## Geometric Group Theory

## Problem Sheet 4

We use the notation from Lecture Notes, $X \sim Y$, for two metric spaces that are quasi-isometric.

1. i) Show that the relation of quasi-isometry of metric spaces $\sim$ is an equivalence relation.
ii) Let $S_{1}, S_{2}$ be finite generating sets of a group $G$. Show that $\Gamma\left(S_{1}, G\right) \sim$ $\Gamma\left(S_{2}, G\right)$.
2. Given $\epsilon, \delta>0$ a subset $N$ of a metric space $X$ is called an $(\epsilon, \delta)$-net (or simply a net) if for every $x \in X$ there is some $n \in N$ such that $d(x, n) \leq \epsilon$ and for every $n_{1}, n_{2} \in N, d\left(n_{1}, n_{2}\right) \geq \delta$.
$A$ set $N$ that satisfies only the second condition (i.e. for every $n_{1}, n_{2} \in$ $\left.N, d\left(n_{1}, n_{2}\right) \geq \delta\right)$ is called $\delta$-separated.
i) Show that any metric space $X$ has a (1,1)-net.
ii) Show that if $N \subset X$ is a net then $X \sim N$.
iii) Show that $X \sim Y$ if and only if there are nets $N_{1} \subset X, N_{2} \subset Y$ and a bilipschitz map $f: N_{1} \rightarrow N_{2}$.
iv) Let $G$ be a f.g. group. Show that $H<G$ is a net in $G$ if and only if $H$ is a finite index subgroup of $G$.
3. Prove that for every $K \geq 1$ and $A \geq 0$ there exists $\lambda \geq 1, \mu \geq 0$ and $D \geq 0$ such that the following is true. Given a $(K, A)$-quasi-geodesic $q: I \rightarrow X$ of endpoints $x, y$ in a geodesic metric space $X$ there exists a (continuous) path $\alpha: I^{\prime} \rightarrow X$ of endpoints $x, y$ such that:
4. for all $t, s \in I$,

$$
\text { length }(\alpha([t, s])) \leq \lambda d(\alpha(t), \alpha(s))+\mu
$$

2. for every $x \in I, d\left(q(x), \alpha\left(I^{\prime}\right)\right) \leq D$;
3. for every $t \in I^{\prime}, d(\alpha(t), q(I)) \leq D$.
4. Let $X$ be a $\delta$-hyperbolic geodesic metric space. If $L$ is a geodesic in $X$ and $a \in X$ we say that $b \in L$ is a projection of $a$ to $L$ if

$$
d(a, b)=\inf \{d(a, x): x \in L\}
$$

Show that if $b_{1}, b_{2}$ are projections of $a$ to $L$ then $d\left(b_{1}, b_{2}\right) \leq 2 \delta$.

## 5. Let $X$ be a geodesic metric space.

If $\Delta=[x, y, z]$ is a geodesic triangle in $X$, then there is a metric tree (a 'tripod' if $\Delta$ is not degenerate) $T_{\Delta}$ with vertices $x^{\prime}, y^{\prime}, z^{\prime}$ (the endpoints when $T_{\Delta}$ is not a segment) such that there is an onto map $f_{\Delta}: \Delta \rightarrow T_{\Delta}$ that restricts to an isometry from each side $[x, y],[y, z],[x, z]$ to the corresponding segments $\left[x^{\prime}, y^{\prime}\right],\left[y^{\prime}, z^{\prime}\right],\left[x^{\prime}, z^{\prime}\right]$ in the tree. We denote by $c_{\Delta}$ the point $\left[x^{\prime}, y^{\prime}\right] \cap$ $\left[y^{\prime}, z^{\prime}\right] \cap\left[x^{\prime}, z^{\prime}\right]$ of $T_{\Delta}$.

We say that a geodesic triangle $\Delta=[x, y, z]$ in a geodesic metric space is $\delta$-thin if for every $t \in T_{\Delta}=\left[x^{\prime}, y^{\prime}, z^{\prime}\right], \operatorname{diam}\left(f_{\Delta}^{-1}(t)\right) \leq \delta$.

Prove that the following are equivalent:

1. There is a $\delta \geq 0$ such that all geodesic triangles in $X$ are $\delta$-slim.
2. There is a $\delta^{\prime} \geq 0$ such that all geodesic triangles in $X$ are $\delta^{\prime}$-thin.
3. Let $G=\langle S\rangle$ be $\delta$-hyperbolic for some $\delta \in \mathbb{N}, \delta \geq 1$.
4. Assume that for some $g \in G, x \in \Gamma(S, G)$ with $d(x, g x)>100 \delta$ we have that $d\left(x, g^{2} x\right) \geq 2 d(x, g x)-12 \delta$.
Prove that

$$
d\left(x, g^{n} x\right) \geq n d(x, g x)-16 n \delta
$$

for all $n \in \mathbb{N}$.
2. Assume that $g$ is an element of infinite order in $G$. Prove that there are constants $c>0, d \geq 0$ such that

$$
d\left(1, g^{n}\right) \geq c n-d
$$

for all $n \in \mathbb{N}$.
3. Show that $G$ has no subgroup isomorphic to $\left\langle x, t \mid t x t^{-1}=x^{2}\right\rangle$.
7. Let $G=<S \mid R>$ be a Dehn presentation of a of a $\delta$-hyperbolic group. Show that we can decide whether a word $w$ on $S$ represents an infinite order element.
8. Let $G=<S \mid R>$ be a Dehn presentation of a $\delta$-hyperbolic group. Show that we can decide whether a word $w$ on $S$ lies in the subgroup $\langle v\rangle$.

