwise let $U:=\left\{v \in V_{n} \mid J(v)=T\right\} \neq \emptyset$. For each $v \in U$ and each $i<n$ define the formula

$$
\psi_{i}^{v}:=\left\{\begin{array}{rll}
p_{i} & \text { if } & v\left(p_{i}\right)=T \\
\neg p_{i} & \text { if } & v\left(p_{i}\right)=F
\end{array}\right.
$$

and let $\psi^{v}:=\wedge_{i=0}^{n-1} \psi_{i}^{v}$.

Then for any valuation $w \in V_{n}$ one has the following equivalence (\star):

$$
\begin{array}{lll}
\widetilde{w}\left(\psi^{v}\right)=T & \text { iff } \left.\begin{array}{ll}
\text { for all } i<n: & (\text { by tt } \wedge) \\
& \text { iff } w=v
\end{array} \quad \text { (by def. of } \psi_{i}^{v}\right)
\end{array}
$$

Now define $\phi:=\bigvee_{v \in U} \psi^{v}$.
Then for any valuation $w \in V_{n}$:

$$
\begin{array}{rll}
\widetilde{w}(\phi)=T & \text { iff for some } v \in U: \widetilde{w}\left(\psi^{v}\right)=T & (\text { by } \mathrm{tt} \vee) \\
& \text { iff for some } v \in U: w=v & (\text { by }(\star)) \\
& \text { iff } w \in U & \\
& \text { iff } J(w)=T &
\end{array}
$$

Hence $J_{\phi}(w)=J(w)$ for all $w \in V_{n}$; i.e. $J_{\phi}=J$.

5.3 Definition

(i) A formula which is a conjunction of p_{i} 's and $\neg p_{i}$'s is called a conjunctive clause - e.g. ψ^{v} in the proof of 5.2.
(ii) A formula which is a disjunction of conjunctive clauses is said to be in disjunctive normal form ('dnf')

- e.g. ϕ in the proof of 5.2.

So in fact the proof of 5.2 yields the following stronger statement:

5.4 Theorem - ‘The dnf-Theorem'

For any truth function

$$
J: V_{n} \rightarrow\{T, F\}
$$

there is a formula $\phi \in \operatorname{Form}_{n}\left(\mathcal{L}_{\text {prop }}\right)$ in dnf with $J_{\phi}=J$.

In particular, every formula is logically equivalent to one in dnf.

5.5 Definition

Suppose S is a set of (truth-functional) connectives - so each $s \in S$ is given by some truth table.
(i) Write $\mathcal{L}_{\text {prop }}[S]$ for the language with connectives S instead of $\{\neg, \rightarrow, \wedge, \vee, \leftrightarrow\}$ and define Form ($\mathcal{L}_{\text {prop }}[S]$) and $\operatorname{Form}_{n}\left(\mathcal{L}_{\text {prop }}[S]\right)$ accordingly.
(ii) We say that S is adequate (or truth-functionally complete) if for all $n \geq 1$ and for all n-ary truth functions J there is some $\phi \in \operatorname{Form}_{n}\left(\mathcal{L}_{\text {prop }}[S]\right)$ with $J_{\phi}=J$.

5.6 Examples

1. $S=\{\neg, \wedge, \vee\}$ is adequate, by the dnf-Theorem.
2. Hence, by Lemma 4.2(i), $S=\{\neg, \wedge\}$ is adequate:

$$
(\phi \vee \psi) \models==\neg(\neg \phi \wedge \neg \psi)
$$

Similarly, $S=\{\neg, \vee\}$ is adequate:

$$
(\phi \wedge \psi) \models=\neg \neg(\neg \phi \vee \neg \psi)
$$

3. We can express \vee in terms of \rightarrow (4.4.4), so $\{\neg, \rightarrow\}$ is adequate.
4. $S=\{\vee, \wedge, \rightarrow\}$ is not adequate: any $\phi \in \operatorname{Form}\left(\mathcal{L}_{\text {prop }}[S]\right)$ has T in the top row of tt ϕ, so no such ϕ gives $J_{\phi}=J_{\neg p_{0}}$.
5. There are precisely two binary connectives, say \uparrow and \downarrow, such that $S=\{\uparrow\}$ and $S=\{\downarrow\}$ are adequate.

6. A deductive system for propositional calculus

- We introduced 'logical consequence’ $\Gamma \vDash \phi$ means: whenever (each formula of) Γ is true, so is ϕ.
- But we don't know yet how to give an actual proof of ϕ from the hypotheses Γ.
- A proof of ϕ should be a finite sequence $\phi_{1}, \phi_{2}, \ldots, \phi_{n}$ of statements such that $\phi_{n}=\phi$, and for each $i=1, \ldots, n$:
- either $\phi_{i} \in \Gamma$,
- or ϕ_{i} is some axiom (which should clearly be true),
- or ϕ_{i} should follow from previous ϕ_{j} 's by some rule of inference.

6.1 Definition

Let $\mathcal{L}_{0}:=\mathcal{L}_{\text {prop }}[\{\neg, \rightarrow\}]$ (which is an adequate language). Then the system L_{0} consists of the following axioms and rules:

Axioms

An axiom of L_{0} is any formula of the following form ($\alpha, \beta, \gamma \in \operatorname{Form}\left(\mathcal{L}_{0}\right)$):

A1 $(\alpha \rightarrow(\beta \rightarrow \alpha))$
A2 $((\alpha \rightarrow(\beta \rightarrow \gamma)) \rightarrow((\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \gamma)))$
A3 $((\neg \beta \rightarrow \neg \alpha) \rightarrow(\alpha \rightarrow \beta))$

Rules of inference

Just one rule, modus ponens:

MP For any $\alpha, \beta \in \operatorname{Form}\left(\mathcal{L}_{0}\right)$:
From α and $(\alpha \rightarrow \beta)$, infer β.

6.2 Definition

Let $\Gamma \subseteq \operatorname{Form}\left(\mathcal{L}_{0}\right)$.

- A finite sequence $\alpha_{1}, \ldots, \alpha_{m} \in \operatorname{Form}\left(\mathcal{L}_{0}\right)$ is a proof (or deduction/derivation) in L_{0} of α_{m} from the hypotheses 「
if for each $i=1, \ldots, m$, at least one of the following holds:
(a) α_{i} is an axiom of L_{0}.
(b) $\alpha_{i} \in \Gamma$.
(c) α_{i} follows by MP from earlier formulas,
i.e. there are $j, k<i$ such that $\alpha_{j}=\left(\alpha_{k} \rightarrow \alpha_{i}\right)$.
- $\alpha \in \operatorname{Form}\left(\mathcal{L}_{0}\right)$ is provable from Γ if there is a proof $\alpha_{1}, \ldots, \alpha_{m}=\alpha$ of α from Γ.

We denote this by:

$$
\ulcorner\vdash \alpha .
$$

In the case $\Gamma=\emptyset$, we just write

$$
\vdash \alpha,
$$

and we say that α is a theorem (of the system L_{0}).
6.3 Example For any $\phi \in \operatorname{Form}\left(\mathcal{L}_{0}\right)$

$$
(\phi \rightarrow \phi)
$$

is a theorem of L_{0}.

Proof:

$$
\begin{aligned}
& \alpha_{1}(\phi \rightarrow(\phi \rightarrow \phi)) \\
& \quad[\mathrm{A} 1 \text { with } \alpha=\beta=\phi] \\
& \alpha_{2}(\phi \rightarrow((\phi \rightarrow \phi) \rightarrow \phi)) \\
& \quad[\mathrm{A} 1 \text { with } \alpha=\phi, \beta=(\phi \rightarrow \phi)] \\
& \alpha_{3}((\phi \rightarrow((\phi \rightarrow \phi) \rightarrow \phi)) \\
& \quad \rightarrow((\phi \rightarrow(\phi \rightarrow \phi)) \rightarrow(\phi \rightarrow \phi))) \\
& \quad[\mathrm{A} 2 \text { with } \alpha=\phi, \beta=(\phi \rightarrow \phi), \gamma=\phi] \\
& \alpha_{4}((\phi \rightarrow(\phi \rightarrow \phi)) \rightarrow(\phi \rightarrow \phi)) \\
& \quad\left[\mathrm{MP} \alpha_{2}, \alpha_{3}\right] \\
& \alpha_{5}(\phi \rightarrow \phi) \\
& \quad\left[\mathrm{MP} \alpha_{1}, \alpha_{4}\right]
\end{aligned}
$$

Thus, $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{5}$ is a deduction of ($\phi \rightarrow \phi$) in L_{0}.

6.4 Example

For any $\phi, \psi \in \operatorname{Form}\left(\mathcal{L}_{0}\right)$:

$$
\{\phi, \neg \phi\} \vdash \psi
$$

Proof:

$$
\alpha_{1} \quad(\neg \phi \rightarrow(\neg \psi \rightarrow \neg \phi))
$$

$$
\text { [A1 with } \alpha=\neg \phi, \beta=\neg \psi]
$$

$$
\alpha_{2} \neg \phi[\in\ulcorner]
$$

$$
\alpha_{3}(\neg \psi \rightarrow \neg \phi)\left[\mathrm{MP} \alpha_{1}, \alpha_{2}\right]
$$

$$
\alpha_{4}((\neg \psi \rightarrow \neg \phi) \rightarrow(\phi \rightarrow \psi))
$$

$$
\text { [A3 with } \alpha=\phi, \beta=\psi \text {] }
$$

$\alpha_{5}(\phi \rightarrow \psi)\left[\mathrm{MP} \alpha_{3}, \alpha_{4}\right]$
$\alpha_{6} \phi[\in \Gamma]$
$\alpha_{7} \psi\left[\mathrm{MP} \alpha_{5}, \alpha_{6}\right]$

6.5 The Soundness Theorem for L_{0}

L_{0} is sound, i.e. for any $\Gamma \subseteq \operatorname{Form}\left(\mathcal{L}_{0}\right)$ and for any $\alpha \in \operatorname{Form}\left(\mathcal{L}_{0}\right)$:

$$
\text { If } \Gamma \vdash \alpha \text { then }\ulcorner\models \alpha \text {. }
$$

In particular, any theorem of L_{0} is a tautology.

Proof:
We show by induction on m :
(*) If α has a proof of length m from Γ in L_{0}, then $\Gamma \vDash \alpha$.

For $m=0$, there is nothing to prove (no proof has length 0).

So suppose $m \geq 1$ and ($*$) holds for all $m^{\prime}<m$, and suppose $\alpha_{1}, \ldots, \alpha_{m}$ is a proof in L_{0}. We have to show that $\Gamma \vDash \alpha_{m}$.

Case 1: α_{m} is an axiom.
One verifies by truth tables (exercise) that our axioms are tautologies, so $\Gamma \models \alpha_{m}$.

Case 2: $\alpha_{m} \in \Gamma$.
Then $\Gamma \models \alpha_{m}$.

Case 3: α_{m} is obtained by MP.
So say $i, j<m$ and $\alpha_{j}=\left(\alpha_{i} \rightarrow \alpha_{m}\right)$.
By the inductive hypothesis, since $\alpha_{1}, \ldots, \alpha_{i}$ is a proof of length $i<m$, we have $\Gamma \vDash \alpha_{i}$.
Similarly $\Gamma \models \alpha_{j}$, i.e. $\Gamma \models\left(\alpha_{i} \rightarrow \alpha_{m}\right)$.

But $\left\{\alpha_{i},\left(\alpha_{i} \rightarrow \alpha_{m}\right)\right\} \models \alpha_{m}$ by Lemma 3.4, and it follows (from the definition of \vDash) that $\Gamma \models \alpha_{m}$.

For the proof of the converse

Completeness Theorem

$$
\text { If } \Gamma \models \alpha \text { then }\ulcorner\vdash \alpha \text {. }
$$

we first prove
6.6 The Deduction Theorem for L_{0}

For any $\Gamma \subseteq \operatorname{Form}\left(\mathcal{L}_{0}\right)$ and for any $\alpha, \beta \in \operatorname{Form}\left(\mathcal{L}_{0}\right)$:

$$
\text { If }\ulcorner\cup\{\alpha\} \vdash \beta \text { then }\ulcorner\vdash(\alpha \rightarrow \beta) .
$$

6.6 The Deduction Theorem for L_{0}

For any $\Gamma \subseteq \operatorname{Form}\left(\mathcal{L}_{0}\right)$ and for any $\alpha, \beta \in \operatorname{Form}\left(\mathcal{L}_{0}\right)$:

$$
\text { If } \Gamma \cup\{\alpha\} \vdash \beta \text { then }\ulcorner\vdash(\alpha \rightarrow \beta) \text {. }
$$

Proof:
We prove by induction on m :
If $\alpha_{1}, \ldots, \alpha_{m}$ is a proof in L_{0} from $\Gamma \cup\{\alpha\}$ then $\Gamma \vdash\left(\alpha \rightarrow \alpha_{i}\right)$ for all $i \leq m$.

For $m=0$, this holds trivially. So suppose $m>0$.

IH: Holds for $m-1$.
Then $\Gamma \vdash\left(\alpha \rightarrow \alpha_{i}\right)$ for $i<m$, and we must show $\Gamma \vdash\left(\alpha \rightarrow \alpha_{m}\right)$.

Case 1: α_{m} is an Axiom
Then $\vdash\left(\alpha \rightarrow \alpha_{m}\right)$, indeed:

is a proof of $\left(\alpha \rightarrow \alpha_{m}\right)$ from hypotheses \emptyset.

Note generally that if $\Delta \vdash \psi$ and $\Delta^{\prime} \supseteq \Delta$, then also $\Delta^{\prime} \vdash \psi$.

Thus $\left\ulcorner\vdash\left(\alpha \rightarrow \alpha_{m}\right)\right.$.

Case 2: $\alpha_{m} \in \Gamma \cup\{\alpha\}$
If $\alpha_{m} \in \Gamma$ then same proof as above works (with justification on line 1 changed to ' $\in \Gamma^{\prime}$).

If $\alpha_{m}=\alpha$, then, by Example 6.3, $\vdash\left(\alpha \rightarrow \alpha_{m}\right)$, hence $\Gamma \vdash\left(\alpha \rightarrow \alpha_{m}\right)$.

Case 3: α_{m} is obtained by MP from some earlier α_{j}, α_{k}, i.e. there are $j, k<m$ such that $\alpha_{j}=\left(\alpha_{k} \rightarrow \alpha_{m}\right)$.

By IH, we have

$$
\begin{array}{ll}
& \Gamma \vdash\left(\alpha \rightarrow \alpha_{k}\right) \\
\text { and } & \Gamma \vdash\left(\alpha \rightarrow \alpha_{j}\right), \\
\text { i.e. } & \Gamma \vdash\left(\alpha \rightarrow\left(\alpha_{k} \rightarrow \alpha_{m}\right)\right)
\end{array}
$$

So say

$$
\beta_{1}, \ldots, \beta_{r-1},\left(\alpha \rightarrow \alpha_{k}\right)
$$

and

$$
\gamma_{1}, \ldots, \gamma_{s-1},\left(\alpha \rightarrow\left(\alpha_{k} \rightarrow \alpha_{m}\right)\right)
$$

are proofs in L_{0} from Γ.

Then

$$
\begin{array}{cll}
1 & \beta_{1} & \\
\vdots & \vdots & \\
r-1 & \beta_{r-1} \\
r & \left(\alpha \rightarrow \alpha_{k}\right) & \\
r+1 & \gamma_{1} & \\
\vdots & \vdots & \\
r+s-1 & \gamma_{s-1} \\
r+s & \left(\alpha \rightarrow\left(\alpha_{k} \rightarrow \alpha_{m}\right)\right) & \\
r+s+1 & \left(\left(\alpha \rightarrow\left(\alpha_{k} \rightarrow \alpha_{m}\right)\right) \rightarrow\right. & \\
& \left.\left(\left(\alpha \rightarrow \alpha_{k}\right) \rightarrow\left(\alpha \rightarrow \alpha_{m}\right)\right)\right) & \text { [AR] } \\
r+s+2 & \left(\left(\alpha \rightarrow \alpha_{k}\right) \rightarrow\left(\alpha \rightarrow \alpha_{m}\right)\right) & {[\mathrm{MPr} r+s, r+s+1]} \\
r+s+3 & \left(\alpha \rightarrow \alpha_{m}\right) & {[\mathrm{MPr} r, r+s+2]}
\end{array}
$$

is a proof of $\left(\alpha \rightarrow \alpha_{m}\right)$ in L_{0} from Γ.

6.7 Remarks

- Only needed instances of A1, A2 and the rule MP.
So any system that includes A1, A2 and MP satisfies the Deduction Theorem.
- Proof gives a precise algorithm for converting any proof showing $\Gamma \cup\{\alpha\} \vdash \beta$ into one showing $\Gamma \vdash(\alpha \rightarrow \beta)$.
- Converse is easy:

$$
\text { If }\ulcorner\vdash(\alpha \rightarrow \beta) \text { then }\ulcorner\cup\{\alpha\} \vdash \beta .
$$

Proof:

$$
\begin{array}{ccl}
\vdots & \vdots & \text { proof from 「 } \\
r & \alpha \rightarrow \beta & \\
r+1 & \alpha & {[\in\ulcorner\cup\{\alpha\}]} \\
r+2 & \beta & {[\mathrm{MP} \mathrm{r}, \mathrm{r}+1]}
\end{array}
$$

6.8 Example of use of DT

If $\Gamma \vdash(\alpha \rightarrow \beta)$ and $\Gamma \vdash(\beta \rightarrow \gamma)$
then $\Gamma \vdash(\alpha \rightarrow \gamma)$.

Proof:

By the deduction theorem ('DT'), it suffices to show that $\ulcorner\cup\{\alpha\} \vdash \gamma$.

:	$(\alpha \rightarrow \beta)$	proof from 「
$r+1$:	
:	:	proof from「
+s	$(\beta \rightarrow \gamma)$	
$r+s+1$	α	$[\in \Gamma \cup\{\alpha\}]$
$r+s+2$	β	[MP r, r+s+1]
$r+s+3$	γ	[MP r+s, r+s+2]

From now on we may treat DT as an additional inference rule in L_{0}.

6.9 Definition

The sequent calculus $S Q$ is the system where a proof (or derivation) of
$\phi \in \operatorname{Form}\left(\mathcal{L}_{0}\right)$ from $\Gamma \subseteq \operatorname{Form}\left(\mathcal{L}_{0}\right)$ is a finite
sequence of sequents,
i.e. expressions of the form

$$
\Delta \vdash_{S Q} \psi
$$

with $\Delta \subseteq \operatorname{Form}\left(\mathcal{L}_{0}\right)$,
such that $\Gamma \vdash_{S Q} \phi$ is the last sequent,
and each sequent is obtained from previous
sequents according to the following rules:
Ass: If $\psi \in \Delta$ then infer $\Delta \vdash_{S Q} \psi$.
MP: From $\Delta \vdash_{S Q} \psi$ and $\Delta^{\prime} \vdash_{S Q}(\psi \rightarrow \chi)$ infer $\Delta \cup \Delta^{Y} \vdash_{S Q} \chi$.

DT: From $\Delta \cup\{\psi\} \vdash_{S Q} \chi$ infer $\Delta \vdash_{S Q}(\psi \rightarrow \chi)$.

PC: From $\Delta \cup\{\neg \psi\} \vdash_{S Q} \chi$ and $\Delta^{\prime} \cup\{\neg \psi\} \vdash_{S Q} \neg \chi$, infer $\Delta \cup \Delta^{\prime} \vdash_{S Q} \psi$.
('PC' stands for proof by contradiction.)
Note: no axioms.

6.10 Example of a proof in SQ

$$
\begin{array}{lll}
1 & \neg \beta \vdash_{S Q} \neg \beta & \text { [Ass] } \\
2 & (\neg \beta \rightarrow \neg \alpha) \vdash_{S Q}(\neg \beta \rightarrow \neg \alpha) & \text { [Ass] } \\
3 & (\neg \beta \rightarrow \neg \alpha), \neg \beta \vdash_{S Q} \neg \alpha & \text { [MP 1,2] } \\
4 & \alpha, \neg \beta \vdash_{S Q} \alpha & \text { [Ass] } \\
5 & (\neg \beta \rightarrow \neg \alpha), \alpha \vdash_{S Q} & \text { [PC 3,4] } \\
6 & (\neg \beta \rightarrow \neg \alpha) \vdash_{S Q}(\alpha \rightarrow \beta) & \text { [DT 5] } \\
7 & \left.\vdash_{S Q}(\neg \beta \rightarrow \neg \alpha) \rightarrow(\alpha \rightarrow \beta)\right) & \text { [DT 6] }
\end{array}
$$

So $\vdash_{S Q}$ A3.

Notation: To avoid confusion, we sometimes write ' $\Gamma \vdash_{L_{0}} \phi$ ' for ' $\Gamma \vdash \phi$ in L_{0} '

6.11 Theorem

L_{0} and $S Q$ are equivalent, i.e. for all Γ, ϕ :

$$
\Gamma \vdash_{L_{0}} \phi \text { iff } \Gamma \vdash_{S Q} \phi .
$$

Proof: Omitted

The following lemma is a key step in the proof of 6.11; it shows that L_{0} implements the rule ($P C$) of the sequence calculus. It is the only place in the proof of the completeness theorem where (A3) is used.

6.12 Lemma

For any $\alpha, \beta \in \operatorname{Form}\left(L_{0}\right)$,

$$
\vdash((\neg \alpha \rightarrow \neg \beta) \rightarrow((\neg \alpha \rightarrow \beta) \rightarrow \alpha)) .
$$

Proof: Omitted.

7. Consistency, Completeness and Compactness

7.1 Definition

$\Gamma \subseteq \operatorname{Form}\left(\mathcal{L}_{0}\right)$ is inconsistent
if for some formula α,
$\Gamma \vdash \alpha$ and $\Gamma \vdash \neg \alpha$.
Otherwise, Γ is consistent.
E.g. \emptyset is consistent by soundness of \mathcal{L}_{0}, since for no α are both α and $\neg \alpha$ tautologies.
7.2. Lemma

If $\Gamma \nvdash \phi$ then $\Gamma \cup\{\neg \phi\}$ is consistent.
Proof: Suppose $\Gamma \cup\{\neg \phi\}$ is inconsistent,
say $\Gamma \cup\{\neg \phi\} \vdash \alpha$ and $\Gamma \cup\{\neg \phi\} \vdash \neg \alpha$.
Then by the deduction theorem,
$\Gamma \vdash(\neg \phi \rightarrow \alpha)$ and $\Gamma \vdash(\neg \phi \rightarrow \neg \alpha)$.
By 6.12 and MP twice, $\Gamma \vdash \phi$.

7.3 Lemma

Suppose Γ is consistent and $\Gamma \vdash \phi$.
Then $\Gamma \cup\{\phi\}$ is consistent.

Proof: Suppose not. Then for some α

$$
\begin{array}{ll}
\left.\begin{array}{l}
\Gamma \cup\{\phi\} \vdash \alpha \\
\Gamma \cup\{\phi\} \vdash \neg \alpha
\end{array}\right\} & \Rightarrow \mathrm{DT} \quad \begin{array}{l}
\Gamma \vdash(\phi \rightarrow \alpha) \\
\\
\\
\\
\\
\\
\\
\Rightarrow \vdash(\phi \rightarrow \phi \\
\mathrm{MP}
\end{array} \\
& \Gamma \vdash \alpha \\
& \Gamma \vdash \neg \alpha,
\end{array}
$$

contradicting consistency of Γ.

7.4 Definition

$\Gamma \subseteq \operatorname{Form}\left(\mathcal{L}_{0}\right)$ is maximal consistent if
(i) Γ is consistent, and
(ii) for every ϕ, either $\Gamma \vdash \phi$ or $\Gamma \vdash \neg \phi$.

7.5 Theorem

Suppose Γ is consistent. Then there is a maximal consistent $\Gamma^{\prime} \supseteq \Gamma$.

Proof:

Form $\left(\mathcal{L}_{0}\right)$ is countable, say

$$
\operatorname{Form}\left(\mathcal{L}_{0}\right)=\left\{\phi_{1}, \phi_{2}, \phi_{3}, \ldots\right\} .
$$

Construct consistent sets

$$
\Gamma_{0} \subseteq \Gamma_{1} \subseteq \Gamma_{2} \subseteq \ldots
$$

as follows:

- $\Gamma_{0}:=\Gamma$.
- Given consistent Γ_{n}, let

$$
\Gamma_{n+1}:= \begin{cases}\Gamma_{n} \cup\left\{\phi_{n+1}\right\} & \text { if } \Gamma_{n} \vdash \phi_{n+1} \\ \Gamma_{n} \cup\left\{\neg \phi_{n+1}\right\} & \text { if } \Gamma_{n} \nvdash \phi_{n+1}\end{cases}
$$

Then Γ_{n+1} is consistent by 7.3 and 7.2.

Now let $\Gamma^{\prime}:=\bigcup_{n=0}^{\infty} \Gamma_{n}$.

Then Γ^{\prime} is consistent:

Any proof of $\Gamma^{\prime} \vdash \alpha$ and $\Gamma^{\prime} \vdash \neg \alpha$ would use only finitely many formulas from Γ^{\prime}, so for some $n, \Gamma_{n} \vdash \alpha$ and $\Gamma_{n} \vdash \neg \alpha-$ contradicting the consistency of Γ_{n}.

Finally, Γ^{\prime} is maximal consistent: for all n, either $\phi_{n} \in \Gamma^{\prime}$ or $\neg \phi_{n} \in \Gamma^{\prime}$,
so in particular either $\Gamma^{\prime} \vdash \phi_{n}$ or $\Gamma^{\prime} \vdash \neg \phi_{n}$.
(Note that this proof did not use Zorn's Lemma; countability of the language was crucial for this.)

7.6 Lemma

Suppose Γ is maximal consistent.
Then for every $\psi, \chi \in \operatorname{Form}\left(\mathcal{L}_{0}\right)$:
(a) $\Gamma \vdash \neg \psi$ iff $\Gamma \nvdash \psi$.
(b) $\Gamma \vdash(\psi \rightarrow \chi)$ iff either $\Gamma \nvdash \psi$ or $\Gamma \vdash \chi$.

Proof:
(a) ' \Rightarrow ': by consistency.
' \Leftarrow ': by maximality.
(b) ' \Rightarrow ': Suppose $\Gamma \vdash(\psi \rightarrow \chi)$ but $\Gamma \vdash \psi$ and $\Gamma \nvdash \chi$. By MP, $\Gamma \vdash \chi$, contradicting consistency.
‘ \Leftarrow ': Suppose $\ulcorner\nvdash \psi$. Then $\Gamma \vdash \neg \psi$ by (a). $\Gamma \vdash(\neg \psi \rightarrow(\psi \rightarrow \chi))$ (Problem sheet 2 Q3) $\Rightarrow \mathrm{MP}^{\circ} \Gamma \vdash(\psi \rightarrow \chi)$.

Suppose $\ulcorner\vdash \chi$.

$$
\begin{aligned}
& \Gamma \vdash(\chi \rightarrow(\psi \rightarrow \chi)) \text { (Axiom A1) } \\
& \Rightarrow_{M P} \Gamma \vdash(\psi \rightarrow \chi) .
\end{aligned}
$$

7.7 Theorem

Suppose Γ is maximal consistent.
Then Γ is satisfiable.

Proof:
Define a valuation v by

$$
v\left(p_{i}\right)=T \text { iff } \Gamma \vdash p_{i} .
$$

Claim: for all $\phi \in \operatorname{Form}\left(\mathcal{L}_{0}\right)$:

$$
\widetilde{v}(\phi)=T \text { iff } \Gamma \vdash \phi .
$$

Proof by induction on the length n of ϕ.

If $n=1$, then $\phi=p_{i}$ for some i and we are done by the definition of v.

Suppose $n=$ length $(\phi)>1$.
IH: Claim true for all $n^{\prime}<n$.

Case 1: $\phi=\neg \psi$

$$
\begin{array}{llll}
\tilde{v}(\phi)=T & \text { iff } & \tilde{v}(\psi)=F & \text { tt } \neg \\
& \text { iff } & \ulcorner\nvdash \psi & \text { IH } \\
& \text { iff } & \ulcorner\vdash \neg \psi & \text { 7.6(a) } \\
& \text { iff } & \ulcorner\vdash \phi &
\end{array}
$$

Case 2: $\phi=(\psi \rightarrow \chi)$

\[

\]

So $\widetilde{v}(\phi)=T$ for all $\phi \in \Gamma$, i.e. v satisfies Γ.

7.8 Corollary

Let $\Gamma \subseteq \operatorname{Form}\left(\mathcal{L}_{0}\right)$. Then
Γ is consistent if and only if Γ is satisfiable.

Proof:
\Rightarrow : By $7.5+7.7$:
If Γ is consistent,
then by 7.5 it extends to a maximal consistent set, which by 7.7 is satisfiable, hence also Γ is satisfiable.
\Leftarrow : By soundness:
Suppose 「 inconsistent, say $\Gamma \vdash \alpha$ and $\Gamma \vdash \neg \alpha$.
Then $\Gamma \models \alpha$ and $\Gamma \vDash \neg \alpha$ by soundness, so Γ is not satisfiable.

7.9 The Completeness Theorem If $\Gamma \models \phi$ then $\Gamma \vdash \phi$.

Proof:

Suppose $\ulcorner\nvdash \phi$.
\Rightarrow by 7.2, $\Gamma \cup\{\neg \phi\}$ is consistent
\Rightarrow by 7.8, $\ulcorner\cup\{\neg \phi\}$ is satisfiable
\Rightarrow there is some valuation v such that $\widetilde{v}(\psi)=T$ for $\psi \in \Gamma$, but $\widetilde{v}(\phi)=F$
$\Rightarrow \Gamma \not \vDash \phi . \square$

7.10 Corollary

(7.9 Completeness + 6.5 Soundness)

$$
\ulcorner\models \phi \text { iff }\ulcorner\vdash \phi
$$

7.11 The Compactness Theorem for \mathcal{L}_{0}

$\Gamma \subseteq \operatorname{Form}\left(\mathcal{L}_{0}\right)$ is satisfiable iff every finite subset of Γ is satisfiable.

Proof: By 7.8, this is equivalent to:
$\Gamma \subseteq \operatorname{Form}\left(\mathcal{L}_{0}\right)$ is consistent iff every finite subset of Γ is consistent.

But indeed, by finiteness of proofs, $\Gamma \vdash \alpha$ and $\Gamma \vdash \neg \alpha$ iff already
$\Gamma_{0} \vdash \alpha$ and $\Gamma_{0} \vdash \neg \alpha$ for some finite $\Gamma_{0} \subseteq \Gamma$.

PART II:

PREDICATE CALCULUS

So far:

- Logic of the connectives $\neg, \wedge, \vee, \rightarrow, \leftrightarrow, \ldots$ (as used in mathematics).
- Logical validity in terms of truth tables.
- Found axioms and rule of inference yielding a sound and complete proof system. Deduced compactness.

Now:

- Look more deeply into the structure of propositions used in mathematics.
- Analyse grammatically correct use of functions, relations, constants, variables and quantifiers.
- Define logical validity in this refined language.
- Isolate axioms and rules of inference (beyond those of propositional calculus) used in mathematical arguments.
- Prove: soundness, completeness, compactness.

8. The language of (first-order) predicate calculus

A countable first-order language \mathcal{L} consists of the following disjoint sets:

- for each $k \geq 1$, a countable set of k-ary predicate (or relation) symbols;
- for each $k \geq 1$, a countable set of k-ary function symbols;
- a countable set of constant symbols.

These symbols are called the non-logical symbols of \mathcal{L}.

The alphabet of \mathcal{L} consists of its non-logical symbols along with the following disjoint set of logical symbols:

- Connectives: \rightarrow, $ᄀ$
- Quantifier: \forall ('for all')
- Variables: $x_{0}, x_{1}, x_{2}, \ldots$
- 3 punctuation marks: , ()
- Equality symbol: \doteq

8.1 Definition

(a) The terms of \mathcal{L} are defined recursively as follows:
(i) Every variable is a term.
(ii) Every constant symbol is a term.
(iii) If f is a k-ary function symbol, and t_{1}, \ldots, t_{k} are terms, then so is the string

$$
f\left(t_{1}, \ldots, t_{k}\right)
$$

(b) An atomic formula of \mathcal{L} is any string of the form

$$
P\left(t_{1}, \ldots, t_{k}\right) \text { or } t_{1} \doteq t_{2}
$$

where $k \geq 1, P \in \mathcal{L}$ is a k-ary relation symbol, and all t_{i} are terms.
(c) The formulas of \mathcal{L} are defined recursively as follows:
(i) Any atomic formula is a formula.
(ii) If ϕ, ψ are formulas, then so are $\neg \phi$ and ($\phi \rightarrow \psi$).
(iii) If ϕ is a formula, then for any variable x_{i} so is $\forall x_{i} \phi$.
8.2 Examples The most general countable language has a countably infinite set of symbols of each type:

$$
\mathcal{L}_{\text {pred }}:=\left\{\left(P_{i}^{(k)}\right)_{i, k>0},\left(f_{i}^{(k)}\right)_{i, k>0},\left(c_{i}\right)_{i>0}\right\},
$$

where each $P_{i}^{(k)}$ is a k-ary predicate symbol, each $f_{i}^{(k)}$ is a k-ary function symbol, and each c_{i} is a constant symbol.

- The following are all $\mathcal{L}_{\text {pred }}$-terms:

$$
c_{3} \quad x_{5} \quad f_{3}^{(1)}\left(c_{2}\right) \quad f_{1}^{(2)}\left(x_{1}, f_{1}^{(1)}\left(c_{37}\right)\right)
$$

- $f_{2}^{(3)}\left(x_{1}, x_{2}\right)$ is not a term (wrong arity).
- $P_{2}^{(3)}\left(x_{4}, c_{2}, f_{3}^{(2)}\left(c_{1}, x_{2}\right)\right)$ and $f_{1}^{(2)}\left(c_{5}, x_{2}\right) \doteq x_{3}$ are atomic formulas.
- $\forall x_{1} f_{2}^{(2)}\left(x_{1}, c_{7}\right) \doteq x_{2}$ and $\forall x_{2} P_{1}^{(1)}\left(x_{3}\right)$ are non-atomic formulas.

8.3 Exercise

We have unique readability for terms, for atomic formulas, and for formulas.

A more typical example of a language appearing in mathematics is

$$
\mathcal{L}_{\text {o.ring }}:=\{<, \cdot,+,-, \overline{0}, \overline{1}\},
$$

where $<$ is a binary relation symbol, $\cdot,+$, and - are binary function symbols, and $\overline{0}$ and $\overline{1}$ are constant symbols.
We call this the language of ordered rings.

When dealing with binary symbols, we will allow ourselves to use infix notation as an abbreviation, so e.g.

$$
\forall x_{0} x_{0}<x_{0}+\overline{1}
$$

abbreviates the $\mathcal{L}_{\text {o.ring }}$-formula

$$
\forall x_{0}<\left(x_{0},+\left(x_{0}, \overline{1}\right)\right) .
$$

8.4 Interpretations and logical validity (Informal discussion)

- Consider the following $\{f\}$-formula, with f a unary function symbol:

$$
\phi_{1}: \forall x_{1} \forall x_{2}\left(x_{1} \doteq x_{2} \rightarrow f\left(x_{1}\right) \doteq f\left(x_{2}\right)\right)
$$

Interpreting \doteq as equality, \forall as 'for all', and f as some unary function, ϕ_{1} should always be true. We write

$$
\vDash \phi_{1}
$$

and say ' ϕ_{1} is logically valid'.

- Consider the following $\{g\}$-formula, with g a binary function symbol:
$\phi_{2}: \forall x_{1} \forall x_{2}\left(g\left(x_{1}, x_{2}\right) \doteq g\left(x_{2}, x_{1}\right) \rightarrow x_{1} \doteq x_{2}\right)$
Then ϕ_{2} may be true or false, depending on the situation:
- If we interpret g as + on \mathbb{N}, then ϕ_{2} becomes false, since e.g. $1+2=2+1$, but $1 \neq 2$.

So in this interpretation, ϕ_{2} is false and $\neg \phi_{2}$ is true. Write

$$
\langle\mathbb{N} ;+\rangle \models \neg \phi_{2}
$$

- If we interpret g as subtraction on \mathbb{R}, then ϕ_{2} becomes true:
if $x_{1}-x_{2}=x_{2}-x_{1}$, then $2 x_{1}=2 x_{2}$, and hence $x_{1}=x_{2}$.
So

$$
\langle\mathbb{R} ;-\rangle \models \phi_{2}
$$

8.5 Free and bound variables

(Informal discussion)
There is a further complication: Consider the $\{P\}$-formula

$$
\phi_{3}: \forall x_{0} P\left(x_{1}, x_{0}\right)
$$

Specifying the interpretation is not enough to determine whether or not ϕ_{3} holds.

For example, in $\langle\mathbb{N} ; \leq\rangle$:

- If we put $x_{1}=0$ then ϕ_{3} is true;
- if we put $x_{1}=2$ then ϕ_{3} is false.

So it depends on the value we assign to x_{1} (like in propositional calculus: the truth value of $\left(p_{0} \wedge p_{1}\right)$ depends on the valuation).

In ϕ_{3} we can assign a value to x_{1} because x_{1} occurs free in ϕ_{3}.

For x_{0}, however, it makes no sense to assign a particular value; because x_{0} is bound in ϕ_{3} by the quantifier $\forall x_{0}$.

9. Interpretations and Assignments

9.1 Definition

Let \mathcal{L} be a language. An interpretation of \mathcal{L} is an \mathcal{L}-structure

$$
\mathcal{A}:=\left\langle A ;\left(f^{\mathcal{A}}\right)_{f \in \operatorname{Fct}(\mathcal{L})},\left(P^{\mathcal{A}}\right)_{P \in \operatorname{Pred}(\mathcal{L})},\left(c^{\mathcal{A}}\right)_{c \in \operatorname{Const}(\mathcal{L})}\right\rangle,
$$

where:

- A is a non-empty set, the domain of \mathcal{A};
- For $f \in \mathcal{L}$ a k-ary function symbol, $f^{\mathcal{A}}: A^{k} \rightarrow A$ is a k-ary function;
- For $P \in \mathcal{L}$ a k-ary predicate symbol, $P^{\mathcal{A}}$ is a k-ary relation on A, i.e. $P^{\mathcal{A}} \subseteq A^{k}$;
- For $c \in \mathcal{L}$ a constant symbol, $c^{\mathcal{A}} \in A$.

9.2 Definition

Let \mathcal{L} be a language and let $\mathcal{A}=\langle A ; \ldots\rangle$ be an \mathcal{L}-structure.
(1) An assignment in \mathcal{A} is a function

$$
v:\left\{x_{0}, x_{1}, \ldots\right\} \rightarrow A
$$

(2) v determines an assignment

$$
\tilde{v}=\widetilde{v}^{\mathcal{A}}: \operatorname{Terms}(\mathcal{L}) \rightarrow A
$$

defined recursively as follows:
(i) $\widetilde{v}\left(x_{i}\right):=v\left(x_{i}\right)$ for all $i=0,1, \ldots$;
(ii) $\tilde{v}(c):=c^{\mathcal{A}}$ for each constant symbol $c \in \mathcal{L}$;
(iii) $\widetilde{v}\left(f\left(t_{1}, \ldots, t_{k}\right)\right):=f^{\mathcal{A}}\left(\widetilde{v}\left(t_{1}\right), \ldots, \widetilde{v}\left(t_{k}\right)\right)$
for each k-ary function symbol $f \in \mathcal{L}$.
(3) v determines a valuation

$$
\widetilde{v}=\widetilde{v}^{\mathcal{A}}: \operatorname{Form}(\mathcal{L}) \rightarrow\{T, F\}
$$

as follows:

Define \widetilde{v} on formulas recursively:

- On atomic formulas:
- For each k-ary predicate symbol $P \in \mathcal{L}$ and for all $t_{i} \in \operatorname{Term}(\mathcal{L})$:

$$
\widetilde{v}\left(P\left(t_{1}, \ldots, t_{k}\right)\right)= \begin{cases}T & \text { if }\left(\widetilde{v}\left(t_{1}\right), \ldots, \widetilde{v}\left(t_{k}\right)\right) \in P^{\mathcal{A}} \\ F & \text { otherwise }\end{cases}
$$

- For all $t_{1}, t_{2} \in \operatorname{Term}(\mathcal{L})$:

$$
\widetilde{v}\left(t_{1} \doteq t_{2}\right)= \begin{cases}T & \text { if } \widetilde{v}\left(t_{1}\right)=\widetilde{v}\left(t_{2}\right) \\ F & \text { otherwise } .\end{cases}
$$

- $\widetilde{v}(\neg \psi)=T$ iff $\widetilde{v}(\psi)=F$
- $\widetilde{v}(\psi \rightarrow \chi)=T$ iff $\widetilde{v}(\psi)=F$ or $\widetilde{v}(\chi)=T$
- $\widetilde{v}\left(\forall x_{i} \psi\right)=T$ iff $\widetilde{v}^{\star}(\psi)=T$ for all
assignments v^{\star} agreeing with v except possibly at x_{i}.

Notation: Write $\mathcal{A}=\phi[v]$ for $\widetilde{v}^{\mathcal{A}}(\phi)=T$, read ' ϕ is true in \mathcal{A} under the assignment v '.

9.3 Example

Consider $\mathcal{A}=\langle\mathbb{Z} ; \cdot\rangle$ as an $\{f\}$-structure (f a binary function symbol). Let v be the assignment $v\left(x_{i}\right)=i(\in \mathbb{Z})$ for $i=0,1, \ldots$, and let

$$
\phi=\forall x_{0} \forall x_{1}\left(f\left(x_{0}, x_{2}\right) \doteq f\left(x_{1}, x_{2}\right) \rightarrow x_{0} \doteq x_{1}\right)
$$

Then $\mathcal{A} \models \phi[v]$; indeed:

$$
\mathcal{A} \models \phi[v]
$$

iff for all v^{\star} with $v^{\star}\left(x_{i}\right)=i$ for $i \neq 0$

$$
\mathcal{A} \models \forall x_{1}\left(f\left(x_{0}, x_{2}\right) \doteq f\left(x_{1}, x_{2}\right) \rightarrow x_{0} \doteq x_{1}\right)\left[v^{\star}\right]
$$

iff for all $v^{\star \star}$ with $v^{\star \star}\left(x_{i}\right)=i$ for $i \neq 0,1$

$$
\mathcal{A} \models\left(f\left(x_{0}, x_{2}\right) \doteq f\left(x_{1}, x_{2}\right) \rightarrow x_{0} \doteq x_{1}\right)\left[v^{\star \star}\right]
$$

iff for all $v^{\star \star}$ with $v^{\star \star}\left(x_{i}\right)=i$ for $i \neq 0,1$ $v^{\star \star}\left(x_{0}\right) \cdot v^{\star \star}\left(x_{2}\right)=v^{\star \star}\left(x_{1}\right) \cdot v^{\star \star}\left(x_{2}\right)$
implies $v^{\star \star}\left(x_{0}\right)=v^{\star \star}\left(x_{1}\right)$
iff for all $a, b \in \mathbb{Z}, a \cdot 2=b \cdot 2$ implies $a=b$, which is true.

However, with $v^{\prime}\left(x_{i}\right)=0$ for all i, we would have finished with
\ldots iff for all $a, b \in \mathbb{Z}, a \cdot 0=b \cdot 0$ implies $a=b$, which is false. So $\mathcal{A} \not \vDash \phi\left[v^{\prime}\right]$.

9.4 Example

Let P be a unary predicate symbol, $\mathcal{L}=\{P\}$, \mathcal{A} an \mathcal{L}-structure,

$$
\phi=\left(\forall x_{0} P\left(x_{0}\right) \rightarrow P\left(x_{1}\right)\right)
$$

and v any assignment in \mathcal{A}. Then $\mathcal{A} \vDash \phi[v]$.
Proof:
$\mathcal{A}=\phi[v]$ iff
$\mathcal{A} \models \forall x_{0} P\left(x_{0}\right)[v]$ implies $\mathcal{A} \models P\left(x_{1}\right)[v]$.
Now suppose $\mathcal{A}=\forall x_{0} P\left(x_{0}\right)[v]$. Then for all v^{\star} which agree with v except possibly at x_{0}, $\mathcal{A}=P\left(x_{0}\right)\left[v^{\star}\right]$.

In particular, for $v^{\star}\left(x_{i}\right)= \begin{cases}v\left(x_{i}\right) & \text { if } i \neq 0 \\ v\left(x_{1}\right) & \text { if } i=0\end{cases}$ we have $P^{\mathcal{A}}\left(v^{\star}\left(x_{0}\right)\right)$, and hence $v\left(x_{1}\right) \in P^{\mathcal{A}}$, i.e. $\mathcal{A} \vDash P\left(x_{1}\right)[v]$.

9.5 Definition

Let \mathcal{L} be a language.

- An \mathcal{L}-formula ϕ is logically valid (' $\vDash \phi^{\prime}$) if $\mathcal{A} \models \phi[v]$ for all \mathcal{L}-structures \mathcal{A} and for all assignments v in \mathcal{A}.
- $\phi \in \operatorname{Form}(\mathcal{L})$ is satisfiable if $\mathcal{A} \models \phi[v]$ for some \mathcal{L}-structure \mathcal{A} and for some assignment v in \mathcal{A}.
- For $\Gamma \subseteq \operatorname{Form}(\mathcal{L})$ and $\phi \in \operatorname{Form}(\mathcal{L})$, ϕ is a logical consequence of Γ, written $\Gamma \models \phi$, if for all \mathcal{L}-structures \mathcal{A} and for all assignments v in \mathcal{A} with $\mathcal{A} \models \psi[v]$ for all $\psi \in \Gamma$, also $\mathcal{A} \models \phi[v]$.
- $\phi, \psi \in \operatorname{Form}(\mathcal{L})$ are logically equivalent if $\{\phi\} \models \psi$ and $\{\psi\} \models \phi$.

Example: $\vDash \phi$ for ϕ from Example 9.4.

Note:

The symbol ' \equiv ' is now used in two ways:

- $\Gamma \vDash \phi$ means: ϕ is a logical consequence of Γ.
- $\mathcal{A} \vDash \phi[v]$ means: ϕ is satisfied in the \mathcal{L}-structure \mathcal{A} under the assignment v.

This shouldn't give rise to confusion, since it will always be clear from the context whether there is a set Γ of \mathcal{L}-formulas or an \mathcal{L}-structure \mathcal{A} in front of ' \models '.

9.6 Some abbreviations

We use \ldots	as abbreviation for \ldots
$(\alpha \vee \beta)$	$((\alpha \rightarrow \beta) \rightarrow \beta)$
$(\alpha \wedge \beta)$	$\neg(\neg \alpha \vee \neg \beta)$
$(\alpha \leftrightarrow \beta)$	$((\alpha \rightarrow \beta) \wedge(\beta \rightarrow \alpha))$
$\exists x_{i} \phi$	$\neg \forall x_{i} \neg \phi$

9.7 Lemma

For any \mathcal{L}-structure \mathcal{A} and any assignment v in \mathcal{A} one has

$$
\begin{array}{rll}
\mathcal{A} \models(\alpha \vee \beta)[v] & \text { iff } & \mathcal{A} \models \alpha[v] \text { or } \mathcal{A} \models \beta[v] \\
\mathcal{A} \models(\alpha \wedge \beta)[v] & \text { iff } & \mathcal{A}=\alpha[v] \text { and } \mathcal{A} \models \beta[v] \\
\mathcal{A} \models(\alpha \leftrightarrow \beta)[v] & \text { iff } & \widetilde{v}(\alpha)=\widetilde{v}(\beta) \\
\mathcal{A} \models \exists x_{i} \phi[v] & \text { iff } & \text { for some assignment } \\
& v^{\star} \text { agreeing with } v \\
& \text { except possibly at } x_{i} \\
& \mathcal{A} \models \phi\left[v^{\star}\right]
\end{array}
$$

Proof: Easy exercise.

10. Free and bound variables

Recall Example 9.3: The formula

$$
\phi=\forall x_{0} \forall x_{1}\left(f\left(x_{0}, x_{2}\right) \doteq f\left(x_{1}, x_{2}\right) \rightarrow x_{0} \doteq x_{1}\right)
$$

- is true in $\langle\mathbb{Z} ; \cdot\rangle$ under any assignment v with $v\left(x_{2}\right)=2$,
- but false when $v\left(x_{2}\right)=0$.

Whether or not $\mathcal{A} \models \phi[v]$ depends on $v\left(x_{2}\right)$ but not on $v\left(x_{0}\right)$ or $v\left(x_{1}\right)$.

This is because all occurrences of x_{0} and x_{1} in ϕ are subordinate to the corresponding quantifiers $\forall x_{0}$ and $\forall x_{1}$.
We say that these occurrences are bound, while the occurrence of x_{2} is free.

10.1 Definition

Let \mathcal{L} be a first-order language, ϕ an \mathcal{L}-formula, and $x \in\left\{x_{0}, x_{1}, \ldots\right\}$ a variable.

An occurrence of x in ϕ is free, if
(i) ϕ is atomic; or
(ii) $\phi=\neg \psi$ resp. $\phi=(\chi \rightarrow \rho)$,
and the occurrence of x is free in ψ resp.
in χ or in ρ; or
(iii) $\phi=\forall x_{i} \psi$, and $x \neq x_{i}$, and the occurrence of x is free in ψ.

The variables which occur free in ϕ are called the free variables of ϕ,
Free $(\phi):=\left\{x_{i}: x_{i}\right.$ occurs free in $\left.\phi\right\}$.
An occurrence which is not free is bound.
In particular, if $\phi=\forall x_{i} \psi$, then any occurrence of x_{i} in ϕ is bound.

10.2 Example

$(\exists x_{0} P(\underbrace{x_{0}}_{\text {bnd }}, \underbrace{x_{1}}_{\text {free }}) \vee \forall x_{1}(P(\underbrace{x_{0}}_{\text {free }}, \underbrace{x_{1}}_{\text {bnd }}) \rightarrow \exists x_{0} P(\underbrace{x_{0}}_{\text {bnd }}, \underbrace{x_{1}}_{\text {bnd }})))$

10.3 Lemma

Let \mathcal{L} be a language, let \mathcal{A} be an \mathcal{L}-structure, let v_{1}, v_{2} be assignments in \mathcal{A}, and let ϕ be an \mathcal{L}-formula.

Suppose $v_{1}\left(x_{i}\right)=v_{2}\left(x_{i}\right)$ for every variable x_{i} with a free occurrence in ϕ.

Then

$$
\mathcal{A} \models \phi\left[v_{1}\right] \text { iff } \mathcal{A} \models \phi\left[v_{2}\right] .
$$

Proof:
For ϕ atomic: exercise.
Now use induction on the length of ϕ. If $\phi=\neg \psi$ or $\phi=(\chi \rightarrow \rho)$, this is straightforward.

So say $\phi=\forall x_{i} \psi$.
IH: Assume the Lemma holds for ψ.
Suppose $\mathcal{A} \vDash \forall x_{i} \psi\left[v_{1}\right]$.
We want to show $\mathcal{A} \vDash \forall x_{i} \psi\left[v_{2}\right]$. So suppose v_{2}^{\star} agrees with v_{2} except possibly at x_{i};
we want to show $\mathcal{A} \vDash \psi\left[v_{2}^{\star}\right]$.
Let $v_{1}^{\star}\left(x_{j}\right):= \begin{cases}v_{1}\left(x_{j}\right) & \text { if } j \neq i \\ v_{2}^{\star}\left(x_{i}\right) & \text { if } j=i\end{cases}$
Then v_{1}^{\star} agrees with v_{1} except possibly at x_{i}. So by (\star), $\mathcal{A} \models \psi\left[v_{1}^{\star}\right]$.

Now suppose x_{j} occurs free in ψ.
We show $v_{2}^{\star}\left(x_{j}\right)=v_{1}^{\star}\left(x_{j}\right)$.
If $j=i$, this is by definition of v_{1}^{\star}.
If $j \neq i$, then x_{j} occurs free in ϕ, so

$$
v_{2}^{\star}\left(x_{j}\right)=v_{2}\left(x_{j}\right)=v_{1}\left(x_{j}\right)=v_{1}^{\star}\left(x_{j}\right)
$$

So by $\mathrm{IH}, \mathcal{A} \vDash \psi\left[v_{2}^{\star}\right]$, as required

10.4 Corollary

Let \mathcal{L} be a language, and let $\alpha, \beta \in \operatorname{Form}(\mathcal{L})$. Assume the variable x_{i} has no free occurrence in α (i.e. $x_{i} \notin \operatorname{Free}(\alpha)$). Then

$$
\vDash\left(\forall x_{i}(\alpha \rightarrow \beta) \rightarrow\left(\alpha \rightarrow \forall x_{i} \beta\right)\right)
$$

Proof:
Let \mathcal{A} be an \mathcal{L}-structure and let v be an assignment in \mathcal{A} such that
$\mathcal{A} \vDash \forall x_{i}(\alpha \rightarrow \beta)[v]$.
To show: $\mathcal{A} \vDash\left(\alpha \rightarrow \forall x_{i} \beta\right)[v]$.
So suppose $\mathcal{A} \vDash \alpha[v]$.
To show: $\mathcal{A} \vDash \forall x_{i} \beta[v]$.
So let v^{\star} be an assignment agreeing with v except possibly at x_{i}.
To show: $\mathcal{A}=\beta\left[v^{\star}\right]$.
x_{i} is not free in $\alpha \Rightarrow_{10.3} \mathcal{A} \models \alpha\left[v^{\star}\right]$
$(\star) \Rightarrow \mathcal{A} \vDash(\alpha \rightarrow \beta)\left[v^{\star}\right]$
$\Rightarrow \mathcal{A} \models \beta\left[v^{\star}\right]$.

10.5 Definition

A formula σ with no free (occurrences of)
variables is called a statement or a sentence.

Then (by 10.3) for any \mathcal{L}-structure \mathcal{A}, whether or not $\mathcal{A} \vDash \sigma[v]$ does not depend on the choice of assignment v.

So we write

$$
\mathcal{A} \vDash \sigma
$$

if $\mathcal{A} \vDash \sigma[v]$ for some/all v.

Say: σ is true in \mathcal{A}, or \mathcal{A} is a model of σ.
(\sim 'Model Theory')

10.6 Example

Let $\mathcal{L}=\{f, c\}$ be a language, where f is a binary function symbol, and c is a constant symbol.

Consider the sentences (writing x, y, z for x_{0}, x_{1}, x_{2})

$$
\begin{aligned}
& \sigma_{1}: \forall x \forall y \forall z f(x, f(y, z)) \doteq f(f(x, y), z) \\
& \sigma_{2}: \forall x \exists y(f(x, y) \stackrel{y}{=} c \wedge f(y, x) \doteq c) \\
& \sigma_{3}: \forall x(f(x, c) \stackrel{y}{=} x \wedge f(c, x) \stackrel{y}{=} x)
\end{aligned}
$$

and let $\sigma=\left(\sigma_{1} \wedge \sigma_{2} \wedge \sigma_{3}\right)$

Let $\mathcal{A}=\langle A ; \cdot, e\rangle$ be an \mathcal{L}-structure (i.e. . is an interpretation of f, and e is an interpretation of c).

Then $\mathcal{A} \models \sigma$ iff \mathcal{A} is a group.

10.7 Example

Let $\mathcal{L}=\{E\}$ with E a binary relation symbol. Consider

$$
\begin{aligned}
& \tau_{1}: \forall x E(x, x) \\
& \tau_{2}: \quad \forall x \forall y(E(x, y) \leftrightarrow E(y, x)) \\
& \tau_{3}: \quad \forall x \forall y \forall z(E(x, y) \rightarrow(E(y, z) \rightarrow E(x, z)))
\end{aligned}
$$

Then for any \mathcal{L}-structure $\langle A ; R\rangle$: $\langle A ; R\rangle \vDash \wedge_{i} \tau_{i}$ iff R is an equivalence relation on A.

Note: Many mathematical concepts can be naturally expressed by first-order formulas.

10.8 Example

Let $<$ be a binary predicate symbol,
$\mathcal{L}:=\{<\}$. Consider the sentence

$$
\begin{aligned}
\sigma:=\forall x \forall y \forall z & (\neg x<x \\
& \wedge(x<y \vee x \doteq y \vee y<x) \\
& \wedge((x<y \wedge y<z) \rightarrow x<z) \\
& \wedge(x<y \rightarrow \exists w(x<w \wedge w<y)) \\
& \wedge \exists w w<x \\
& \wedge \exists w x<w)
\end{aligned}
$$

This axiomatises a dense linear order
without endpoints. In particular, $\langle\mathbb{Q} ;<\rangle \vDash \sigma$ and $\langle\mathbb{R} ;<\rangle \vDash \sigma$.

But: ‘Completeness' of $\langle\mathbb{R} ;<\rangle$ is not captured by the first-order language \mathcal{L}, but rather in second-order terms, meaning that we also allow quantification over subsets of \mathbb{R} :

$$
\forall A, B \subseteq \mathbb{R}(A<B \rightarrow \exists c \in \mathbb{R}(A \leq\{c\} \leq B))
$$

writing $A<B$ to mean that $a<b$ for every $a \in A$ and every $b \in B$, similarly for $A \leq B$.

11. Substitution

Discussion: Let \mathcal{A} be an \mathcal{L}-structure, $\phi \in \operatorname{Form}(\mathcal{L})$, and suppose $\mathcal{A}=\forall x_{i} \phi$.
If c is a constant symbol in \mathcal{L}, then
$\mathcal{A} \vDash \phi\left[c / x_{i}\right]$ where $\phi\left[c / x_{i}\right]$ is the result of replacing each free instance of x_{i} in ϕ with c.

We would like to say more generally that

$$
\models \forall x_{i} \phi \rightarrow \phi\left[t / x_{i}\right]
$$

for a term t, but we have to be careful:

11.1 Example

Let \mathcal{L} contain a constant symbol c, and let $\phi:=\exists x_{0} \neg x_{0} \doteq x_{1}$.

Then $\mathcal{A}=\forall x_{1} \phi$ for any \mathcal{L}-structure \mathcal{A} with at least two elements, and then also $\mathcal{A} \models \phi\left[c / x_{1}\right]=\exists x_{0} \neg x_{0} \doteq c$.

However, if were to define $\phi\left[x_{0} / x_{1}\right]$ in the same way, we would obtain $\exists x_{0} \neg x_{0} \doteq x_{0}$, which does not hold in any \mathcal{A}.

Problem: the variable x_{0} has become bound in the substitution.

11.2 Definition

For $\phi \in \operatorname{Form}(\mathcal{L})$, a variable x_{i}, and a term $t \in \operatorname{Term}(\mathcal{L})$, the result of substituting t for x_{i} in ϕ is the formula

$$
(\phi)\left[t / x_{i}\right]
$$

which is obtained by replacing each free occurrence of x_{i} in ϕ with the string t, as long as this does not lead to new bound occurrences of variables being introduced; if it does, we say that (ϕ) $\left[t / x_{i}\right]$ is undefined.

We can restate this as a recursive definition:
(i) If ϕ is atomic, $(\phi)\left[t / x_{i}\right]$ is the result of replacing each instance of x_{i} in ϕ with t.
(ii) $(\neg \psi)\left[t / x_{i}\right]:=\neg(\psi)\left[t / x_{i}\right]$
(undefined if $(\psi)\left[t / x_{i}\right]$ is).
(iii) $((\psi \rightarrow \chi))\left[t / x_{i}\right]:=\left((\psi)\left[t / x_{i}\right] \rightarrow(\chi)\left[t / x_{i}\right]\right)$
(undefined if $(\psi)\left[t / x_{i}\right]$ or $(\chi)\left[t / x_{i}\right]$ is).
(iv) $\left(\forall x_{i} \psi\right)\left[t / x_{i}\right]:=\forall x_{i} \psi$.
(v) If $j \neq i,\left(\forall x_{j} \psi\right)\left[t / x_{i}\right]:=\forall x_{j}(\psi)\left[t / x_{i}\right]$ unless x_{j} occurs in t and x_{i} occurs free in ψ, in which case $\left(\forall x_{j} \psi\right)\left[t / x_{i}\right]$ is undefined.

Notation: When no ambiguity could result, we often write $\phi\left[t / x_{i}\right]$ for $(\phi)\left[t / x_{i}\right]$.

Let \mathcal{L} be a first-order language, \mathcal{A} an \mathcal{L}-structure.

11.3 Definition

For v an assignment in \mathcal{A} and $t \in \operatorname{Term}(\mathcal{L})$, define

$$
v_{t / x_{i}}\left(x_{j}\right):= \begin{cases}v\left(x_{j}\right) & \text { if } j \neq i \\ \widetilde{v}(t) & \text { if } j=i\end{cases}
$$

11.4 Substitution Lemma

Let v be an assignment in an \mathcal{L}-structure \mathcal{A}. Let $\phi \in \operatorname{Form}(\mathcal{L}), t \in \operatorname{Term}(\mathcal{L})$, and suppose $\phi\left[t / x_{i}\right]$ is defined.

Then $\mathcal{A} \vDash \phi\left[t / x_{i}\right][v]$ iff $\mathcal{A} \vDash \phi\left[v_{t / x_{i}}\right]$.

Proof:
Case 1ϕ atomic:
First, for $u \in \operatorname{Term}(\mathcal{L})$ define:
$u\left[t / x_{i}\right]:=$ the term obtained by replacing each occurrence of x_{i} in u by t.

Then $\widetilde{v_{t / x_{i}}}(u)=\widetilde{v}\left(u\left[t / x_{i}\right]\right)$.
(Exercise)

Now if $\phi=P\left(t_{1}, \ldots, t_{k}\right)$ for a k-ary relation symbol P in \mathcal{L}, then:

$$
\begin{aligned}
& \mathcal{A}=\phi\left[v_{t / x_{i}}\right] \\
& \text { iff }\left(\widetilde{v_{t / x i}}\left(t_{1}\right), \ldots, \widetilde{v_{t / x}}\left(t_{k}\right)\right) \in P^{\mathcal{A}} \\
& \text { iff }\left(\widetilde{v}\left(t_{i}\left[t / x_{i}\right]\right), \ldots, \widetilde{v}\left(t_{k}\left[t / x_{i}\right]\right)\right) \in P^{\mathcal{A}} \\
& \text { iff } \mathcal{A}=P\left(t_{1}\left[t / x_{i}\right], \ldots, t_{k}\left[t / x_{i}\right]\right)[v] \\
& \text { iff } \mathcal{A}=\phi\left[t / x_{i}\right][v]
\end{aligned}
$$

If $\phi=t_{1} \doteq t_{2}$, a similar argument applies.

IH: Lemma holds for shorter formulas.

Case $2 \phi=\neg \psi$ or $\phi=(\xi \rightarrow \rho)$:
Follows directly from IH.

Case $3 \phi=\forall x_{i} \psi$:
Then $\phi\left[t / x_{i}\right]=\phi$.
$x_{i} \notin \operatorname{Free}(\phi)$,
so v and $v_{t / x_{i}}$ agree on all $x \in \operatorname{Free}(\phi)$,
so by Lemma 10.3,

$$
\mathcal{A} \vDash \phi\left[v_{t / x_{i}}\right] \text { iff } \mathcal{A} \models \phi[v] \text { iff } \mathcal{A} \models \phi\left[t / x_{i}\right][v]
$$

as required.

Case $4 \phi=\forall x_{j} \psi, j \neq i$:
Then $\phi\left[t / x_{i}\right]=\forall x_{j}(\psi)\left[t / x_{i}\right]$.
If x_{i} does not occur free in ψ, then
$\phi\left[t / x_{i}\right]=\phi$, and we conclude exactly as in the previous case.
So suppose x_{i} occurs free in ψ.
Then since $\phi\left[t / x_{i}\right]$ is defined, x_{j} does not occur in t. Hence:

Claim: If v^{*} agrees with v except maybe at x_{j}, then $\widetilde{v^{*}}(t)=\widetilde{v}(t)$, so $v_{t / x_{i}}^{*}$ agrees with $v_{t / x_{i}}$ except maybe at x_{j}.
Conversely, if v^{\prime} agrees with $v_{t / x_{i}}$ except maybe at x_{j} then $v^{\prime}=v_{t / x_{i}}^{*}$ for some such v^{*}.

Now: $\mathcal{A} \models \phi\left[t / x_{i}\right][v]$
$\Leftrightarrow \mathcal{A} \vDash \forall x_{j}(\psi)\left[t / x_{i}\right][v]$
$\Leftrightarrow \mathcal{A} \equiv \psi\left[t / x_{i}\right]\left[v^{*}\right]$ for all v^{*} agreeing with v
except maybe at x_{j},
$\Leftrightarrow \mathcal{A} \models \psi\left[v_{t / x_{i}}^{*}\right]$ for all v^{*} agreeing with v except maybe at x_{j} (by IH),
$\Leftrightarrow \mathcal{A} \models \psi\left[v^{\prime}\right]$ for all v^{\prime} agreeing with $v_{t / x_{i}}$ except maybe at x_{j} (by the Claim),
$\Leftrightarrow \mathcal{A}=\phi\left[v_{t / x_{i}}\right]$.

11.5 Corollary

For any $\phi \in \operatorname{Form}(\mathcal{L})$ and $t \in \operatorname{Term}(\mathcal{L})$ such that $\phi\left[t / x_{i}\right]$ is defined,

$$
\equiv\left(\forall x_{i} \phi \rightarrow \phi\left[t / x_{i}\right]\right)
$$

Proof: Let v be an assignment in an \mathcal{L}-structure \mathcal{A}.

Suppose $\mathcal{A} \vDash \forall x_{i} \phi[v]$.
Then $\mathcal{A} \vDash \phi\left[v_{t / x_{i}}\right]$, since $v_{t / x_{i}}$ agrees with v except maybe at x_{i}.
Hence $\mathcal{A}=\phi\left[t / x_{i}\right][v]$ by the Substitution Lemma (11.4).

12. A formal system for Predicate Calculus

12.1 Definition

Associate to each first-order language \mathcal{L} the formal system $K(\mathcal{L})$ with the following axioms and rules:

Axioms

For any $\alpha, \beta, \gamma \in \operatorname{Form}(\mathcal{L}), t \in \operatorname{Term}(\mathcal{L})$, and $i, j \in \mathbb{N}$, the following are axioms:
A1 $(\alpha \rightarrow(\beta \rightarrow \alpha))$.
A2 $((\alpha \rightarrow(\beta \rightarrow \gamma)) \rightarrow((\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \gamma)))$.
A3 $((\neg \beta \rightarrow \neg \alpha) \rightarrow(\alpha \rightarrow \beta))$.
A4 $\left(\forall x_{i} \alpha \rightarrow \alpha\left[t / x_{i}\right]\right)$ if $\alpha\left[t / x_{i}\right]$ is defined.
A5 $\left(\forall x_{i}(\alpha \rightarrow \beta) \rightarrow\left(\alpha \rightarrow \forall x_{i} \beta\right)\right)$ if $x_{i} \notin \operatorname{Free}(\alpha)$.
A6 $\forall x_{i} x_{i} \doteq x_{i}$.
A7 $\left(x_{i} \doteq x_{j} \rightarrow\left(\phi \rightarrow \phi^{\prime}\right)\right)$, where ϕ is atomic and ϕ^{\prime} is obtained from ϕ by replacing some (i.e. one or more) occurrences of x_{i} in ϕ by x_{j}.

Rules

MP (Modus Ponens): From α and $(\alpha \rightarrow \beta)$ infer β.
Gen (Generalisation): For any variable x_{i}, from α infer $\forall x_{i} \alpha$.

Let $\operatorname{Sent}(\mathcal{L})$ be the set of \mathcal{L}-sentences.

If $\Sigma \subseteq \operatorname{Sent}(\mathcal{L})$, a formula $\phi \in \operatorname{Form}(\mathcal{L})$ is provable from hypotheses Σ, written

$$
\Sigma \vdash \phi,
$$

if there is a sequence of \mathcal{L}-formulas (a derivation or proof) $\phi_{1}, \ldots, \phi_{n}$ with $\phi_{n}=\phi$ such that for each $i \leq n$:

- (A1-A7) ϕ_{i} is an axiom, or
- (Hyp) $\phi_{i} \in \Sigma$, or
- (MP) $\phi_{k}=\left(\phi_{j} \rightarrow \phi_{i}\right)$ for some $j, k<i$, or
- (Gen) $\phi_{i}=\forall x_{k} \phi_{j}$ for some $j<i$ and some $k \in \mathbb{N}$.
$\vdash \phi$ abbreviates $\emptyset \vdash \phi$.
12.3 Example Swapping variables

Suppose $\operatorname{Free}(\phi)=\left\{x_{i}\right\}$.
Then $\left\{\forall x_{i} \phi\right\} \vdash \forall x_{j} \phi\left[x_{j} / x_{i}\right]$

$$
\begin{array}{lll}
1 & \forall x_{i} \phi & {[\in \Sigma]} \\
2 & \left(\forall x_{i} \phi \rightarrow \phi\left[x_{j} / x_{i}\right]\right) & {[\mathrm{A} 4]} \\
3 & \phi\left[x_{j} / x_{i}\right] & {[\text { MP } 1,2]} \\
4 & \forall x_{j} \phi\left[x_{j} / x_{i}\right] & {[(\text { Gen)] }}
\end{array}
$$

12.4 Soundness Theorem for Pred. Calc. If $\Sigma \vdash \phi$ then $\Sigma \models \phi$.

Proof: By induction on length of a proof.
First we show that $\mathbf{A 1} \mathbf{- A} \mathbf{7}$ are logically valid.
For $\mathbf{A 1}, \mathbf{A} 2$, and $\mathbf{A} 3$, this is immediate.
A4 and A5: Cor 11.5 resp. Cor 10.4.
A6: easy exercise.
A7: Suppose ϕ is atomic, and ϕ^{\prime} results from replacing some instances of x_{i} with x_{j}.
Let \mathcal{A} be an \mathcal{L}-structure and v an assignment in \mathcal{A} such that

$$
\mathcal{A} \models x_{i} \doteq x_{j}[v] \text { and } \mathcal{A} \models \phi[v]
$$

We want to show that $\mathcal{A} \models \phi^{\prime}[v]$.
Now $v\left(x_{i}\right)=v\left(x_{j}\right)$,
so $\widetilde{v}\left(t^{\prime}\right)=\widetilde{v}(t)$ for any term t^{\prime} obtained from t by replacing zero or more occurrences of x_{i}
by x_{j}
(easy induction on terms).

If $\phi=P\left(t_{1}, \ldots, t_{k}\right)$ then say $\phi^{\prime}=P\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)$.
$\mathcal{A}=\phi[v] \quad$ iff $\quad\left(\widetilde{v}\left(t_{1}\right), \ldots, \widetilde{v}\left(t_{k}\right)\right) \in P^{\mathcal{A}}$ iff $\left(\widetilde{v}\left(t_{1}^{\prime}\right), \ldots, \widetilde{v}\left(t_{k}^{\prime}\right)\right) \in P^{\mathcal{A}}$ iff $\mathcal{A} \vDash P\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)[v]$
iff $\mathcal{A} \models \phi^{\prime}[v]$ as required
Similarly if ϕ is $t_{1} \doteq t_{2}$.
MP: For any \mathcal{A} and v :
if $\mathcal{A}=\alpha[v]$ and $\mathcal{A}=(\alpha \rightarrow \beta)[v]$ then $\mathcal{A}=\beta[v]$;
so: if $\Sigma \models \alpha$ and $\Sigma \models(\alpha \rightarrow \beta)$ then $\Sigma \models \beta$.

Generalisation:

Suppose $\Sigma \models \psi$;
we want to show $\Sigma \models \forall x_{i} \psi$.
So let \mathcal{A} be such that $\mathcal{A}=\sigma$ for all $\sigma \in \Sigma$, and let v be an arbitrary assignment on \mathcal{A}.
We must show $\mathcal{A} \models \forall x_{i} \psi[v]$.
So let v^{\star} agree with v except maybe at x_{i}. We must show $\mathcal{A} \models \psi\left[v^{\star}\right]$.
But since $\Sigma \models \psi$, we have $\mathcal{A} \models \psi\left[v^{\prime}\right]$ for any assignment v^{\prime}, in particular for v^{*}.

12.5 Deduction Theorem for Pred. Calc.

 Let $\Sigma \subseteq \operatorname{Sent}(\mathcal{L})$, and $\psi \in \operatorname{Sent}(\mathcal{L})$, and $\phi \in \operatorname{Form}(\mathcal{L})$.$$
\text { If } \Sigma \cup\{\psi\} \vdash \phi \text { then } \Sigma \vdash(\psi \rightarrow \phi) .
$$

Proof: Same as for prop. calc. (Theorem 6.6); induction on the length of a proof, with one more case:
$\mathbf{I H}: \Sigma \vdash\left(\psi \rightarrow \phi_{j}\right)$ to show: $\Sigma \vdash\left(\psi \rightarrow \forall x_{i} \phi_{j}\right)$,
where generalisation (Gen) has been used to infer $\forall x_{i} \phi_{j}$ from ϕ_{j}.

By IH and Gen: $\Sigma \vdash \forall x_{i}\left(\psi \rightarrow \phi_{j}\right)$
A5 $\vdash\left(\forall x_{i}\left(\psi \rightarrow \phi_{j}\right) \rightarrow\left(\psi \rightarrow \forall x_{i} \phi_{j}\right)\right)$, since $x_{i} \notin \operatorname{Free}(\psi)=\emptyset$.
So by MP, $\Sigma \vdash\left(\psi \rightarrow \forall x_{i} \phi_{j}\right)$ as required.

12.6 Lemma

Let α be a tautology of the Propositional Calculus with propositional variables among p_{0}, \ldots, p_{n}, let $\psi_{0}, \ldots, \psi_{n} \in \operatorname{Form}(\mathcal{L})$, and let α^{\prime} be the \mathcal{L}-formula obtained from α by replacing each occurrence of p_{i} by ψ_{i}.
Then $\vdash \alpha^{\prime}$.

Proof:

By completeness of L_{0}, there is a proof $\alpha_{1}, \ldots, \alpha_{n-1}, \alpha$ in L_{0}.

Since A1, A2, A3 and MP are in $K(\mathcal{L})$, substituting ψ_{i} for p_{i} in each α_{i} yields a proof $\alpha_{1}^{\prime}, \ldots, \alpha_{n-1}^{\prime}, \alpha^{\prime}$ in $K(\mathcal{L})$.

A formula α^{\prime} as in Lemma 12.6 is called a tautology of \mathcal{L}. (Note that all tautologies are logical validities, but not vice versa.)

By the lemma, we may freely introduce tautologies in our proofs in $K(\mathcal{L})$.

12.7 Example Suppose

$\left(\exists x_{i} \phi \rightarrow \psi\right) \in \operatorname{Sent}(\mathcal{L})$. Then

$$
\left\{\left(\exists x_{i} \phi \rightarrow \psi\right)\right\} \vdash \forall x_{i}(\phi \rightarrow \psi)
$$

Proof: Let $\Sigma=\left\{\left(\exists x_{i} \phi \rightarrow \psi\right), \neg \psi\right\}$

1	$\left(\neg \forall x_{i} \neg \phi \rightarrow \psi\right)$	$[\in \Sigma]$
2	$\left(\left(\neg \forall x_{i} \neg \phi \rightarrow \psi\right) \rightarrow\left(\neg \psi \rightarrow \forall x_{i} \neg \phi\right)\right)$	[taut.]
3	$\left(\neg \psi \rightarrow \forall x_{i} \neg \phi\right)$	$[\mathrm{MP} \mathrm{1,2]}$
4	$\neg \psi$	$[\in \Sigma]$
5	$\forall x_{i} \neg \phi$	$[\mathrm{MP} \mathrm{3,4]}$
6	$\left(\forall x_{i} \neg \phi \rightarrow \neg \phi\right)$	$[\mathrm{A4]}$
$7 \neg \phi$	$[\mathrm{MP} \mathrm{5,6]}$	

(In line 6, we used that $(\neg \phi)\left[x_{i} / x_{i}\right]=\neg \phi$.)

Hence $\Sigma \vdash \neg \phi$. So

$$
\begin{array}{ll}
\left(\exists x_{i} \phi \rightarrow \psi\right) \vdash(\neg \psi \rightarrow \neg \phi) & {[\mathrm{DT}]} \\
\left(\exists x_{i} \phi \rightarrow \psi\right) \vdash(\phi \rightarrow \psi) & {[\mathrm{A} 3, \mathrm{MP}]} \\
\left(\exists x_{i} \phi \rightarrow \psi\right) \vdash \forall x_{i}(\phi \rightarrow \psi) & {[\mathrm{Gen}]}
\end{array}
$$

13. The Completeness Theorem for Predicate Calculus

Let \mathcal{L} be a countable first-order language.
13.1 Theorem (Gödel)

Let $\Sigma \subseteq \operatorname{Sent}(\mathcal{L})$ and $\phi \in \operatorname{Form}(\mathcal{L})$.

$$
\text { If } \Sigma \models \phi \text { then } \Sigma \vdash \phi .
$$

Here, $\Sigma \vdash \phi$ means that ϕ is provable from hypotheses Σ in the proof system $K(\mathcal{L})$.

In outline, our proof strategy is much as in the propositional case:

- Reduce to: consistent \Rightarrow satisfiable.
- Show: any consistent Σ extends to "maximal consistent witnessing" Σ^{\prime}.
- Show: maximal consistent witnessing \Rightarrow satisfiable.

Call $\Sigma \subseteq \operatorname{Sent}(\mathcal{L})$ consistent (in $K(\mathcal{L})$) if for no $\tau \in \operatorname{Sent}(\mathcal{L})$ do we have both
$\Sigma \vdash \tau$ and $\Sigma \vdash \neg \tau$.

Remark

If Σ is inconsistent, then $\Sigma \vdash \chi$ for any
$\chi \in \operatorname{Sent}(\mathcal{L})$, since $(\tau \rightarrow(\neg \tau \rightarrow \chi))$ is a tautology.

13.2 Lemma

Every consistent set of sentences has a model.
i.e. if $\Sigma \subseteq \operatorname{Sent}(\mathcal{L})$ is consistent then for some \mathcal{L}-structure \mathcal{A},
$\mathcal{A} \models \sigma$ for every $\sigma \in \Sigma$.
c.f. Lemma 7.8.

Proof of Theorem 13.1 from Lemma 13.2
First we treat the case of a sentence $\sigma \in \operatorname{Sent}(\mathcal{L})$.
$\Sigma \models \sigma \Rightarrow \Sigma \cup\{\neg \sigma\}$ has no model
$\Rightarrow{ }_{(13.2)} \Sigma \cup\{\neg \sigma\}$ is not consistent
$\Rightarrow \Sigma \cup\{\neg \sigma\} \vdash \tau$ and $\Sigma \cup\{\neg \sigma\} \vdash \neg \tau$ for some τ
$\Rightarrow_{\mathrm{DT}} \Sigma \vdash(\neg \sigma \rightarrow \tau)$ and $\Sigma \vdash(\neg \sigma \rightarrow \neg \tau)$.
But $\Sigma \vdash((\neg \sigma \rightarrow \tau) \rightarrow((\neg \sigma \rightarrow \neg \tau) \rightarrow \sigma))$ [taut]
$\Rightarrow \Sigma \vdash \sigma$ [MP twice]

Now let $\phi \in \operatorname{Form}(\mathcal{L})$, and say
Free $(\phi)=\left\{x_{i_{1}}, \ldots, x_{i_{n}}\right\}$.
Let $\sigma:=\forall x_{i_{1}} \ldots \forall x_{i_{n}} \phi$.
If $\Sigma \models \phi$ then $\Sigma \models \sigma$, so $\Sigma \vdash \sigma$ by the above. But then by repeatedly applying (A4) and (MP), we obtain $\Sigma \vdash \phi$, as required.
$\square_{13.2} \Rightarrow 13.1$

To prove Lemma 13.2, we want to introduce an additional assumption.

13.2' Lemma:

Suppose $\Sigma \subseteq \operatorname{Sent}(\mathcal{L})$ is consistent and \mathcal{L} contains infinitely many constant symbols not appearing in Σ. Then Σ has a model.

We deduce Lemma 13.2 for arbitrary \mathcal{L} and Σ from Lemma 13.2' as follows.

Let $C=\left\{c_{0}, c_{1}, \ldots\right\}$ be a set of distinct symbols disjoint from \mathcal{L}, and define the extended language $\mathcal{L}^{\prime}:=\mathcal{L} \cup C$ in which each c_{i} is a constant symbol.

13.3 Lemma

If $\Sigma \subseteq \operatorname{Sent}(\mathcal{L})$ and $\tau \in \operatorname{Sent}(\mathcal{L})$ is provable from Σ in $K\left(\mathcal{L}^{\prime}\right)$, then τ is provable from Σ in $K(\mathcal{L})$.

Proof

Exercise sheet 4, Question 3(b).
Proof of Lemma 13.2 from Lemma 13.2':
By Lemma 13.3, since $\Sigma \subseteq \operatorname{Sent}(\mathcal{L})$ is consistent in $K(\mathcal{L})$, it is also consistent in $K\left(\mathcal{L}^{\prime}\right)$;
indeed, otherwise (via the tautology
$(\tau \rightarrow(\neg \tau \rightarrow \chi)))$ any $\chi \in \operatorname{Sent}(\mathcal{L})$ is provable from Σ in $K\left(\mathcal{L}^{\prime}\right)$ and hence in $K(\mathcal{L})$, contradicting consistency in $K(\mathcal{L})$.
By Lemma 13.2' applied with \mathcal{L}^{\prime} in place of \mathcal{L}, there is an \mathcal{L}^{\prime}-structure \mathcal{A}^{\prime} satisfying Σ. Let \mathcal{A} be the \mathcal{L}-structure obtained from \mathcal{A}^{\prime} by "forgetting" the new constants C.
Then \mathcal{A} satisfies Σ, as required. $\square_{13.2^{\prime}} \Rightarrow 13.2$

13.4 Definition

- $\Sigma \subseteq \operatorname{Sent}(\mathcal{L})$ is called maximal
consistent if Σ is consistent, and for any $\psi \in \operatorname{Sent}(\mathcal{L}): \Sigma \vdash \psi$ or $\Sigma \vdash \neg \psi$.
- $\Sigma \subseteq \operatorname{Sent}(\mathcal{L})$ is called witnessing if for all $\psi \in \operatorname{Form}(\mathcal{L})$ with Free $(\psi) \subseteq\left\{x_{i}\right\}$ and such that $\Sigma \vdash \exists x_{i} \psi$, there is some constant symbol $c \in \mathcal{L}$ such that $\Sigma \vdash \psi\left[c / x_{i}\right]$

To prove Lemma 13.2', it suffices to prove the following two lemmas:

13.5 Lemma

Every maximal consistent witnessing set
$\Sigma \subseteq \operatorname{Sent}(\mathcal{L})$ has a model.

13.6 Lemma

If $\Sigma \subseteq \operatorname{Sent}(\mathcal{L})$ is consistent and \mathcal{L} contains infinitely many constant symbols not appearing in Σ, then Σ extends to a maximal consistent witnessing set $\Sigma^{\prime} \subseteq \operatorname{Sent}(\mathcal{L})$.

For the proof of 13.6 we need two further lemmas.

13.7 Lemma

If $\Sigma \subseteq \operatorname{Sent}(\mathcal{L})$ is consistent, then for any sentence ψ, either $\Sigma \cup\{\psi\}$ or $\Sigma \cup\{\neg \psi\}$ is consistent.

Proof: Exercise - as in the proof of Theorem 7.5. \square.

13.8 Lemma

Assume $\Sigma \subseteq \operatorname{Sent}(\mathcal{L})$ is consistent, and
$\Sigma \vdash \exists x_{i} \psi \in \operatorname{Sent}(\mathcal{L})$, and c is a constant symbol of \mathcal{L} which does not occur in ψ nor in any $\sigma \in \Sigma$.
Then $\Sigma \cup\left\{\psi\left[c / x_{i}\right]\right\}$ is consistent.

Proof:

It suffices to show that if c does not occur in $\chi \in \operatorname{Sent}(\mathcal{L})$ and $\Sigma \cup\left\{\psi\left[c / x_{i}\right]\right\} \vdash \chi$, then already $\Sigma \vdash \chi$. Indeed:
If $\Sigma \cup\left\{\psi\left[c / x_{i}\right]\right\}$ were inconsistent then (via the tautology $(\alpha \rightarrow(\neg \alpha \rightarrow \beta))$) we would have for any χ that $\Sigma \cup\left\{\psi\left[c / x_{i}\right]\right\} \vdash \chi$ and $\Sigma \cup\left\{\psi\left[c / x_{i}\right]\right\} \vdash \neg \chi$;
picking χ in which c does not occur, it would follow that $\Sigma \vdash \chi$ and $\Sigma \vdash \neg \chi$, contradicting consistency of Σ.

So suppose $\Sigma \cup\left\{\psi\left[c / x_{i}\right]\right\} \vdash \chi \in \operatorname{Sent}(\mathcal{L})$ and c does not occur in χ. Recall we also assumed that c does not occur in Σ or ψ.

By DT, $\Sigma \vdash\left(\psi\left[c / x_{i}\right] \rightarrow \chi\right)$
It follows that $\Sigma \vdash(\psi \rightarrow \chi)$
(Exercise Sheet 4 Question 3(a)).

By Gen, $\Sigma \vdash \forall x_{i}(\psi \rightarrow \chi)$.
It follows that $\Sigma \vdash\left(\exists x_{i} \psi \rightarrow \chi\right)$
(Exercise Sheet 4 Question 2).

But we assumed $\Sigma \vdash \exists x_{i} \psi$, so by MP, $\Sigma \vdash \chi$, as required.

Proof of 13.6:

Let $\Sigma \subseteq \operatorname{Sent}(\mathcal{L})$ be consistent, and suppose \mathcal{L} contains infinitely many constant symbols not appearing in Σ.

We show that Σ extends to a maximal consistent witnessing set.

Sent (\mathcal{L}) is countable; say $\operatorname{Sent}(\mathcal{L})=\left\{\tau_{1}, \tau_{2}, \tau_{3}, \ldots\right\}$.

Construct finite sets $\Delta_{i} \subseteq \operatorname{Sent}(\mathcal{L})$

$$
\Delta_{0} \subseteq \Delta_{1} \subseteq \Delta_{2} \subseteq \ldots
$$

such that $\Sigma \cup \Delta_{n}$ is consistent for each $n \geq 0$, as follows:

Let $\Delta_{0}:=\emptyset$. Then $\Sigma \cup \Delta_{0}=\Sigma$ is consistent.
If Δ_{n} has been constructed let

$$
\Delta_{n}^{\prime}:= \begin{cases}\Delta_{n} \cup\left\{\tau_{n+1}\right\} & \text { if } \sum \cup \Delta_{n} \cup\left\{\tau_{n+1}\right\} \\ \Delta_{n} \cup\left\{\neg \tau_{n+1}\right\} & \text { otherwiste. }\end{cases}
$$

Then $\Sigma \cup \Delta_{n}^{\prime}$ is consistent by Lemma 13.7.
If $\neg \tau_{n+1} \in \Delta_{n}^{\prime}$ or if τ_{n+1} is not of the form $\exists x_{i} \psi$, let $\Delta_{n+1}:=\Delta_{n}^{\prime}$.

Otherwise, i.e. if $\tau_{n+1}=\exists x_{i} \psi \in \Delta_{n}^{\prime}$:
Choose a constant symbol $c \in \mathcal{L}$ which occurs in no formula in $\Sigma \cup \Delta_{n}^{\prime} \cup\{\psi\}$
(possible since $\Delta_{n}^{\prime} \cup\{\psi\}$ is finite).
Let $\Delta_{n+1}:=\Delta_{n}^{\prime} \cup\left\{\psi\left[c / x_{i}\right]\right\}$.
By Lemma 13.8, $\Sigma \cup \Delta_{n+1}$ is consistent.
Let $\Sigma^{\prime}:=\Sigma \cup \cup_{n \geq 0} \Delta_{n}$.
Then Σ^{\prime} is maximal consistent (as in 7.5), and Σ^{\prime} is witnessing by construction.

To finish the proof of completeness, it remains to prove:

13.5 Lemma

Every maximal consistent witnessing set $\Sigma \subseteq \operatorname{Sent}(\mathcal{L})$ has a model.

Proof:

A term is closed if no variable appears in it. Let T be the set of closed \mathcal{L}-terms.

Define an equivalence relation E on T by

$$
t_{1} E t_{2} \text { iff } \Sigma \vdash t_{1} \doteq t_{2}
$$

(This is an equivalence relation - see Sheet 4 Question 1(b).)

Let T / E be the set of equivalence classes t / E for $t \in T$.

Define an \mathcal{L}-structure \mathcal{A} with domain T / E by

$$
\begin{aligned}
& c^{\mathcal{A}}:=c / E \\
& f^{\mathcal{A}}\left(t_{1} / E, \ldots, t_{k} / E\right):=f\left(t_{1}, \ldots, t_{k}\right) / E \\
& P^{\mathcal{A}}:=\left\{\left(t_{1} / E, \ldots, t_{k} / E\right) \mid \Sigma \vdash P\left(t_{1}, \ldots, t_{k}\right)\right\}
\end{aligned}
$$

(for c a constant symbol, f a k-ary function symbol, and P a k-ary predicate symbol).

Note: $t^{\mathcal{A}}=t / E$ for any $t \in T$.

Exercise: The definitions above do not depend on representatives, i.e. if $t_{i} / E=t_{i}^{\prime} / E$ for $i=1, \ldots k$ then:

- $f\left(t_{1}, \ldots, t_{k}\right) / E=f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right) / E$
- $\Sigma \vdash P\left(t_{1}, \ldots, t_{k}\right) \Leftrightarrow \Sigma \vdash P\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)$

This follows from A7 and A4; see Sheet 4 Question 1(c).

We conclude by showing: $\mathcal{A}=\Sigma$.

We show more generally that for any $\sigma \in \operatorname{Sent}(\mathcal{L})$,

$$
\mathcal{A} \models \sigma \text { iff } \Sigma \vdash \sigma .
$$

We prove this by induction on the number of symbols among $\{\neg, \rightarrow, \forall\}$ in σ.

- $\sigma=P\left(t_{1}, \ldots, t_{k}\right)$. Then:

$$
\begin{aligned}
\mathcal{A} \models \sigma & \Leftrightarrow\left(t_{1}^{\mathcal{A}}, \ldots, t_{k}^{\mathcal{A}}\right) \in P^{\mathcal{A}} \\
& \Leftrightarrow\left(t_{1} / E, \ldots, t_{k} / E\right) \in P^{\mathcal{A}} \\
& \Leftrightarrow \Sigma \vdash \sigma .
\end{aligned}
$$

- $\sigma=t_{1} \doteq t_{2}$. Then:

$$
\begin{aligned}
\mathcal{A}=\sigma & \Leftrightarrow t_{1}^{\mathcal{A}}=t_{2}^{\mathcal{A}} \\
& \Leftrightarrow t_{1} / E=t_{2} / E \\
& \Leftrightarrow \Sigma \vdash \sigma .
\end{aligned}
$$

- $\sigma=\neg \tau$:

```
            \(\mathcal{A} \equiv \neg \tau\)
iff \(\mathcal{A} \not \vDash \tau \quad\) [def. of ' \(\vDash\) ']
iff \(\Sigma \nvdash \tau \quad[\mathrm{IH}]\)
    iff \(\quad \Sigma \vdash \neg \tau \quad\) [ \(\Sigma\) max. cons.]
```

- $\sigma=(\tau \rightarrow \rho)$:

$$
\begin{array}{ll}
& \mathcal{A} \neq(\tau \rightarrow \rho) \\
\text { iff } \mathcal{A} \not \models \tau \text { or } \mathcal{A} \models \rho & \\
\text { iff } \Sigma \nvdash \tau \text { or } \Sigma \vdash \rho & \text { [def. ' } \models \text { '] } \\
\text { iff not }(\Sigma \vdash \tau \text { and } \Sigma \nvdash \rho) & \text { [IH] } \\
\text { iff } \operatorname{not}(\Sigma \vdash \tau \text { and } \Sigma \vdash \neg \rho) & \text { [} \Sigma \text { max. cons.] } \\
\text { iff } \Sigma \nvdash \neg(\tau \rightarrow \rho) & \text { [taut. (see below)] } \\
\text { iff } \Sigma \vdash(\tau \rightarrow \rho) & \text { [} \Sigma \text { max. cons.] }
\end{array}
$$

where the penultimate line uses the following tautologies:

$$
\begin{aligned}
& (\tau \rightarrow(\neg \rho \rightarrow \neg(\tau \rightarrow \rho))) \\
& (\neg(\tau \rightarrow \rho) \rightarrow \tau) \\
& (\neg(\tau \rightarrow \rho) \rightarrow \neg \rho)
\end{aligned}
$$

- $\sigma=\forall x_{i} \phi$:

By the Substitution Lemma 11.4, $\mathcal{A} \vDash \phi\left[t / x_{i}\right] \Leftrightarrow \mathcal{A} \vDash \phi\left[v_{t}\right]$ where v_{t} is any assignment with $v_{t}\left(x_{i}\right)=t^{\mathcal{A}}=t / E$.

So since the domain of \mathcal{A} is T / E, $\mathcal{A} \models \forall x_{i} \phi$ iff for all $t \in T, \mathcal{A}=\phi\left[t / x_{i}\right]$.

Now for $t \in T: \phi\left[t / x_{i}\right] \in \operatorname{Sent}(\mathcal{L})$, so by IH , $\mathcal{A} \models \phi\left[t / x_{i}\right]$ iff $\Sigma \vdash \phi\left[t / x_{i}\right]$.

So to show $\Sigma \vdash \forall x_{i} \phi$ iff $\mathcal{A} \vDash \forall x_{i} \phi$, it suffices to show:
$\Sigma \vdash \forall x_{i} \phi$ iff for all $t \in T, \Sigma \vdash \phi\left[t / x_{i}\right]$.

We prove:
$\Sigma \vdash \forall x_{i} \phi$ iff for all $t \in T, \Sigma \vdash \phi\left[t / x_{i}\right]$.
$\Rightarrow: \mathbf{A 4}+\mathbf{M P}$.
For the converse, first note:

$$
\left\{\forall x_{i} \neg \neg \phi\right\} \vdash \forall x_{i} \phi ;
$$

indeed, by A4 we have $\left\{\forall x_{i} \neg \neg \phi\right\} \vdash \neg \neg \phi$; conclude using the tautology $(\neg \neg \phi \rightarrow \phi)$ and Gen.

Now suppose $\Sigma \nvdash \forall x_{i} \phi$.
Then $\Sigma \nvdash \forall x_{i} \neg \neg \phi$, by (\star).
So by maximality, $\Sigma \vdash \neg \forall x_{i} \neg \neg \phi$,
i.e. $\Sigma \vdash \exists x_{i} \neg \phi$.

Since Σ is witnessing, $\Sigma \vdash(\neg \phi)\left[c / x_{i}\right]$ for some constant symbol c.
Then since Σ is consistent, $\Sigma \nvdash \phi\left[c / x_{i}\right]$.
But $c \in T$, so it is not the case that for all $t \in T, \Sigma \vdash \phi\left[t / x_{i}\right]$.

This concludes our proof of the Completeness Theorem 13.1.

In fact, our proof of completeness yields a stronger result.
13.9 Definition: A structure is countable if its domain is countable (i.e. finite or countably infinite).

The model constructed in Lemma 13.5 is countable, because the set T of closed terms is, so we have actually proven the following strengthening of Lemma 13.2:

13.10 Weak downwards

Löwenheim-Skolem Theorem
Every consistent set of sentences has a countable model.

Exactly as in the propositional case, we deduce compactness from completeness and soundness.

13.11 Compactness Theorem:

A set of sentences $\Sigma \subseteq \operatorname{Sent}(\mathcal{L})$ has a model if and only if every finite subset $\Sigma_{0} \subseteq_{\text {fin }} \Sigma$ has a model.

14. Prenex normal form

A formula is in prenex normal form (PNF) if it is of the form

$$
Q_{1} x_{i_{1}} Q_{2} x_{i_{2}} \cdots Q_{k} x_{i_{k}} \psi
$$

where each Q_{i} is a quantifier (i.e. either \forall or \exists), and where ψ is a formula containing no quantifiers.

14.1 PNF-Theorem

Every $\phi \in \operatorname{Form}(\mathcal{L})$ is logically equivalent to an \mathcal{L}-formula in PNF.

Proof: Induction on ϕ
(working in the language with $\forall, \exists, \neg, \wedge$, recalling that $\{\neg, \wedge\}$ is adequate for propositional logic):

- ϕ atomic: ϕ is already in PNF.
- $\phi=\neg \chi$ with χ in PNF:
say $\phi=\neg Q_{1} x_{i_{1}} Q_{2} x_{i_{2}} \cdots Q_{k} x_{i_{k}} \psi$.
Then $\phi==Q_{1}^{-} x_{i_{1}} \cdots Q_{k}^{-} x_{i_{k}} \neg \psi$, where $Q^{-}=\exists$ if $Q=\forall$, and $Q^{-}=\forall$ if $Q=\exists$.
- $\phi=(\chi \wedge \rho)$ with χ, ρ in PNF:

Note that $\forall x_{i} \alpha==\forall x_{j} \alpha\left[x_{j} / x_{i}\right]$
if x_{j} does not occur in α.
Swapping variables in this way, we may assume that the variables quantified over in χ do not occur in ρ, and vice versa.

But then, e.g.
$\left(\forall x_{1} \alpha \wedge \exists x_{2} \beta\right) \vDash=\forall x_{1} \exists x_{2}(\alpha \wedge \beta)$.

B1.1 Logic
 Lecture 15

Martin Bays
Oxford University, MT 23

15 Applications of the Completeness Theorem

Throughout, \mathcal{L} denotes a countable first-order language.

15.1 Elementary equivalence

Definition 15.1.

- An \mathcal{L}-theory is a set of \mathcal{L}-sentences $\Sigma \subseteq \operatorname{Sent}(\mathcal{L})$.
- Let \mathcal{A} be an \mathcal{L}-structure. Then the (first-order) theory of \mathcal{A} is the \mathcal{L}-theory

$$
\operatorname{Th}(\mathcal{A})=\operatorname{Th}^{\mathcal{L}}(\mathcal{A}):=\{\sigma \in \operatorname{Sent}(\mathcal{L}) \mid \mathcal{A} \models \sigma\}
$$

the set of all \mathcal{L}-sentences true in \mathcal{A}.

- \mathcal{L}-structures \mathcal{A} and \mathcal{B} are elementarily equivalent, written $\mathcal{A} \equiv \mathcal{B}$, if $\operatorname{Th}(\mathcal{A})=\operatorname{Th}(\mathcal{B})$.

Exercise 15.2. An \mathcal{L}-theory $\Sigma \subseteq \operatorname{Sent}(\mathcal{L})$ is maximal consistent if and only if Σ has a model and $\mathcal{A} \equiv \mathcal{B}$ for any two models \mathcal{A} and \mathcal{B} of Σ.

15.2 Axiomatisations

Definition 15.3. An axiomatisation of the theory $\operatorname{Th}(\mathcal{A})$ of an \mathcal{L}-structure \mathcal{A} is a maximal consistent subset of $\operatorname{Th}(\mathcal{A})$; i.e. a set of sentences which hold of \mathcal{A} and which suffice to deduce any sentence which holds of \mathcal{A}.

Recall Hilbert's programme from Lecture 1. Now we have established the Completeness Theorem, the programme would call for us to find "finitary" (i.e. computable) axiomatisations of the structures in mathematics.

In general this is impossible: Gödel's first incompleteness theorem shows that already the theory of arithmetic $\operatorname{Th}(\langle\mathbb{N} ;+, \cdot\rangle)$ has no computable axiomatisation. But for some interesting structures it is possible, as we will now begin to see.

15.3 A criterion for maximal consistency

Definition 15.4. Let $\mathcal{A}=\langle A ; \ldots\rangle$ and $\mathcal{B}=\langle B ; \ldots\rangle$ be \mathcal{L}-structures. An isomorphism of \mathcal{A} with \mathcal{B} is a bijection $\theta: A \rightarrow B$ such that

- $\theta\left(c^{\mathcal{A}}\right)=c^{\mathcal{B}}$ for c a constant symbol;
- $\theta\left(f^{\mathcal{A}}\left(a_{1}, \ldots, a_{k}\right)\right)=f^{\mathcal{B}}\left(\theta\left(a_{1}\right), \ldots, \theta\left(a_{k}\right)\right)$ for f a k-ary function symbol and $a_{i} \in A$;
- $\left(a_{1}, \ldots, a_{k}\right) \in P^{\mathcal{A}} \Leftrightarrow\left(\theta\left(a_{1}\right), \ldots, \theta\left(a_{k}\right)\right) \in P^{\mathcal{B}}$ for P a k-ary relation symbol and $a_{i} \in A$.

We write $\mathcal{A} \cong \mathcal{B}$ to mean that there exists such an isomorphism.
Exercise 15.5. $\mathcal{A} \cong \mathcal{B}$ implies $\mathcal{A} \equiv \mathcal{B}$.
The converse fails (e.g. due to Löwenheim-Skolem).
Theorem 15.6. Suppose $\Sigma \subseteq \operatorname{Sent}(\mathcal{L})$ has a unique countable model up to isomorphism, i.e. Σ is consistent and if $\mathcal{A}, \mathcal{B} \vDash \Sigma$ are countable then $\mathcal{A} \cong \mathcal{B}$.

Then Σ is maximal consistent.
Proof. Let $\mathcal{A}, \mathcal{B} \vDash \Sigma$. We conclude by showing $\mathcal{A} \equiv \mathcal{B}$.
Both \mathcal{A} and \mathcal{B} are infinite. By Weak Downward Löwenheim-Skolem (Theorem 13.10), there are countable $\mathcal{A}^{\prime} \equiv \mathcal{A}$ and $\mathcal{B}^{\prime} \equiv \mathcal{B}$. Then $\mathcal{A}^{\prime}, \mathcal{B}^{\prime} \vDash \Sigma$, so $\mathcal{A}^{\prime} \cong \mathcal{B}^{\prime}$, and so $\mathcal{A}^{\prime} \equiv \mathcal{B}^{\prime}$ by Exercise 15.5 . Hence $\mathcal{A} \equiv \mathcal{A}^{\prime} \equiv \mathcal{B}^{\prime} \equiv \mathcal{B}$.

Remark 15.7. The converse fails. We will see an example in the next lecture.
Example 15.8. Let $\mathcal{L}=:=\emptyset$, the language with no non-logical symbols. For $n \geq 2$, set $\tau_{n}:=\exists x_{1} \ldots \exists x_{n} \bigwedge_{1 \leq i<j \leq n} \neg x_{i} \doteq x_{j}$. Then the models of

$$
\Sigma_{\infty}:=\left\{\tau_{n}: n \geq 2\right\}
$$

are precisely the infinite $\mathcal{L}_{=}$-structures (i.e. the infinite sets). By Theorem 15.6, Σ_{∞} is maximal consistent.

15.4 Example: axiomatising $\operatorname{Th}(\langle\mathbb{Q} ;<\rangle)$

Definition 15.9. Let $\mathcal{L}_{<}:=\{<\}$and let $\sigma_{\text {DLO }}$ be the following $\mathcal{L}_{<}$-sentence, whose models are the dense linear orderings without endpoints:

$$
\begin{aligned}
\sigma_{\mathrm{DLO}}:=\forall x \forall y \forall z & (\neg x<x \\
& \wedge(x<y \vee x=y \vee y<x) \\
& \wedge((x<y \wedge y<z) \rightarrow x<z) \\
& \wedge(x<y \rightarrow \exists w(x<w \wedge w<y)) \\
& \wedge \exists w w<x \\
& \wedge \exists w x<w)
\end{aligned}
$$

Note that $\langle\mathbb{Q} ;<\rangle \vDash \sigma_{\mathrm{DLO}}$, and also $\langle\mathbb{R} ;<\rangle \vDash \sigma_{\mathrm{DLO}}$.
Theorem 15.10 (Cantor). $\sigma_{\text {DLO }}$ has a unique countable model up to isomorphism (so any countable model is isomorphic to $\langle\mathbb{Q} ;<\rangle$).

Proof. ("Back-and-forth argument")
Let $\mathcal{M}, \mathcal{N} \vDash \sigma_{\text {DLO }}$ be countable. By the non-existence of endpoints, each is infinite.

A partial isomorphism $\theta: \mathcal{M} \rightarrow \mathcal{N}$ is a partially defined injective map such that for all $a, b \in \operatorname{dom}(\theta)$,

$$
\mathcal{M} \vDash a<b \quad \Leftrightarrow \quad \mathcal{N} \vDash \theta(a)<\theta(b) .
$$

Enumerate the domains of \mathcal{M} and \mathcal{N} as $\left(m_{i}\right)_{i \in \mathbb{N}}$ and $\left(n_{i}\right)_{i \in \mathbb{N}}$ respectively. We recursively construct a chain of partial isomorphisms $\theta_{i}: \mathcal{M} \rightarrow \mathcal{N}$ such that
$\operatorname{dom}\left(\theta_{i}\right)$ is finite, and for all $j<i$, we have $m_{j} \in \operatorname{dom} \theta_{i}$ and $n_{j} \in \operatorname{im} \theta_{i}$.
Let $\theta_{0}:=\emptyset$.
Given θ_{i} satisfying (*), we first extend θ_{i} by finding $n \in \mathcal{N}$ such that setting $\theta_{i}^{\prime}\left(m_{i}\right):=n$ yields a partial isomorphism $\theta_{i}^{\prime}: \mathcal{M} \rightarrow \mathcal{N}$ with $\operatorname{dom} \theta_{i}^{\prime}=\operatorname{dom} \theta \cup$ $\left\{m_{i}\right\}$.

Say $\operatorname{dom}\left(\theta_{i}\right)=\left\{a_{1}, \ldots, a_{s}\right\}$ with $\mathcal{M} \vDash a_{k}<a_{l}$ for $1 \leq k<l \leq s$, and similarly $\operatorname{im}\left(\theta_{i}\right)=\left\{b_{1}, \ldots, b_{s}\right\}$ with $\mathcal{N} \vDash b_{k}<b_{l}$ for $1 \leq k<l \leq s$. There are four cases:
(i) $m_{i}=a_{k}($ some $k \in[1, s]):$ set $n:=b_{k}$.
(ii) $m_{i}<a_{1}$: let $n \in \mathcal{N}$ be such that $n<b_{1}$ (n exists, since \mathcal{N} has no endpoint).
(iii) $m_{i}>a_{s}$: let $n \in \mathcal{N}$ be such that $n>b_{s}$ (n exists, since \mathcal{N} has no endpoint).
(iv) $a_{j}<m_{i}<a_{j+1}$ (some $j \in[1, s-1]$): let $n \in \mathcal{N}$ be such that $a_{i}<n<a_{i+1}$ (n exists, since \mathcal{N} is dense).

In all cases, θ_{i}^{\prime} is a partial isomorphism.
Symmetrically, $\left(\theta_{i}^{\prime}\right)^{-1}: \mathcal{N} \rightarrow \mathcal{M}$ extends to $\theta_{i}^{\prime \prime}: \mathcal{N} \rightarrow \mathcal{M}$ with $n_{i} \in$ $\operatorname{dom} \theta_{i}{ }^{\prime \prime}$;
then $\theta_{i+1}:=\left(\theta_{i}^{\prime \prime}\right)^{-1}: \mathcal{M} \rightarrow \mathcal{N}$ is a partial isomorphism satisfying ${ }^{*}$.
Then $\theta:=\bigcup_{i} \theta_{i}: \mathcal{M} \xrightarrow{\cong} \mathcal{N}$ is an isomorphism.
Applying Theorem 15.6, we obtain:
Corollary 15.11. $\left\{\sigma_{\mathrm{DLO}}\right\}$ is maximal consistent. Hence $\left\{\sigma_{\mathrm{DLO}}\right\}$ axiomatises $\operatorname{Th}(\langle\mathbb{Q} ;<\rangle)$.

Corollary 15.12. Completeness of a linear order is not a first-order property: there is no $\mathcal{L}_{<- \text {-theory }} \Sigma$ such that the models of Σ are precisely the complete linear orders.

Proof. Suppose such a Σ exists. Then $\langle\mathbb{R} ;\langle \rangle \vDash \Sigma$ since $\langle\mathbb{R} ;<\rangle$ is a complete linear order. But $\langle\mathbb{R} ;<\rangle \equiv\langle\mathbb{Q} ;<\rangle$, since both satisfy the maximal complete theory $\left\{\sigma_{\mathrm{DLO}}\right\}$, so then also $\langle\mathbb{Q} ;<\rangle \vDash \Sigma$. But $\langle\mathbb{Q} ;<\rangle$ is not a complete linear order, contradicting the desired property of Σ.

B1.1 Logic
 Lecture 16

Martin Bays
Oxford University, MT 23

16 An algebraic application (non-examinable)

16.1 ACF

Let $\mathcal{L}_{\text {ring }}:=\{+,-, \cdot, \overline{0}, \overline{1}\}$. Let ACF be the $\mathcal{L}_{\text {ring }}$-theory whose models are precisely the algebraically closed fields:

ACF $:=[$ Field axioms $] \cup\left\{\forall z_{0}, \ldots, z_{n}\left(\neg z_{n} \doteq \overline{0} \rightarrow \exists x \sum_{i=0}^{n} z_{i} x^{i} \doteq \overline{0}\right): n \geq 1\right\}$.
Let

$$
\mathrm{ACF}_{0}:=\mathrm{ACF} \cup\{\neg \bar{n} \doteq \overline{0}: n \in \mathbb{N}\}
$$

where for $n \geq 1, \bar{n}:=\overline{1}+\ldots+\overline{1}$ (n times). So the models of ACF_{0} are precisely the algebraically closed fields of characteristic 0 . In particular, $\langle\mathbb{C} ;+,-, \cdot, 0,1\rangle \vDash$ ACF_{0}. We aim to show that ACF_{0} is maximally consistent, i.e. axiomatises $\operatorname{Th}(\langle\mathbb{C} ;+,-, \cdot, 0,1\rangle)$.

We can prove this analogously to the case of $\langle\mathbb{Q} ;<\rangle$, but working with uncountable sets.

From now on, we assume the axiom of choice. We will explain this and the related notion of the cardinality ("size") $|A|$ of a set A in the Set Theory course; for now it suffices to know that $|A|=|B|$ if and only if there exists a bijection $A \rightarrow B$, and cardinalities are linearly ordered.

Fact 16.1. Any characteristic 0 algebraically closed field $\langle K ;+,-, \cdot, 0,1\rangle \vDash$ ACF_{0} with the same cardinality as \mathbb{C} is isomorphic to $\langle\mathbb{C} ;+,-, \cdot, 0,1\rangle$.

Sketch proof. A subset $A \subseteq K$ is algebraically independent if there are no non-trivial polynomial relations between its elements, i.e. $f\left(a_{1}, \ldots, a_{n}\right) \neq 0$ for any $f \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right] \backslash\{0\}$ and $\left\{a_{1}, \ldots, a_{n}\right\} \subseteq A$.

Then just as for linear independence in vector spaces, an algebraically closed field has a well-defined dimension ("transcendence degree") which is the cardinality of any maximal algebraically independent subset, this dimension determines an algebraically closed field of a given characteristic up to isomorphism, and the dimension of an uncountable ACF is equal to its cardinality.

Fact 16.2. Let \mathcal{L} be a possibly uncountable first-order language, i.e. with sets of constant, function, and relation symbols of arbitrary cardinality. Let $|\mathcal{L}|$ be the cardinality of the language, i.e. that of the alphabet.

Let $\Sigma \subseteq \operatorname{Sent}(\mathcal{L})$, and suppose any finite subset of Σ has a model. Then Σ has a model of cardinality (i.e. with domain of cardinality) $\leq|\mathcal{L}|$.

Sketch proof. Our proof for countable \mathcal{L} mostly goes through directly.
The only place we used the countability assumption was in extending a consistent set Σ to a maximal consistent witnessing set. We can use Zorn's lemma here in the uncountable case - the union of a chain of consistent witnessing sets containing Σ is still consistent and witnessing, so there exists a maximal such with respect to inclusion, which (as in the proof in the countable case) is maximal consistent witnessing.
Corollary 16.3. ACF_{0} is maximal consistent, hence axiomatises $\mathrm{Th}(\mathbb{C})$.
Proof. Let $\mathcal{A} \vDash \mathrm{ACF}_{0}$. Note that \mathcal{A} is infinite, since it has characteristic 0 .
Let $C=\left\{c_{a}: a \in \mathbb{C}\right\}$ be a set of constant symbols of cardinality $|\mathbb{C}|$, and let $\mathcal{L}^{\prime}:=\mathcal{L}_{\text {ring }} \cup C$. Let $\Sigma:=\operatorname{Th}^{\mathcal{L}_{\text {ring }}}(\mathcal{A}) \cup\left\{\neg c_{a} \doteq c_{b}: a, b \in \mathbb{C}, a \neq b\right\} \subseteq \operatorname{Sent}\left(\mathcal{L}^{\prime}\right)$. Then since \mathcal{A} is infinite, any finite subset of Σ has as model \mathcal{A} with the finitely many c_{a} which appear interpreted as distinct elements. So by Fact 16.2 , Σ has a model \mathcal{B} of cardinality $\leq\left|\mathcal{L}^{\prime}\right|=|\mathbb{C}|$. Considering the interpretations of the c_{a}, we actually have $|\mathcal{B}|=|\mathbb{C}|$. Let \mathcal{B}^{\prime} be the $\mathcal{L}_{\text {ring }}$ structure obtained from \mathcal{B} by ignoring the c_{a}. Then by Fact $16.1, \mathcal{B}^{\prime} \cong \mathbb{C}$. So $\mathcal{A} \equiv \mathcal{B}^{\prime} \equiv \mathbb{C}$.

So we conclude that any two models of ACF_{0} are elementary equivalent, so ACF_{0} is maximal consistent.

Theorem 16.4 (Ax-Grothendieck). Let $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be a polynomial map, i.e. $F\left(a_{1}, \ldots, a_{n}\right)=\left(F_{1}\left(a_{1}, \ldots, a_{n}\right), \ldots, F_{n}\left(a_{1}, \ldots, a_{n}\right)\right)$, where $F_{i} \in \mathbb{C}[\bar{X}]$.

If F is injective, then F is surjective.
Proof. Fact: The algebraic closure of the finite field \mathbb{F}_{p} is the union of a chain of finite subfields, $\mathbb{F}_{p}^{\text {alg }}=\bigcup_{k} \mathbb{F}_{p^{k}!}$.

Claim 16.5. Let p be prime. Any injective polynomial map $F:\left(\mathbb{F}_{p}^{\text {alg }}\right)^{n} \rightarrow$ $\left(\mathbb{F}_{p}^{\text {alg }}\right)^{n}$ is surjective.
Proof. Let k_{0} be such that the coefficients of F are in $\mathbb{F}_{p^{k}{ }^{0} \text { ! }}$.
Let $k \geq k_{0}$. Then $F\left(\mathbb{F}_{p^{k!}}{ }^{n}\right) \subseteq \mathbb{F}_{p^{k!}}{ }^{n}$, and so by injectivity, finiteness of $\mathbb{F}_{p^{k!}}{ }^{n}$, and the pigeonhole principle, $F\left(\mathbb{F}_{p^{k!}}{ }^{n}\right)=\mathbb{F}_{p^{k!}}{ }^{n}$.

Hence $F\left(\left(\mathbb{F}_{p}^{\text {alg }}\right)^{n}\right)=\left(\mathbb{F}_{p}^{\text {alg }}\right)^{n}$.
Let $n, d \in \mathbb{N}$. Let $\sigma_{n, d}$ be an $\mathcal{L}_{\text {ring }}$-sentence expressing that any injective polynomial map $F: K^{n} \rightarrow K^{n}$ consisting of polynomials of degree $\leq d$ is surjective:

$$
\begin{aligned}
\sigma_{n, d}:=\forall z_{1,0}, \ldots, z_{n, d} & \left(\forall \bar{x}, \bar{y}\left(\left(\bigwedge_{i} \sum_{j} z_{i, j} x_{i}{ }^{j} \doteq \sum_{j} z_{i, j} y_{i}{ }^{j}\right) \rightarrow \bigwedge_{i} x_{i} \doteq y_{i}\right)\right. \\
& \left.\rightarrow \forall \bar{y} \exists \bar{x} \bigwedge_{i} \sum_{j} z_{i, j} x_{i}{ }^{j} \doteq y_{i}\right)
\end{aligned}
$$

Suppose $\mathbb{C} \not \vDash \sigma_{n, d}$. Then by maximal consistency of $\mathrm{ACF}_{0}, \mathrm{ACF}_{0} \vDash \neg \sigma_{n, d}$. Then by compactness, for some $m \in \mathbb{N}$,

$$
\mathrm{ACF} \cup\{\neg \bar{i} \doteq \overline{0}: 0<i<m\} \vDash \neg \sigma_{n, d} .
$$

So if $p>m$ is prime, $\mathbb{F}_{p}^{\text {alg }} \vDash \neg \sigma_{n, d}$. But this contradicts the Claim.

