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2 CRNs as Markov processes

In order to properly analyse stochastic models of CRNs, we need some theory on continuous-
time Markov chains, which we will abbreviate as CTMCs. Much of this theory takes us well
beyond the scope of this course, so we will only outline the most essential parts of it, and in a
form most suited to the application to CRNs.

Throughout this chapter, we consider a system of m chemical reactions on n species A1, . . . ,An
in a well-mixed compartment so we can ignore spatial dynamics. Let Xi(t) be the random variable
denoting the number of molecules of species Ai at time t ≥ 0, so thatX(t) := (X1(t), . . . , Xn(t))

t

is a stochastic process with outputs in (some subset of) Zn≥0.

Recall our basic assumption about a well-mixed system: that the intensity of any reaction depends
only on the current state of the system i.e., the current species numbers. We can make this precise
by stipulating that our models of CRNs define time-homogeneous Markov chains. In particular,
the stochastic process X(t):

• has the Markov property: given k ∈ N, 0 ≤ t1 < t2 < · · · < tk+1 < ∞, A ⊆ Zn≥0 and
s1, . . . , sk ∈ Zn≥0, then

P(X(tk+1) ∈ A |X(tk) = sk, . . . ,X(t1) = s1) = P(X(tk+1) ∈ A |X(tk) = sk) ;

• is time-homogeneous: given t, u > 0, A ⊆ Zn≥0 and s ∈ Zn≥0, then

P(X(t+ u) ∈ A |X(u) = s) = P(X(t) ∈ A |X(0) = s) .

It is also very reasonable, and technically useful, to rule out “instantaneous states”: if the system
is in a state x, then with probability 1 the transition time after which it leaves this state will be
positive (possibly infinite), but not zero. Consequently the paths t 7→ X(t) are right-continuous
step functions, i.e., X(t) = limu↘tX(u). This property is automatic when we consider systems
with only a finite number of distinct reactions. It can also hold for systems with infinitely many
reactions, but then we need to think more carefully about the intensities.

2.1 Transition probabilities

In order to understand the evolution of a CRN, we would like to know the probability of finding
the system in a state x at time t, given that it was in state y at time s ≤ t. Let S ⊆ Zn≥0 be the
set of possible states of the system; then we would like to know

P(X(t) = x |X(s) = y) .

for all x, y ∈ S and all times 0 ≤ s ≤ t. These probabilities are called transition probabilities.
They can be regarded as the “solution” of a stochastic model of a CRN. By analogy with the
deterministic case, we would hope that knowing the reaction intensities would allow us to calculate
the transition probabilities uniquely. As we might expect, there are some practical and theoretical
difficulties we face trying to work out transition probabilities.
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2.2 Waiting times are exponentially distributed 16

The transition matrix. The Markov assumptions mean that given t ≥ s,

P(X(t) = x |X(s) = y) = P(X(t− s) = x |X(0) = y)

and so, in order to know all transition probabilities, it is sufficient if we can find

pt(y, x) := P(X(t) = x |X(0) = y} .

for all states x, y ∈ S, and times t ≥ 0. Since the state space S is discrete, we can put these
probabilities together into a (possibly infinite) time-dependent matrix, say Pt. We will often also
write this transition matrix as P(t). Clearly P0 is the identity matrix, denoted I. Moreover,
by a familiar application of the law of total probability, the transition probabilities satisfy the
Chapman-Kolmogorov equations:

pt+u(x, y) =
∑
z∈S

pt(x, z)pu(z, y) . (5)

The Chapman-Kolmogorov equations are equivalent to the semigroup property Pt+u = PtPu
for any t, u ≥ 0.

If we have managed to calculate Pt for all t, then given any initial measure, say φ0, on S, we
can calculate φt = φ0Pt which gives us a measure on S at time t. Occasionally it is quite
straightforward to work out Pt; but often it can be challenging. We will see that in principle
we can calculate Pt by solving a set of differential equations. However, even in cases where we
cannot write down Pt we may be able to work out some useful limit such as limt→∞ Pt.
A very special kind of state of a CTMC is an absorbing state. This is a state x such that
pt(x, x) = 1 for some t > 0, and hence for all t > 0.

Example 2.1 (Lotka reactions). Consider the Lotka reactions:

A → 2A, B → 0, A+ B → 2B .

With intensities satisfying our basic assumptions (the intensity of a reaction is positive if and
only if there are sufficient molecules of all the species in its reactant complex for it to proceed),
the state (0, 0) is an absorbing state: without any molecules of A or B present, none of the
reactions can proceed, i.e., all the intensities must be zero. We thus remain at (0, 0) for all future
time. Systems with absorbing states highlight a fundamental difference between deterministic and
stochastic models: in a stochastic model, random fluctuations may take us to an absorbing state
with positive probability, and after this we are stuck there; this cannot occur in the corresponding
deterministic model.

2.2 Waiting times are exponentially distributed

Let us consider a CRN in some given state. How long do we have to wait until some reaction
“fires” and the state of the system changes? Understanding how to compute this (random) time,
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2.2 Waiting times are exponentially distributed 17

is key both to understanding and to simulating stochastic models. It is remarkable that we can
infer some very specific and useful information from the Markov assumptions alone.

From now on, {X(t)}t∈T will be a right-continuous, time-homogeneous, Markov process taking
values in S ⊆ Zn≥0 and describing the state of a CRN. Given X(0) = x we can define the waiting
time associated with the state x,

Tx := inf{t > 0 |X(t) 6= x} .

We may also refer to Tx as the first jump time. In the context of CRNs, the random variable
Tx, associated with each state x, tells us how long we have to wait until the next reaction fires
and takes us to a new state. Our assumption about right-continuity means that Tx is positive or∞. From the Markov properties, we can see that Tx has the memoryless property:

P(Tx > t+ u) = P(Tx > t+ u | Tx > t)P(Tx > t) = P(Tx > u)P(Tx > t) .

It is well known that memorylessness for a positive continuous random variable implies that it is
exponentially distributed. The proof is left as an exercise.

Exercise 2.2 (Memorylessness implies the exponential distribution). Show that if a pos-
itive, continuous random variable T is memoryless then it has the exponential distribution and
find its parameter. Here “memoryless” means that P(T > a + b) = P(T > a)P(T > b) for
any positive a and b. [Hint: set G(u) = P(T > u) so that G satisfies the functional equation
G(t + u) = G(t)G(u). First work out G for all positive rational inputs, and then complete the
argument for all positive inputs by noting that G is clearly a decreasing function.]

We thus have that Tx is either infinite (if x is an absorbing state) or exponentially distributed
with parameter, say, γx > 0. Consequently

P(X(t+ ∆t) = x |X(t) = x) = 1− γx∆t+ o(∆t) as ∆t↘ 0 .

Memorylessness: probabilities scale linearly with time for small times. The following
properties are equivalent for a memoryless waiting time T . Let λ > 0.

1. T has Exp(λ) distribution.

2. P(T ≤ ∆t) = λ∆t+ o(∆t) as ∆t↘ 0 .

In one direction this is obvious as 1− e−λ∆t = λ∆t+ o(∆t). In the other direction, let G(t) =
P(T > t). Clearly G(0) = 1. Then, by memorylessness, and our assumption,

G(t+ ∆t) = G(t)G(∆t) = G(t)(1− λ∆t+ o(∆t)) .

I.e.

G(t+ ∆t) −G(t)

∆t
= −G(t)λ+G(t)

o(∆t)

∆t
.
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2.2 Waiting times are exponentially distributed 18

Taking the limit ∆t→ 0 gives the ODE

G ′(t) = −λG(t) with solution G(t) = e−λt ,

where we have used the initial condition G(0) = 1.

Thus very general assumptions lead us to the conclusion that given any initial state, the waiting
time until the state of the system changes (i.e., the first reaction fires) is exponentially distributed.
We should bear in mind the special case that it may be infinite, if the current state of the system
is an absorbing state.

The waiting parameter as a reaction intensity. Recall that given a CRN in some state x,
we defined the intensity vj(x) of a reaction, by saying that the probability the reaction occurs in
time [t, t+∆t) should be vj(x)∆t+o(∆t) as ∆t↘ 0. We thus see that if we have only a single
reaction in a CRN, then the parameter γx of the exponentially-distributed waiting time until the
next event is precisely the intensity of this reaction, namely vj(x).

Next, in a system with several reactions we would like to know which reaction will fire first, and
how we can relate the parameter γx to the reaction intensities.

Waiting times for each reaction. Suppose we could “switch off” all but one reaction in the
system, say the jth reaction, and assume that the current state x of the system is such that the
jth reaction can proceed, i.e., its intensity at x is positive. Then, by the argument in Exercise 2.2,
the waiting time until the reaction fires would be exponentially distributed with parameter vj(x),
its intensity. We thus have:

1. the waiting time before some reaction occurs is exponentially distributed with parameter
γx; and

2. if we had only the jth reaction reaction, the waiting time until it occurs would be exponen-
tially distributed with parameter vj(x).

We need to check that these claims are consistent and find the relationship between the parame-
ters vj(x) and γx. Given current state x, we can think of each reaction as having its own random
alarm clock: e.g., reaction j has an alarm clock set to go off at some exponentially distributed
random time with parameter vj(x) (the intensity of the reaction). All of the clocks associated
with the different reactions are independent. Of course, when any alarm clock goes off, the state
of the system changes, and the intensities change, and the parameters for all the alarm clocks
change.

To find the relationship between γx and vj(x), we merely need to observe that the minimum of
a set of independent exponentially distributed random variables with parameters λ1, . . . , λm is
exponentially distributed with parameter λ1 + · · · + λm. We can also then find the probability
that the jth reaction is the first to fire. This leads us to a very important exercise:

Exercise 2.3 (Important exercise: independent waiting times). Let T1, . . . Tm be a set of
independent, exponentially distributed, random variables with parameters λ1, . . . , λm. (We can
think of these as waiting times for a set of m reactions given some current state of a CRN.)
Show that:
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2.3 The jump chain: irreducibility, recurrence, and transience 19

1. T := mini{Ti} is an exponentially distributed random variable with parameter
∑m

j=1 λj;

2. The probability that the minimum T is achieved by Ti is λi/(
∑m

j=1 λj).

3. Let K be the random variable defined by T = TK (i.e., the Kth reaction is the first to fire).
Note that, by the previous part, K is defined with probability 1. Show that T and K are
independent. Interpret this result intuitively.

Remark 2.4 (Countably infinite reactions). The result of Exercise 2.3 can be extended to the
case of infinitely many random times provided the parameters are summable, namely

∑∞
k=1 λi <∞.

The observations in Exercise 2.3 mean that the parameter γx for the distribution of the waiting
time before some reaction fires is just equal to

∑m
j=1 vj(x), the sum of the reaction intensities.

The exercise also tells us that the probability that the first reaction to fire is the jth reaction is the
ratio vj(x)/

∑m
j=1 vj(x). These observations are key to understanding the Gillespie algorithm,

which we will present shortly.

A naive simulation algorithm. Before we come to this Gillespie algorithm, it is useful to
consider the following “naive” approach to simulating a system of chemical reactions, based on
our observations so far. We have seen that given a CRN with m reactions, currently in state
x, the probability that some reaction occurs in a time ∆t is γx∆t + o(∆t) as ∆t ↘ 0, where
γx =

∑m
j=1 vj(x). If we choose the time-step ∆t small enough, so that γx∆t� 1, then we can,

at each time-step, just ask the “yes-no” question: “Did some reaction occur during ∆t?” by
choosing a random number uniformly distributed on [0, 1] and checking if its value is ≤ γx∆t.
If yes, then some reaction fired, and otherwise it didn’t. We can then decide which reaction fired
according to the probabilities vj(x)/γx, e.g., in order to choose which reaction fired, we divide
[0, 1] into m subintervals of lengths vj(x)/γx (j = 1, . . . ,m) and see where a random number
uniformly distributed on [0, 1] lands. Of course, this approach would be approximate, and its
accuracy clearly depends on the step-size ∆t, as we have ignored the o(∆t) term. We will shortly
see a better approach; but it is nevertheless useful to bear this naive algorithm in mind: we will
see similar ideas at several points.

2.3 The jump chain: irreducibility, recurrence, and transience

Let x, y ∈ S be states of a CRN. Consider the probability that given current state x, the next
state of the system will be y. Of course, if there is no reaction leading us from x to y in one
step, then this probability is zero. If, on the other hand, reaction j takes us from state x to state
y, i.e., y = x + ζj where ζj is the reaction vector of the jth reaction, then we have just seen
that the “jump” probability is vj(x)/

∑m
j=1 vj(x). If we put the jump probabilities into a matrix,

say P̂, we can define a discrete-time Markov chain, termed the jump chain of the system, with
transition matrix P̂.

Thus, associated with a continuous-time CRN model is a discrete-time Markov chain, the jump
chain, which tells us which states we can move directly to from the current state; and with what
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2.3 The jump chain: irreducibility, recurrence, and transience 20

probabilities. The jump chain does not tell us anything about how fast or slowly these transitions
might occur; nevertheless, many important properties of a continuous-time model can be inferred
from properties of the jump chain.

Communicating classes. As in the case of discrete-time Markov chains, we can say that
two states x and y communicate if it is possible to go from x to y via a sequence of jumps
(reactions); and also back again from y to x via a sequence of jumps. As usual, we can divide the
states into communicating classes. Clearly we can identify the communicating classes from
the jump chain alone. Moreover, we can also define communicating classes to be closed or not
in the usual way, again from examination of the jump chain alone.

Irreducibility. As in the discrete-time case, a CTMC is irreducible if for every pair of states x, y,
there exists t > 0 s.t. pt(x, y) > 0, in other words, all states belong to a single communicating
class. However, now we have an important difference between continuous-time and discrete-time
chains: if pt(x, y) > 0 for some t > 0, then pt(x, y) > 0 for all t > 0. We can see this as
follows. If pt(x, y) > 0 for some t > 0 there must be a finite sequence of states connecting x
and y, say x = x0, x1, . . . , xn = y, and there must exist (tk) such that ptk(xk−1, xk) > 0 for
k = 1, . . . n. But, waiting times are exponentially distributed; and so, for each k and any r > 0,
ptk/r(xk−1, xk) > 0. The claim follows.

Thus, if a continuous-time chain is irreducible then all entries of each transition matrix Pt (t > 0)
are strictly positive. Consequently, there is no analogue of periodicity in continuous-time Markov
chains.

A rather trivial, but useful, observation is that a system with an absorbing state cannot be
irreducible (assuming that it has more than one state).

Example 2.5 (Lotka reactions: the chain is not irreducible). Consider again a stochastic
model of the Lotka reactions which we saw in Example 2.1:

A → 2A, B → 0, A+ B → 2B .

We may take the state space to be Z2≥0. Recall that (0, 0) is an absorbing state of the system
and thus the system is not irreducible. It is not hard to see that the only closed communicating
class of the system is the absorbing state {(0, 0)}.

In fact we can divide Z2≥0 into four regions: the absorbing state (0, 0); states of the form (n, 0)
with n > 0 (each such state is an open class); states of the form (0, n) with n > 0 (each such
state is an open class); and the remaining states of the form (n,m) with n > 0, m > 0 which
together form an open class.

Based on this we can guess that given any initial condition, with finite probability we will end up
on one of the axes (i.e., in a state of the form (0, n) or (n, 0)). We will explore this example
further in an exercise.

Chains where all communicating classes are closed. Another observation is that if the state
space of a CRN model consists of a set of closed communicating classes, then by fixing the initial
state we may restrict attention to exactly one of these; and thus assume the CRN gives rise to
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2.4 Mass action kinetics 21

an irreducible chain (see, e.g., Example 1.13). Thus a CRN where all the communicating classes
are closed is as good as an irreducible one in practice.

Recurrence and transience. Just as in the discrete-time case a state x of a CTMC is recurrent
if, given X(0) = x, with probability one, we can find a sequence of times tk → ∞ such that
X(tk) = x for each tk. Clearly an absorbing state is recurrent. A CTMC is recurrent if all its
states are recurrent. A state which is not recurrent is transient. For example, in a CRN with
the single reaction A → 2A, the state with one molecule of A is clearly transient.

Just as irreducibility can be inferred by looking at the jump chain, the same holds for recurrence
and transience. From the equivalent discrete-time result, recurrence and transience are class
properties: either every state in a communicating class is recurrent; or every state in the class
is transient. The claim that we can simply look at the jump chain to decide on recurrence and
transience is almost obvious; but the possibility of explosion, discussed in Section 2.5, slightly
complicates the proof, and so we do not present the proof.

2.4 Mass action kinetics

So far, we have not considered how we might choose the reaction intensities in a stochastic model
of a CRN. Our most basic assumption is that the intensity of a reaction is positive provided there
are sufficient molecules of all the species in the reactant complex of a reaction for the reaction
to proceed; and zero otherwise. We might expect a little more: that the intensity of a given
reaction should increase if there are more ways for the molecules in its reactant complex to meet
in the right combinations.

One common choice of reaction intensities satisfying this natural requirement is given by stochas-
tic mass action kinetics. It is easiest to introduce by example.

Example 2.6 (Mass action kinetics for a bimolecular reactant complex). Consider a reac-
tion with reactant complex

A+ B .

This reaction occurs with some nonzero probability when a molecule of A “meets” a molecule of
B. Let us write nA for the number of molecules of A, and nB for the number of molecules of B
at some moment in time. The mass action assumption is that the probability of a molecule of A
meeting a molecule of B is proportional to the number of (A,B) pairs we can choose from nA

molecules of A and nB molecules of B, namely nAnB. We would thus set the intensity to be

αnAnB ,

where the constant α is the stochastic rate constant of the reaction. Note that if the reaction
is unfolding in a chamber of volume V , we would also expect the rate to decrease as V increases,
reducing the likelihood of a molecule of A meeting one of B; thus we expect α to have an inverse
relationship with the compartment volume V .

We can extract the key features of the previous example to define stochastic mass action kinetics.
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2.4 Mass action kinetics 22

Definition 2.7 (Stochastic mass action kinetics). The intensity of a reaction is proportional
to the number of available combinations of the molecules in its reactant complex. The constant
of proportionality is the stochastic mass action rate constant of the reaction. Further, this
rate constant is proportional to V1−k, where V is the compartment volume, and k is the order of
the reaction.

For example:

1. For a zeroth order reaction, i.e., where the reactant complex is 0, the rate is just a constant,
say α, which is proportional to V . We could think of the production of some species from
a “hidden species” whose number scales positively with V .

2. For a first order reaction with, say, reactant complex A, we would expect the rate to be
αnA, where α is independent of V .

3. For a second order reaction with reaction complex A + B we expect the rate to be of
the form αnAnB, where α depends inversely on V . If the reactant complex were 2A,
we would expect the rate to have the form αnA(nA − 1)/2 where again we expect α to
depend inversely on V .

The principle for higher order reactions is similar: we count the number of ways we can create the
reactant complex out of available molecules, and multiply by a rate constant which we expect to
be proportional to V1−k, where k is the order of the reaction, and V is the compartment volume.

2.4.1 Relating stochastic and deterministic mass action kinetics

Often we are given are determinstic mass action rate constants, and we want to infer the stochastic
mass action rates from these. How do we do this? Let us start again with an example.

Example 2.8 (Relating stochastic and deterministic mass action rate constants). Con-
sider a reaction with reactant complex 2A proceeding in a chamber with volume V . In the
derministic case, we can interpret the concentration of A, denoted [A] as number per volume,
i.e. nA/V . Let the deterministic mass action rate constant be k so that the deterministic rate
is k[A]2, which must have dimensions number × (volume)−1 × (time)−1. Consequently, k must
have dimensions volume × (number)−1 × (time)−1. On the other hand, let the stochastic mass
action rate constant be α, so the reaction proceeds at stochastic rate αnA(nA−1)/2 which must
have dimensions of number × (time)−1, so α must have dimensions (number)−1 × (time)−1.

In order to write the stochastic rate constant α in terms of the mass action rate constant k,
we have to assume that, in the limit of large numbers, the mass action reaction rate equals the
stochastic reaction rate, once both are put in the same units. For large nA, we may assume
that nA(nA− 1) ' n2A; then comparing kn2A/V

2 (deterministic rate of change in concentration)
to αnA(nA − 1)/(2V) (stochastic rate of change in concentration), we get α ' 2k/V . In
terms of the mass action rate constant we may thus write the stochastic rate as, approximately,
knA(nA − 1)/V . Of course this relied on the approximation nA(nA − 1) ' n2A, and so should
not be read as exact.
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2.5 Explosion (blow-up) 23

With the above example in mind, it becomes easy to write down intensities in terms of determin-
istic mass action rate constants. We write down the deterministic and stochastic rates, and bear
in mind that we need to move between species numbers and species concentrations to compare
the two. This allos us to compare stochastic and deterministic mass action models much more
easily.

It is important to remember that for reactions of order 2 or more, the correspondence only holds
approximately, becoming more accurate for large numbers of molecules.

Exercise 2.9. Write down the deterministic and stochastic mass action rates for a reaction with
reactant complex

A+ 2B

and hence relate the deterministic and stochastic rate constants.

2.5 Explosion (blow-up)

Before we can go further, we need to consider a feature of CTMCs which cannot occur in the
discrete-time case: “blow-up” or explosion. Just as for deterministic ODE models, we cannot
assume that given a stochastic model of a CRN, and an initial condition, we can determine the
state of the system for all time: it is possible that with positive probability some species numbers
approach ∞ at some finite time, say T∞. Note that T∞, termed the explosion time, is a random
time. If P(T∞ <∞ |X(0) = x) > 0, then we say that the initial state x is explosive. A model
with some explosive states will be called explosive.

The situation for explosive models is even more dramatic than in the case of ODEs with blow-up.
In the ODE case, for any given initial condition, there is a finite time interval over which the
solution exists. On the other hand, in a stochastic model with an explosive initial state, there
is a nonzero probability of explosion by any time t > 0, however small. This follows from the
remarks on irreducibility in Section 2.3 above.

When we have an explosive system, the evolution after the explosion time, say T , is not uniquely
determined by the evolution prior to T∞; we can set the system to behave in many different
ways consistent with the memoryless assumption after explosion – for example we could choose
it to return to zero. However, most natural is to stop our process at the explosion time T∞ and
formally set the state of the system to be “∞” after that time. In other words, we add a new
absorbing state to the system which we call ∞. In this way, the transition matrices P(t) can be
defined for all time. This is the assumption we will make from now on.

Explosion is a general feature of continuous-time Markov processes, and is unavoidable in CRN
models. Luckily, there are some general theorems to help us determine whether it happens or not
for a given process. Here we will take an informal approach and check directly whether or not
blow-up happens in particular CRN models.
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2.6 The reaction counting process 24

Example 2.10 (Blow-up). Consider the following two CRNs. Both are examples of birth pro-
cesses. In both cases n is the number of molecules of the species A, and k > 0 is a constant.

1. Consider the CRN

A → 2A

with one or more initial molecules of A and intensity kn (i.e., mass action kinetics with
rate constant k). Here kn can be regarded as a “birth rate”. We can think of this as
a model of a bacterial colony, where bacteria reproduce by splitting into two (and none
ever die). Although n → ∞ with probability 1 as time increases, this CRN model is not
explosive. This can be proved using some theory (which is straightforward, but we will not
present) from the fact that

∞∑
n=1

1

nk
= ∞ .

2. Consider the CRN

2A → 3A

with two or more initial molecules of A and (mass action) intensity kn(n − 1) for some
constant k > 0. We can think of this as a model of a colony where, with positive probability,
whenever two individuals meet they produce a third (and none ever die). This model is
explosive, which can be proven from the fact that

∞∑
n=2

1

kn(n− 1)
<∞ .

Thus given any T > 0, there is a positive probability that the state of the system will be∞ at time T .

Note that if a model is non-explosive, then for any t ≥ 0 the entries in each row of P(t) must
sum to 1 by the law of total probability. On the other hand, if a state is explosive, then the
entries in the corresponding row of P(t) sum to less than 1 for any t > 0. However, if we add
in a new state ∞ as above, the entries in each row of the expanded matrix, say P̃(t) (with one
extra row and column corresponding to the state ∞), still sum to one.

Clearly, if a state is explosive, then it cannot be recurrent: with nonzero probability, we have
explosion by any time t > 0, and so the probability of returning to our initial state cannot be 1.

2.6 The reaction counting process

Up to now, we have been interested in the the stochastic process {X(t)}t≥0 where the ith com-
ponent of X(t) is the number of molecules of the ith chemical species at time t. But it is useful
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2.6 The reaction counting process 25

also to consider another stochastic process which counts how many times each reaction has fired
by time t.

Let N(t) be a stochastic process whose ith component, Ni(t), counts how many times the ith
reaction has fired up to time t. A process such as Ni(t) which takes only nonnegative integer
values and can only increase in steps of size 1 is called a counting process; and so N(t) is a
vector of counting processes taking values in Zm≥0 (recall: we are assuming there are m reactions
in the CRN).

If we consider the vector N(t) of counting processes, then we can write down for the evolution of
X(t) an equation which is entirely analogous to the deterministic evolution equation (2), namely:

X(t) = X(0) + ΓN(t) , (6)

where Γ is the stoichiometric matrix of the system. In order to see the contribution from each
reaction, it is helpful to write (6) out in full:

X(t) = X(0) +N1(t)ζ1 +N2(t)ζ2 + · · ·+Nm(t)ζm ,

where we recall that ζj is the reaction vector of the jth reaction, namely, the jth column of Γ .

An easy observation is that the discussion of conservation laws in the deterministic case remains
valid in the stochastic case: if p is any vector in kerΓ t, then ptX(t) is in fact constant at the
value ptX(0). Moreover, if there exists a vector p ∈ kerΓ t whose components are all strictly
positive, then in fact the state space of the CRN is finite, being a bounded subset of Zm≥0 (see
Exercise 1.10).

What can we say about the reaction-counting process N(t)? If the reaction intensities were not
dependent on the state of the system, then the Ni(t) would be independent Poisson processes
with some fixed rates. (This is the case for zeroth order reactions with mass action kinetics.)
However, whenever any reaction fires the molecule numbers change and, potentially, some or all
of the rates associated with these Poisson processes need to be updated. Thus, we can think of
N(t) as a vector of Poisson-like processes, but with variable rates vj(x), which depend on the
state of the system.

Note that if Y(t) is a unit Poisson process, then a Poisson process with rate λ can be written
Y(λt). So, how is Nj(t) distributed, namely, how many times does reaction j occur during the
time interval [0, t]? Assuming the CRN is not explosive, with probability 1 we can partition the
interval [0, t] into 0 = t0 ≤ t1 ≤ · · · ≤ tn = t such that X(t) is constant on each [tj, tj+1). Note
that both the times ti and the total number of jumps n are random variables. Then associated
with each trajectory is an average intensity of the jth reaction, namely 1

t

∑n−1
j=0 vj(X(tj))(tj+1 −

tj) =
1
t

∫t
0
vj(X(s)) ds), and Nj(t) can be identified with the Poisson process with (random) rate

1
t

∫t
0
vj(X(s)) ds, namely,

Nj(t) = Y(

∫ t
0

vj(X(s)) ds) .

Thus Nj(t) is indeed Poisson-distributed; but with parameter 1
t

∫t
0
vj(X(s)) ds which depends on

the history of the process. This perspective is quite useful:
∫t
0
vj(X(s))ds can be interpreted
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2.6 The reaction counting process 26

as a rescaled time; and now we can think of the counting processes Nj(t) as a set of ordinary,

independent, Poisson processes, evaluated at the (random) times τj(t) :=
∫t
0
vj(X(s)) ds.

It may be helpful to visualise this change of perspective in terms of our alarm clocks associated
with each reaction. As before we have a set of m independent Poisson processes Yj, each with its
own clock. Before we had random alarms with different parameters for the alarms, but now the
alarms all have the same parameter, but the clocks run at different speeds. So, at a particular
“universal” time, we have reached different times in each counting process. Moreover, the speeds
of the clocks are updated every time an alarm goes off. (Indeed some of the clocks can stop if,
for example, one of the species in the corresponding reactant complex runs out.)

Writing out the solution (6) in full we now have

X(t) = X(0) + ζ1Y1(

∫ t
0

v1(X(s))ds) + · · ·+ ζmYm(
∫ t
0

vm(X(s))ds) . (7)

We have thus found a way of writing the stochastic evolution of a CRN in terms of a set of
independent Poisson-like processes; and in a form which looks, formally, very similar to the
deterministic solution (3).

Although our presentation has been heuristic, this approach can be made precise. We will see
later that the representation in terms of Poisson-like processes is the natural starting point for
writing down the Chemical Langevin equation and the Chemical Fokker-Planck equation.

2.6.1 The Gillespie algorithm

We are ready to discuss the most important algorithm for the stochastic simulation of CRNs:
the so-called Gillespie algorithm. Let us consider the discretised version of (7). Over a small
time-period ∆t we have:

X(t+ ∆t) − X(t) = ζ1Y1(

∫ t+∆t
t

v1(X(s))ds) + · · ·+ ζmYm(
∫ t+∆t
t

vm(X(s))ds)

' ζ1Y1(v1(X(t))∆t) + · · ·+ ζmYm(vm(X(t))∆t) . (8)

Note that in (8) we have a set of independent Poisson processes with rates λi = vi(X(t)); and
these rates are constant as long as no reaction fires. So we have a set of exponentially distributed
waiting times with parameters λ1, . . . , λm until the next reaction fires, at which point we have to
update the system, including the species numbers and the rates.

We have already observed in Exercise 2.3 that the minimum of a set of exponentially distributed
waiting times with parameters λ1, . . . , λm is exponentially distributed with parameter λ1+· · ·+λm;
and that the probability that the minimum is achieved by the kth variable (i.e., the kth reaction
is the first to fire) is λk/(

∑m
j=1 λj).

With these observations, we can then simulate the system as follows:

1. Sample from an exponential distribution with parameter λ1 + · · · + λm to get the time of
the next reaction;
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2.7 The generator matrix for a CRN 27

2. Choose which reaction fires according to the probabilities λk/(
∑m

j=1 λj);

3. Update the species numbers and rates and continue.

This is the Gillespie algorithm.

2.6.2 τ-leaping

While the Gillespie algorithm is exact, (7) also suggests another, more approximate, approach to
simulating a stochastic CRN, termed tau-leaping. If we have many reactions in a network, and
large numbers of molecules, then we may not wish to track every reaction occurrence. Instead,
we might fix a small time-interval, say ∆t, and hope to estimate how many times each reaction
occurs during this time.

Let us suppose the system is currently in state x. At this moment, the jth reaction can be
regarded as a Poisson process with rate vj(x). Of course, this is only true until some reaction
occurs; but let us pretend it is true over the whole time interval ∆t. Then, we expect the jth
reaction to occur nj times over this interval, where nj is Poisson distributed with parameter
vj(x)∆t. And similarly for all the other reactions: hence, at the end of the time-interval, we
would expect the system to be in the new state

x+

m∑
j=1

njζj ,

obtained by taking the current state and allowing each of the m reactions to occur nj times. For
each j, we choose nj from (independent) Poisson distributions with parameters vj(x)∆t.

We can now update the state of the system, and continue again. Of course, we have to be
careful not to allow reactions to fire in such a way that some species numbers become negative.
Indeed, if some species numbers are small, then the approximation is almost certainly a bad one!
Moreover, the outcome can only be approximate, because the rates were not truly constant over
the interval ∆t. In particular, we expect this approximation to be better if

• ∆t is small, and

• the species numbers are large enough that the fractional changes in intensities each time a
reaction fires are small.

Despite not being exact, τ-leaping can be useful for simulating large systems where the usual
Gillespie algorithm can become prohibitively slow. It is also conceptually helpful when we write
down the chemical Langevin and Fokker-Planck equations after we have discussed stochastic
differential equations (SDEs).

2.7 The generator matrix for a CRN

We now return to the question of how to compute transition probabilities, and thus the evolution
of a stochastic CRN model. Given such a model, we will first define a matrix Q = (q(x, y)),
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2.7 The generator matrix for a CRN 28

termed the the generator matrix of the CRN; and we will then try to understand how Q arises
and how it can be used. We will also refer to this matrix, informally, as the Q-matrix of the
CRN.

As usual, let us suppose that the CRN has m reactions and that the jth reaction has reaction
vector ζj. Let us suppose that at some particular time, the system is in state x. We have seen
that waiting times for each reaction are independent and exponentially distributed; and so, the
probability that the jth reaction occurs in a time interval ∆t is vj(x)∆t+ o(∆t). Moreover, the
waiting times for reactions to fire are independent random variables. Thus, as ∆t↘ 0, we have,
for the transition probabilities

P∆t(x, x+ζj) = vj(x)∆t+o(∆t) (j = 1, . . .m) and P∆t(x, x) = 1−

m∑
j=1

vj(x)∆t+o(∆t) .

with all other transition probabilities being o(∆t). Since P(0) = I, the identity matrix, we quite
naturally define Q as the (right) derivative of P at 0, namely,

Q := P ′(0) := lim
∆t↘0

P(∆t) − I
∆t

. (9)

Clearly, given two states x and y, we have q(x, y) =
∑

j s.t.y=x+ζj
vj(x); q(x, x) = −

∑m
j=1 vj(x) =

−
∑m

j=1 q(x, x + ζj); and q(x, y) = 0 otherwise. Thus each row of Q has at most m nonzero
off-diagonal entries, corresponding to each of the reactions firing. And the diagonal entry is set
by ensuring that sum of all entries in a row is zero. Of course, it is possible that some of the vj(x)
will be zero, or different reactions have the same reaction vector, in which case the corresponding
row(s) of Q will have fewer than m nonzero off-diagonal entries.

Remark 2.11 (Generator matrices for CTMCs). We remark that the right differentiability
of P(t) at 0, and hence the existence of the limit in (9), follows from very general theory on
continuous time Markov chains with right-continuous paths, and is not specific to CRN models.
Thus all such chains are associated with a generator matrix Q.

The transition matrix for the jump chain from the Q-matrix. For a CRN, calculating
the Q-matrix is simply a matter of knowing the intensities associated with each state. Thus
the relative sizes of off-diagonal entries in the Q-matrix tells us about the relative probabilities
of different reactions firing. For example, if x is not an absorbing state, then given state x the
probability that the first reaction to fire is reaction j is just

vj(x)∑m
j=0 vj(x)

=
q(x, x+ ζj)

−q(x, x)
.

Thus, to get the transition matrix P̂ of the jump chain of a CRN from the Q-matrix is simple.

• Given an absorbing state x, we simply set the corresponding diagonal entry P̂(x, x) = 1,

and P̂(x, y) = 0 for all y 6= x.

• Given a state x which is not absorbing, we set P̂(x, x) = 0 and P̂(x, y) = q(x,y)
−q(x,x)

for y 6= x.
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Example 2.12 (Q matrix and jump chain of a CRN with finite state space). Consider the
CRN with four reactions

A 
 B+ C, B
 C .

There is a strictly positive vector in ker Γ t, where Γ is the stoichiometric matrix (check this!),
and so, given any initial state, this CRN has finite state space.

Let us assume that all the reactions have stochastic mass action kinetics with rate constants
equal to 1, and we start with one molecule of A. (Note that, in this case, provided we assume
that the system has unit volume, it does not matter whether we consider the rate constants as
deterministic or stochastic rate constants.) The system then has four states,

{A, {B,C}, {B,B}, {C,C}} ,

which we list in this order. The Q-matrix and transition matrix of the corresponding jump-chain
are:

Q =


−1 1 0 0

1 −3 1 1

0 1 −1 0

0 1 0 −1

 and P̂ =


0 1 0 0

1/3 0 1/3 1/3

0 1 0 0

0 1 0 0

 .

Note that the chain is irreducible and recurrent because the corresponding jump-chain is.

We will return to this example when we consider invariant distributions.

2.8 The forward Kolmogorov and backward equations

Recall that for discrete-time Markov chains we can calculate n-step transition probabilities from
one-step transition probabilities. We can thus think of the one-step transition matrix as generating
all the possible transitions. We expect something similar to occur in continuous time: we hope
to be able to infer P(t) for any given t from the generator Q.

We will show how to derive two systems of ODEs satisfied by the transition probabilities in the
case of a finite state space. But in fact the systems are valid in the infinite case too.

Recall that the semigroup property implies that P(t + ∆t) = P(t)P(∆t). In the case that the
state space S is finite, we can subtract P(t) from both sides, divide through by ∆t, and take the
limit ∆t↘ 0 to get

P ′(t) = P(t)Q, or in components
d

dt
pt(x, y) =

∑
z∈S

pt(x, z)q(z, y) . (10)

This is called the the forward Kolmogorov equation. Similarly, if we start by writing P(t +
∆t) = P(∆t)P(t) and carry out a similar procedure, we obtain the equation

P ′(t) = QP(t), or in components
d

dt
pt(x, y) =

∑
z∈S

q(x, z)pt(z, y) , (11)

B5.1 Additional Notes (version of February 29, 2024)
Corrections and comments to Murad Banaji

Murad Banaji



2.8 The forward Kolmogorov and backward equations 30

which is the backward Kolmogorov equation. Thus the transition matrices P(t) satisfy the
two differential equations (10) and (11). Moreover, still assuming a finite state space, it is easy
to find the unique solution to these two equations with initial condition P(0) = I, namely

P(t) = exp(tQ) = I+ tQ+ t2Q2/2+ · · · .

Thus in the case of a finite state space we can, in theory, always solve to find the transition
matrices. From this, we can infer the long-term evolution of any distribution on the state space.
Let us see this by example.

Example 2.13 (The transition matrix from the Kolmogorov equations). Consider again
the CRN in Example 2.12

A 
 B+ C, B
 C ,

with Q-matrix

Q =


−1 1 0 0

1 −3 1 1

0 1 −1 0

0 1 0 −1

 .

We can confirm that Q has eigenvalues −4,−1,−1, 0 and corresponding matrix of eigenvectors

E =


1 1 0 1

−3 0 0 1

1 0 1 1

1 −1 −1 1

 .

With D = diag{−4,−1,−1, 0}, we calculate

etQ = EetDE−1 =
1

12


3+ 8e−t + e−4t 3− 3e−4t 3− 4e−t + e−4t 3− 4e−t + e−4t

3− 3e−4t 3+ 9e−4t 3− 3e−4t 3− 3e−4t

3− 4e−t + e−4t + 3 3− 3e−4t 3+ 8e−t + e−4t 3− 4e−t + e−4t

3− 4e−t + e−4t 3− 3e−4t 3− 4e−t + e−4t 3+ 8e−t + e−4t


We see that as t → ∞, any initial measure approaches uniform measure on the four states
{A, {B,C}, {B,B}, {C,C}}. If we increase the rate constant of the reaction B → C to 2 (while
keeping all other rate constants at 1) you should find that any initial measure now approaches
[2/9, 2/9, 1/9, 4/9] as t→ ∞. Check this as an exercise.

The Kolmogorov equations for a countably infinite state space. In the case of a countably
infinite state space, the derivations above of the forward and backward equations do not work. We
assumed that a sum of o(∆t) terms is again an o(∆t) term; this assumption is not automatically
justified in the case of an infinite sum. We have to think more carefully about interchanging
limiting operations. However, using more involved arguments, we can indeed show that under
the assumptions we have made, P(t) satisfies the forward and backward equations, which are
now infinite systems of coupled first order ODEs.

B5.1 Additional Notes (version of February 29, 2024)
Corrections and comments to Murad Banaji

Murad Banaji



2.9 Stationary measures and distributions 31

The meaning of “forward” and “backward”. When we write P(t + ∆t) = P(t)P(∆t), we
consider the evolution first in a step of size t, and then in a step of size ∆t. I.e., we perturb the
system a little bit at the end of our time-interval to see how probabilities change. When we write
P(t+∆t) = P(∆t)P(t), the time-step ∆t occurs at the start of the time-interval of interest. We
can think of this as perturbing a little bit at the start. We will see more clearly later that forward
equations correspond to initial value problems: we fix the initial state and see how probabilities
evolve forward in time. Meanwhile backward equations correspond to “final value problems”: we
have some target final state and want to find a probability distribution on initial states which
lead us to this state after a time t.

The Kolmogorov equations for an uncountable state space. Later on, when we study
stochastic differerntial equations (SDEs), we will meet the Kolmogorov equations in the case
of an uncountable state space, where they become partial differential equations describing the
evolution of probability density functions, rather than systems of ODEs describing the evolution
of probability mass functions. The forward Kolmogorov equation is, in this case, often called the
Fokker-Planck equation.

2.9 Stationary measures and distributions

A function which assigns a nonnegative number to each element of the state space of the CRN
is a measure on the state space. Transition matrices tell us how measures evolve. Given a
continuous-time Markov chain with state space S and transition matrices P(t), and an initial
measure φ0 on S, after time t we have the measure φt = φ0P(t) on the state space. This is
just a statement of the law of total probability.

If we are able to normalise a measure on S (i.e., if it has finite total mass), then we can define
a distribution on S, namely a measure with total mass 1. If P(t) are the transition matrices of
a non-explosive Markov chain, and φ0 is some initial distribution, then φt = φ0P(t) again has
total mass 1, and can be regarded as the probability distribution on the states of the chain given
the initial distribution φ0.

Definition 2.14 (Stationary/invariant measure for a CRN). A measure φ for a CRN with
transition matrices P(t) is stationary (or invariant) if

φ = φP(t) (12)

for all t ≥ 0.

Note that there is no reason in general for a CRN to have a stationary measure.

Example 2.15. Consider the CRN

0 → A

with mass action kinetics and rate constant k. In this case, it is clear that the transition matrix
P(t) is upper triangular with nonzero diagonal elements, and so (12) can have no nonzero solution.
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We have the following important result for stationary measures of irreducible and recurrent chains:

Theorem 2.16. Suppose that a CRN model is irreducible and recurrent: then it has a unique
invariant measure up to scalar multiples. Moreover, this measure is the unique (nonnegative)
element of kerQt up to scalar multiples.

We won’t prove this theorem, but note that it follows by examining the corresponding jump chain,
and using results on invariant measures for irreducible, recurrent, discrete-time Markov chains.

In the case of a finite state space, the claim in Theorem 2.16 that invariant measures correspond
to elements of kerQt follows by differentiating both sides of (12) and using the backward equation
to get

0 = φP ′(t) = φQP(t)

for all t > 0. Since limt↘0 P(t) = P(0) = I, we must have

0 = φQ .

Similarly, if φ satisfies 0 = φQ, then multiplying on the right by P(t), and again using the
backward equation gives

0 = φQP(t) = φP ′(t) =
d

dt
(φP(t)) ,

implying that φP(t) is a constant. Since P(0) = I we recover φ = φP(t). We need a more
elaborate proof in the case of an infinite state space as we cannot automatically justify exchanging
infinite summation and differentiation, but the result still holds.

Thus stationary measures for irreducible and recurrent chains correspond precisely to elements in
kerQt.

Remark 2.17 (detailed balance). Note that the stationarity condition 0 = φQ can be written

0 = φQ =
∑
y

φ(y)q(y, x) =
∑
y6=x

(φ(y)q(y, x) − φ(x)q(x, y)) .

A sufficient condition for stationarity of a measure is thus if the detailed balance condition:

φ(y)q(y, x) = φ(x)q(x, y) for all x, y ∈ S

is satisfied.

Example 2.18 (The invariant distribution for a simple reversible reaction). Consider the
following production/degratdation system with mass action kinetics and both rate constants equal
to 1:

0 
 A .

We will write down the stationary distribution for this CRN. When there are n molecules of A,
then the intensity of the forward reaction is 1, and if n ≥ 1, the intensity of the reverse reaction
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is n, giving the Q-matrix:

Q =



−1 1 0 0 0 · · ·
1 −2 1 0 0 · · ·
0 2 −3 1 0 · · ·
0 0 3 −4 1 · · ·
0 0 0 4 −5 · · ·
...

...
...

...
...

. . .


.

If φ is in the kernel of Qt, we thus have the system of equations

φ(1) = φ(0) , 2φ(2) = 2φ(1) − φ(0), . . . nφ(n) = nφ(n− 1) − φ(n− 2) .

Solving these recursively in terms of φ(0), we get

φ = φ(0)

(
1, 1,

1

2
,
1

3!
, . . .

)
and we can easily prove by induction that the nth term is 1

n!
. Normalising, we get that φ(0) = e−1,

so φ(n) = e−1/n!.

Exercise 2.19 (The invariant distribution for a simple reversible reaction). Consider again
the production-degration system with stochastic mass action kinetics, forward rate constant equal
to k1 and reverse rate constant equal to k2:

0
k1−→ A , A

k2−→ 0 .

Write down the Q-matrix for this system, and by examining kerQt find the unique invariant
distribution φ for this CRN. [You should obtain a Poisson distribution, with parameter to be
determined.]

Exercise 2.20 (A stationary measure, but no stationary distribution). Consider the follow-
ing CRN with mass action kinetics:

0 → A, A → 0, A → 2A .

• Show that, with all rate constants set to 1, the system admits a stationary measure, but
no stationary distribution.

• Now assume that the first and third (production) reactions have rate constants 1, while
the second reaction (degradation) has rate constant 2. In this case, does the system admit
a stationary measure? Does it admit a stationary distribution?
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2.10 The chemical master equation

Recall that given any initial probability distribution, say φ0, and the transition matrices P(t), we
can calculate the probability of finding the system in each state at time t simply as φt = φ0P(t).
Differentiating and applying the forward equation gives

dφt
dt

= φtQ . (13)

Let us consider each component of this equation: for each state x from the state space S, we
write px(t) for P(X(t) = x) (i.e., φt(x)), to get:

dpx
dt

=
∑
y∈S

py(t)Q(y, x) =

m∑
j=1

(
vj(x− ζj)px−ζj(t) − vj(x)px(t)

)
(x ∈ S) . (14)

In writing the second equality, we have abused notation a little: it is possible that x − ζj does
not belong to the state-space S, e.g. if it has some negative components, in which case we take
vj(x − ζj)px−ζj(t) = 0. The system of ODEs (14), is termed the chemical master equation
(or CME for short). It is simply the forward equation written out component by component.

Note that since we have assumed a finite number m of chemical reactions, each ODE in the
CME has only finitely many terms. In fact, we have two kinds of contributions to the probability
of finding the system in state x at time t: positive terms corresponding to arrival into state x via
the firing of a single reaction; and negative terms corresponding to leaving state x via reactions
which take us away from state x. Note that the negative terms can be aggregated into a single
term −px(t)

∑m
j=1 vj(x).

Example 2.21 (Writing down the CME of a simple CRN). Consider the following system
of reactions, with mass action kinetics, and all rate constants set to 1.

0 → A, A → 0, A → 2A .

We will write down the CME for this system. Let pn(t) be the probability that there are n
molecules of A at time t. The three “reaction vectors” are, in this case, just the scalars ζ1 =
1, ζ2 = −1 and ζ3 = 1 respecitively. The mass action rates are v1(n) = 1, v2(n) = n (n ≥ 1)
and v3(n) = n (n ≥ 1). We thus have,

dp0
dt

= −p0(t) + p1(t),

and, for n ≥ 1,

dpn
dt

=

3∑
j=1

(
vj(n− ζj)pn−ζj(t) − vj(n)pn(t)

)
= pn−1(t) − pn(t) + (n+ 1)pn+1(t) − npn(t) + (n− 1)pn−1(t) − npn(t)

= npn−1(t) − (2n+ 1)pn(t) + (n+ 1)pn+1(t) .

In an earlier exercise (Exercise 2.20), we computed a stationary measure for this system and
observed that it admits no stationary distribution. We can find the same measure by setting
dpn
dt

= 0 for each n and solving the resulting recurrence relations. But note that in this case we
can no longer regard the quantities pn(t) as probabilities.
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Example 2.22 (A model of enzyme kinetics). Consider the following CRN which represents
a model of enzyme kinetics with inflow and outflow of the enzyme and main substrate:

S+ E 
 C 
 P+ E, S 
 0 
 E .

This model has four species {S,E,C,P} which we take in this order, and eight reactions. The
stoichiometric matrix can be checked to have rank 4 (check this!) and so there are no conservation
laws. The state space consists of all of Z4≥0. With mass action kinetics and any rate constants,
the system has a unique stationary distribution. This time, however, it is not easy to find this
distribution directly and we need to call on additional theory to prove its existence and find its
form.

For simplicity we set all the rate constants to be 1, and the reactor volume to be 1. Let
x = (s, η, c, p) ∈ Z4≥0 denote the vector of species numbers of the four species involved. Then

φ(x) :=
e−4

s!η! c!p!
, x ∈ Z4≥0

is a stationary distribution of the system. Seeing that this is a product of four independent
Poisson distributions with parameter 1, allows us to confirm that

∑
x∈Z4

≥0
φ(x) = 1. We can

check that the distribution is stationary by appealing directly to the CME (14). We find that
each reversible pair of reactions contributes a pair of terms summing to zero in dpx

dt
. For example

the pair S+ E 
 C contribute the terms

e−4(c− sη)

s!η! c!p!
and

e−4(sη− c)

s!η! c!p!

to dpx
dt

, and these clearly add up to zero.

Exercise 2.23. Confirm the details in Example 2.22. You do not need to calculate every term in
the CME; but make sure you can correctly write down terms in the CME for, say the first pair of
reactions S+ E 
 C, and check that they are as given and add up to zero.
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2.11 Evolution of the mean and moments

We can use the CME (14) to write down an equation for the evolution of the mean EX(t). We
multiply (14) through by xi, and sum over all states x ∈ S:

d

dt
EXi(t) =

∑
x∈S

xi
dpx
dt

=

m∑
j=1

∑
x∈S

(
xivj(x− ζj)px−ζj(t) − xivj(x)px(t)

)
=

m∑
j=1

∑
x∈S

((xi + ζij)vj(x)px(t) − xivj(x)px(t))

=

m∑
j=1

ζijE[vj(X(t))] .

To go from the first to the second line, we reindex the first part of the sum, bearing in mind that
it is over all states of the system. I.e., we define the new (dummy) variable y := x − ζj, and
then rename it as x. We have assumed as usual that any reasonable intensity functions prevent
Xi from becoming negative; also, we have chosen to write the ith element of reaction vector ζj
as ζij as this corresponds to the (i, j)th element of the stoichiometric matrix of the system. In
vector notation, and calling the stoichiometric matrix Γ , we could thus write,

d

dt
EX(t) = Γ E[v(X(t))] . (15)

Note the formal similarity between (15) and the deterministic system (1), namely ẋ = Γv(x). In
fact, if all components of v, the vector of intensities, are linear or constant functions of X, then
E[v(X(t))] = v(E[X(t)]) and we get exactly the same equation as in the deterministic case: i.e.,
the mean evolves according to the usual deterministic equation. But otherwise this is not, in
general, the case, as the following example illustrates:

Example 2.24 (Evolution of the mean of a simple CRN). Consider the CRN

2A → 0, 0→ A ,

with mass action kinetics. Letting n denote the number of molecules of A, and fixing the reactor
volume at 1, the intensity of 2A → 0 is v1 := k1n(n − 1) (so Ev1 = k1(E[n2] − En)), while
that of 0→ A is v2 := k2 (so Ev2 = k2). Here k1 and k2 are the deterministic mass action rate
constants of the reactions. Using (15) we find, for the evolution of the mean

d

dt
En = k2 − 2k1(E[n2] − En) .

The corresponding deterministic equation is da
dt

= k2−2k1a
2, where a denotes the concentration

of A. Only if E[n2] − En = (En)2, i.e., the variance of n is equal to its expectation, do we get
an equation formally identical to the deterministic equation; and we have no reason to expect
that to hold in this case (it doesn’t).

More importantly, note the main difficulty: the evolution of En depends on E[n2]. In fact, if we
continue and write down an ODE for the evolution of E[n2] (try it!) we find that it depends on
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E[n3], and so forth. Thus we are back in the situation of an infinite system of coupled ODEs for
the evolution of the moments.

This example appears in Section 1.4 of [Erban and Chapman] and we will see below how to
partially solve this problem for this network and find the moments of the steady state distribution
for this CRN.

In the same way that we can start with the chemical master equation and use it to write down a
differential equation for the evolution of the mean EX(t), we can do the same thing with higher
moments of the random variables X(t). In fact, we can do this for all moments at once, via the
probability generating function.

2.11.1 Evolution of the probability generating function

Recall that the probability generating function (PGF) of a random variable Y taking non-negative
integer values is defined as

G(s) =

∞∑
n=0

snP(Y = n) .

The function G has radius of convergence at least 1 and G(1) and G(−1) are always well defined.
Moreover, moments of the distribution of Y are easily computed as derivatives of G at 1; e.g.,
E[Y] = G ′(1), and E[Y2] = G ′′(1) +G ′(1).

In the case of a CRN involving only one species, if we take X(t) to be the number of molecules
of this species, at time t, we get the PGF for X(t)

G(s, t) =

∞∑
n=0

snP(X(t) = n) =
∞∑
n=0

snpn(t) .

Differentiating with respect to time and using the chemical master equation gives

∂

∂t
G(s, t) =

∞∑
n=0

sn
dpn
dt

=

∞∑
n=0

m∑
j=1

(
snvj(n− ζj)pn−ζj(t) − s

nvj(n)pn(t)
)

=

∞∑
n=0

m∑
j=1

(
sn+ζjvj(n)pn(t) − s

nvj(n)pn(t)
)

=

m∑
j=1

(sζi − 1)

∞∑
n=0

snvj(n)pn(t) .

We can use this expression to write down a PDE for the evolution of the PGF, as we can see in
the next example.
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Example 2.25 (A PDE for the evolution of the probability generating function). We
consider again the CRN which appeared in Example 2.24, namely,

2A → 0, 0→ A ,

with n denoting the number of molecules of A, and intensities v1(n) := k1n(n−1) and v2(n) :=
k2 (we may consider k1, k2 as deterministic rate constants, and we set the reactor volume to be
1). Note that in this case we have the reaction “vectors” ζ1 = −2, ζ2 = 1. Applying the formula
above, the PGF G(s, t) :=

∑∞
n=0 s

npn(t) now evolves according to

∂

∂t
G(s, t) =

∞∑
n=0

(
(s−2 − 1)snk1n(n− 1)pn(t) + (s− 1)snk2pn(t)

)
.

On the other hand

∂

∂s
G(s, t) =

∞∑
n=0

nsn−1pn(t) ,
∂2

∂s2
G(s, t) =

∞∑
n=0

n(n− 1)sn−2pn(t)

Comparing expressions we see that G(s, t) satisfies the second-order linear PDE

∂G

∂t
= k1(1− s

2)
∂2G

∂s2
+ k2(s− 1)G .

As a consequence, assuming the existence of a stationary distribution φ, the stationary PGF,
Ĝ(s) =

∑∞
n=0 s

nφ(n), must satisfy

0 = k1(1− s
2)
d2Ĝ

ds2
+ k2(s− 1)Ĝ, or, equivalently,

d2Ĝ

ds2
=

k2

k1(1+ s)
Ĝ .

We need two boundary conditions in order to solve this equation: one is simply that Ĝ(1) =∑∞
n=0φ(n) = 1; the second is that Ĝ(−1) = 0. With these boundary conditions, we can find the

solution to this second order, linear, ODE in terms of Bessel functions and compute the mean and
variance of the stationary distribution from its PGF (see Section 1.4 in [Erban and Chapman]).
We find that, as predicted in Example 2.24, the steady state mean differs (although only slightly)
from the mean predicted by the deterministic equation.

Remark on the multivariate case. In the case of a CRN involving n species we can use the
multivariate PGF GX(s1, . . . , sn) = E[sX1

1 s
X2

2 · · · sXn
n ]. We can abbreviate sX1

1 s
X2

2 · · · sXn
n as sX

and write the PGF as GX(s) = E[sX]. We can write down an equation for its evolution similarly
to the 1D case, using the chemical master equation:

∂

∂t
GX(s, t) =

∑
x

m∑
j=1

sx
dpx
dt

=
∑
x

m∑
j=1

(
sxvj(x− ζj)px−ζj(t) − s

xvj(x)px(t)
)

=
∑
x

m∑
j=1

(
sx+ζjvj(x)px(t) − s

xvj(x)px(t)
)

=
∑
x

m∑
j=1

(sζj − 1)sxvj(x)px(t) .
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Here the first summation on each line is over all states of the system. As before, we can hope
to write down a PDE for the evolution of the PGF in this case and, in theory, use this to make
claims about evolution of the distribution.

Exercise 2.26 (Writing down a PDE for the evolution of a multivariate PGF). Write down
a PDE for the evolution of the multivariate PGF of the CRN:

0
k1−→ A

k2−→ B
k3−→ 0 .

You may assume that the rate constants are deterministic, and the reactor volume is 1. It
simplifies notation to write n := nA, m := nB, so that G(s1, s2, t) = E[sn1 sm2 ]. You should
obtain the PDE:

Gt = k1(s1 − 1)G+ k2(s2 − s1)Gs1 + k3(1− s2)Gs2 .
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