Estimating epidemic risks using branching process models

Robin Thompson

Associate Professor, Mathematical Institute and St Hilda's College, University of Oxford

Modelling for real-time outbreak response

Modelling for real-time outbreak response

Before

- Where is an outbreak most likely to occur?
- Where should surveillance resources be deployed?

Beginning

- Will initial cases lead to a major epidemic?
- Which interventions reduce the epidemic risk?

Middle

- How effective are current interventions?
- Which interventions will minimise numbers of cases?

End

- How should interventions be lifted?
- Is the epidemic over?

When a pathogen first arrives in a new host population, will initial cases fade out, or will they lead to sustained local transmission?

A practical guide to mathematical methods for estimating infectious disease outbreak risks

E. Southall $^{a,b},$ Z. Ogi-Gittins $^{a,b},$ A.R. Kaye $^{a,b},$ W.S. Hart c, F.A. Lovell-Read c, R.N. Thompson a,b,*

When a pathogen first arrives

in a new population, there are

two possibilities for what

happens next

Epidemic Risk: Can be calculated analytically using "branching processes"

A practical guide to mathematical methods for estimating infectious disease outbreak risks

E. Southall $^{a,b},$ Z. Ogi-Gittins $^{a,b},$ A.R. Kaye $^{a,b},$ W.S. Hart c, F.A. Lovell-Read c, R.N. Thompson $^{a,b,\bullet}$

- Assume we start with one infected individual
- Denote q_i = Prob(<u>no</u> major epidemic starting from *i* infected individuals)
- Want to find $1 q_1$

A practical guide to mathematical methods for estimating infectious disease outbreak risks

E. Southall $^{a,b},$ Z. Ogi-Gittins $^{a,b},$ A.R. Kaye $^{a,b},$ W.S. Hart c, F.A. Lovell-Read c, R.N. Thompson a,b,*

Two possibilities for the next event: infection or recovery

$$q_1 = \mathbb{P}(\text{infection}) \times q_2 + \mathbb{P}(\text{recovery}) \times q_0$$

Two possibilities for the next event: infection or recovery

$$q_1 \approx \mathbb{P}(\text{infection}) \times {q_1}^2 + \mathbb{P}(\text{recovery})$$

Two possibilities for the next event: infection or recovery

$$q_1 \approx \mathbb{P}(\text{infection}) \times {q_1}^2 + \mathbb{P}(\text{recovery})$$

$$q_1 = \frac{1}{R_e}$$
 or 1 $ER = 1 - q_1 = 1 - \frac{1}{R_e}$

Necessary to Forecast Major Epidemics in the Robin N Thompson, Katri Jalava, Earliest Stages of Infectious Disease *Uri Obolski

Robin N. Thompson*", Christopher A. Gilligan, Nik J. Cunniff

Outbreaks

Initial steps

1. Review methods for estimating epidemic risks using branching

processes

E. Southall ^{a,b}, Z. Ogi-Gittins ^{a,b}, A.R. Kaye ^{a,b}, W.S. Hart ^c, F.A. Lovell-Read ^c, R.N. Thompson ^{a,b,c}

2. Code up stochastic SIR model, and calculate the epidemic risk:

i) Analytically; ii) Using model simulations

3. Extend the approach to a more complex model

Age structure

 $q_{i,j,k,...} = \text{Prob}(\text{no major epidemic} | i \text{ in age group 1}, j \text{ in age group 2}, k \text{ in age group 3},)$

Time-dependence

Possible direction for the project?

RESEARCH ARTICLE

Ebola Cases and Health System Demand in Liberia

John M. Drake¹*, RajReni B. Kaul¹, Laura W. Alexander¹, Suzanne M. O'Regan¹, Andrew M. Kramer¹, J. Tomlin Pulliam¹, Matthew J. Ferrari², Andrew W. Park^{1,3}

Aim 1: Calculate the epidemic risk for this model!

Possible direction for the project?

RESEARCH ARTICLE

Ebola Cases and Health System Demand in Liberia

John M. Drake¹*, RajReni B. Kaul¹, Laura W. Alexander¹, Suzanne M. O'Regan¹, Andrew M. Kramer¹, J. Tomlin Pulliam¹, Matthew J. Ferrari², Andrew W. Park^{1,3}

Aim 2: Use the model to test a range of interventions:

- safe burials
- restrictions in hospital
- vaccination
- viral treatment

Thank you!

robin.thompson@maths.ox.ac.uk

robin-thompson.co.uk/publications