Using FRAP to determine the diffusivity of molecules in the eye

Peter Howell

The eye

Schematic of the lens

Lens capsule composition

Structure:

Porous matrix with various pore sizes

- 99% ~4-5 nm
- 1% ~10 nm

Function:

Allows for selective diffusion based on size, shape and charge

100,000X

Important for:

- Lens development and growth
- Nutrition and waste release
- Drug delivery
- Uveitis (Ocular inflammation)
- Cataract formation and treatment

Fluorescence Recovery After Photobleaching (FRAP)

- (i) Lens soaked in bath of fluorescing molecules for 1 hr
- (ii) Some molecules free, some bound to scaffold
- (iii) Laser blasts the molecules in an ROI (radius 5µm) for 250 msec and bleaches them

- (iv) Diffusion of unbleached molecules into the ROI from outside re-establishes fluorescence
- (v) Intensity is calculated by counting intensity of number of pixels in circle and dividing by area

Region of interest (ROI) Bleached profile

Fluorescence Recovery

Data

Effectiveness of curve fit

Termination of data collection

- Truncating at different times gives different values for *D*
- "Double exponential" (5) vs "single exponential" (3)
 - How many free parameters does the problem really have?
- Some data has structure not captured by either type of fit
- Are assumptions used to get the diffusivity from the "half-life" (e.g. cylindrical profile) justifiable?

Aim

- To quantify the results more accurately by:
 - modelling the activity within the lens cap;
 - determining which equation best fits the curve to the raw data, and why.
- To develop a tool to reliably fit a curve to the raw data and thus estimate the diffusion coefficient.