B5.6: Nonlinear Dynamics, Bifurcations and Chaos

® |ecturer: Radek Erban
® Lectures: Tuesdays 11am, Thursdays 11am (except of W7) & Wednesday 11am in W6

® Prerequisites: This course builds on ten Prelims and Part A courses. Students taking
this course should have mastered the material in Part A courses on Differential
Equations and Complex Analysis, and Prelims courses covering Probability,
Computational Mathematics, Introductory Calculus, Multivariable Calculus, Fourier
Series and PDEs, Geometry, Dynamics and Constructive Mathematics.
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The solutions to Problem Sheet 0 will be provided in our first lecture (today).
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Introduction: main questions of course B5.6
Discrete-time dynamical system: Let F: 2 x © — 2, where Q C R"” and © C R™.
Let xg € 2, p € © and x; € () be defined iteratively by

X1 = F(xp; 1)
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How do our answers depend on the initial value xq ?
How does the behaviour of x;, depend on parameters p ?
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B5.6 covers nonlinear dynamics (linear systems were in Prelims/Part A)
Discrete-time dynamical system: Let F: 2 x © — 2, where Q C R"” and © C R™.
Let xg € 2, p € © and x; € () be defined iteratively by
Xp+1 = F(xp; )
What are the values of x;,,7 What is the behaviour of x;, as k — o0 ?
How do our answers depend on the initial value xq ?
How does the behaviour of x; depend on parameters p?

Linear example (Question 1(a) on Problem Sheet 0):

2 1 -1 8
Xp+1 = Mxy for M=]11 -1 2 and xo= |1



B5.6 covers nonlinear dynamics (linear systems were in Prelims/Part A)
Discrete-time dynamical system: Let F: 2 x © — 2, where Q C R"” and © C R™.
Let xg € 2, p € © and x; € () be defined iteratively by
Xp+1 = F(xp; )
What are the values of x;,,7 What is the behaviour of x;, as k — o0 ?
How do our answers depend on the initial value xq ?
How does the behaviour of x;, depend on parameters p ?

Linear example (Question 1(a) on Problem Sheet 0):

2 1 -1 8
Xp+1 = Mxy for M=]11 -1 2 and xo= |1
-1 1 2 3

Closed form formula for solutions [Prelims Probability and Calculus courses]:

2 1 5
xp=3[-1|+(2F[-3]+2"|5
-3 1 5



B5.6 covers nonlinear dynamics (linear systems were in Prelims/Part A)
Discrete-time dynamical system: Let F: 2 x © — 2, where Q C R"” and © C R™.
Let xg € 2, p € © and x; € () be defined iteratively by
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Linear example (Question 2(a) on Problem Sheet 0): xj41 = Mxy, for Py ( 1 2)



B5.6 covers nonlinear dynamics (linear systems were in Prelims/Part A)
Discrete-time dynamical system: Let F: 2 x © — 2, where Q C R"” and © C R™.
Let xg € 2, p € © and x; € () be defined iteratively by
Xp+1 = F(xp; )
What are the values of x;,,7 What is the behaviour of x;, as k — o0 ?
How do our answers depend on the initial value xq ?
How does the behaviour of x; depend on parameters p ?

Linear example (Question 2(a) on Problem Sheet 0): xj41 = Mxy, for ( 1 2)

6 1-hva 142v2 eigenvalues of M are “lonm
S A a1+ 2v2) (i - 1-2V2)
< — o 2
%3 ﬁ/ general solution \¥ v + A\ v_
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B5.6 covers nonlinear dynamics (linear systems were in Prelims/Part A)

Discrete-time dynamical system: Let F: 2 x © — 2, where Q C R"” and © C R™.
Let xg € 2, p € © and x; € () be defined iteratively by

Xpy1 = F(xp; p)
What are the values of x;,,7 What is the behaviour of x;, as k — o0 ?
How do our answers depend on the initial value xq ?
How does the behaviour of x;, depend on parameters p ?

Linear example (Question 2(a) on Problem Sheet 0): xj41 = Mxy, for ( 1 2)

-1
eigenvalues of M are .

o

o

a1+ 2v2) (i - 1-2V2)

2
general solution )\’iv+ +Aev_

At

IN

w

N

absolute value [A;|, |A_|

lim ||x||= oo for p € (—1,00)
k—ro0

4 32101 23 4 5 6 lim
p k—00

I xe]|= 0 for 1 € (~2,~1)



Nonlinear example: logistic map

Discrete-time dynamical system: Let F': Q x © — Q, where Q = [0,1], © = [0, 4] and
Fz,p)=px(l—x). Let zp =0.7€ Q, p € © and z;, € [0,1], K =0,1,2,..., be
defined iteratively by z11 = F(xg; 1), i.e

Tpt1 = p g (1 — ox)



Nonlinear example: logistic map
Discrete-time dynamical system: Let F': Q x © — Q, where Q = [0,1], © = [0, 4] and
Fz,p)=px(l—x). Let zp =0.7€ Q, p € © and z;, € [0,1], K =0,1,2,..., be
defined iteratively by z;11 = F(zk; p), i.e.
Tpt1 = p g (1 — ox)
Problem Sheet 0 Question 3: To get some insight into the dynamics of a nonlinear

system, we can write a simple computer code [Prelims Computational Mathematics].
Starting with xg = 0.7, we obtain x, for K =0,1,2,...,200, as follows:
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Nonlinear example: logistic map
Discrete-time dynamical system: Let F': Q x © — Q, where Q = [0,1], © = [0, 4] and
Fz,p)=px(l—x). Let zp =0.7€ Q, p € © and z;, € [0,1], K =0,1,2,..., be
defined iteratively by z;11 = F(zk; p), i.e.
Tpt1 = p g (1 — ox)
Problem Sheet 0 Question 3: To get some insight into the dynamics of a nonlinear

system, we can write a simple computer code [Prelims Computational Mathematics].
Starting with xg = 0.7, we obtain x, for K =0,1,2,...,200, as follows:

p =2
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Nonlinear example: logistic map
Discrete-time dynamical system: Let F': Q x © — Q, where Q = [0,1], © = [0, 4] and
Fz,p)=px(l—x). Let zp =0.7€ Q, p € © and z;, € [0,1], K =0,1,2,..., be
defined iteratively by z;11 = F(zk; p), i.e.
Tpt1 = p g (1 — ox)
Problem Sheet 0 Question 3: To get some insight into the dynamics of a nonlinear

system, we can write a simple computer code [Prelims Computational Mathematics].
Starting with xg = 0.7, we obtain x, for K =0,1,2,...,200, as follows:

@ =3.2

0 50 100 150 200



Nonlinear example: logistic map

Discrete-time dynamical system: Let F': Q x © — Q, where Q = [0,1], © = [0, 4] and
F(z,p)=px(l—xz). Let zp =0.7€ Q, p € O and 2 € [0,1], k =0,1,2,..., be
defined iteratively by z;11 = F(zk; p), i.e.

Tpt1 = p g (1 — ox)

Problem Sheet 0 Question 3: To get some insight into the dynamics of a nonlinear
system, we can write a simple computer code [Prelims Computational Mathematics].
Starting with xg = 0.7, we obtain x, for K =0,1,2,...,200, as follows:

@ =3.5

0 50 100 150 200
k




Nonlinear example: logistic map

Discrete-time dynamical system: Let F': Q x © — Q, where Q = [0,1], © = [0, 4] and
F(z,p)=px(l—xz). Let zp =0.7€ Q, p € O and 2 € [0,1], k =0,1,2,..., be
defined iteratively by z;11 = F(zk; p), i.e.

Ti1 = p ok (1 — 2)

Problem Sheet 0 Question 3: To get some insight into the dynamics of a nonlinear

system, we can write a simple computer code [Prelims Computational Mathematics].
Starting with xg = 0.7, we obtain x, for K =0,1,2,...,200, as follows:

1 =3.55
1 PYYYYYYYYYYY PYYYYTITYYIY P YT YTITYTYTYTYTITYTYIILY

§ 0 - 5 ................................................................................................;
O | | | |
0 50 100 150 200

k



Nonlinear example: logistic map
Discrete-time dynamical system: Let F': Q x © — Q, where  =[0,1], © = [0 4] and
F(z,p)=px(l—xz). Let zp =0.7€ Q, p € O and 2 € [0,1], k =0,1,2,..., be
defined iteratively by z;11 = F(zk; p), i.e.
Tpt1 = p g (1 — ox)
Problem Sheet 0 Question 3: To get some insight into the dynamics of a nonlinear

system, we can write a simple computer code [Prelims Computational Mathematics].
Starting with xg = 0.7, we obtain x, for K =0,1,2,...,200, as follows:

@ =3.8
eIy
) 0.5 *o..o.o. .o.’. v ..' ~°. °o, ¢ :. .o..'% ° . o

0 | | |
0 50 100 150 200

k



Nonlinear example: logistic map
Discrete-time dynamical system: Let F': Q x © — Q, where Q = [0,1], © = [0, 4] and
F(z,p)=px(l—xz). Let zp =0.7€ Q, p € O and 2 € [0,1], k =0,1,2,..., be
defined iteratively by z;11 = F(zk; p), i.e.
Tpt1 = p g (1 — ox)
Problem Sheet 0 Question 3: To get some insight into the dynamics of a nonlinear

system, we can write a simple computer code [Prelims Computational Mathematics].
Starting with xg = 0.7, we obtain x, for K =0,1,2,...,200, as follows:




Nonlinear example: logistic map
Discrete-time dynamical system: Let F': Q x © — Q, where Q = [0,1], © = [0, 4] and
Fz,p)=px(l—x). Let zp =0.7€ Q, p € © and z;, € [0,1], K =0,1,2,..., be
defined iteratively by z11 = F(xg; 1), i.e
Tpt1 = p g (1 — ox)
Problem Sheet 0 Question 3: To get some insight into the dynamics of a nonlinear

system, we can write a simple computer code [Prelims Computational Mathematics].
Starting with 2y = 0.7, we obtain xj, for k = 0,1,2,...,10%, as follows:

$k+1 = 437]/.:(1 — a:k)

0 2000 4000 6000 8000 1 0000



Nonlinear example: logistic map
Discrete-time dynamical system: Let F': Q x © — Q, where Q = [0,1], © = [0, 4] and
Fz,p)=px(l—x). Let zp =0.7€ Q, p € © and z;, € [0,1], K =0,1,2,..., be
defined iteratively by z11 = F(xg; 1), i.e
Tpt1 = p g (1 — ox)
Problem Sheet 0 Question 3: To get some insight into the dynamics of a nonlinear

system, we can write a simple computer code [Prelims Computational Mathematics].
Starting with 2y = 0.7, we obtain xj, for k = 0,1,2,...,10%, as follows:

Thil = 4z (1 — xy)

1 T L O e e
Lo AN T T A

¥
XWX % 22X 3
TR SRR A T U it g LR A R AL

O T ey s R Ty T D T ! o
0 2000 4000 6000 8000 10000



Nonlinear example: logistic map

Discrete-time dynamical system: Let F': Q x © — Q, where Q = [0, 1], © = [0, 4] and
Fz,p)=px(l—x). Let zp =0.7€ Q, p € © and z;, € [0,1], K =0,1,2,..., be
defined iteratively by z11 = F(xg; 1), i.e

Thy1 = pxk (1 — zx)

Histogram of values zy, for k = 0,1,2,...,10° (blue bars): zj1 = 4z (1 — )

red line: Problem Sheet 0 Question 4:

p(z) = ——— Let X}, be a continuous random variable on
m/a(l — ) interval [0, 1] with the probability density

function p(z). Then the random variable

Xk+1 = F(Xk) = 4Xk (1 — Xk) has

the same probability density function p(x).

02 04 06 08 1 [Prelims Probability and Calculus]
T

p(x)
O - NDNWPrhooro

o



Prelims Probability and Calculus: Problem Sheet 0 Question 4

Let X be a continuous random variable on interval [0, 1] with the probability density

function p : [0, 1] — [0, 00) given by p(z) = 1/(7my/x(1 —z)). Let F': [0,1] — [0, 1] be
defined by F(x) =4z (1 — z). Then the cummulative distribution function of F/(X) is

P(F(X) <z) = P<X<;(1—M)>+P<X>;(1+M)>
1

H0-vr3)
/0 p(z)dz+/§(1+m) p(z)dz



Prelims Probability and Calculus: Problem Sheet 0 Question 4

Let X be a continuous random variable on interval [0, 1] with the probability density

function p : [0, 1] — [0, 00) given by p(z) = 1/(7my/x(1 —z)). Let F': [0,1] — [0, 1] be
defined by F(x) =4z (1 — z). Then the cummulative distribution function of F/(X) is

P(F(X) <z) = P<X<;(1—M)>+P<X>;(1+M)>
1

H0-vr3)
/0 p(z)dz+/§(1+m) p(z)dz

™ 2

= 1+2(Sin_l\/l(1—\/1—13)—sin_l\/;(l%—\/l—x))
= 1—zsin_1(\/1—x) for z €[0,1]



Prelims Probability and Calculus: Problem Sheet 0 Question 4

Let X be a continuous random variable on interval [0, 1] with the probability density

function p : [0, 1] — [0, 00) given by p(z) = 1/(7my/x(1 —z)). Let F': [0,1] — [0, 1] be
defined by F(x) =4z (1 — z). Then the cummulative distribution function of F/(X) is

P(F(X) <z) = P<X<;(1—M)>+P<X>;(1+M)>
1

H0-vr3)
/0 p(z)dz+/§(1+m) p(z)dz

2

= 1+72T(Sin_l\/l(1—\/1—13)—sin_l\/;(l%—\/l—x))
= 1—%sin_1(\/1—x) for x €[0,1]

Consequently, the probability density function of F'(X) is:

d P(F(X)<z)= 224 sin ' (V1 —1z) = _ = p(x)

dz m dx T [L‘(]_ = [L‘)



B5.6 covers nonlinear dynamics (linear systems were in Prelims/Part A)

Continuous-time dynamical system: Let f: ) x © — R", where ) C R" and © C R™.
Let xg € ©, p € © and x(t) € Q be a solution of the ODE
dx

== f(x; p) with the initial condition x(0) = x¢

We want to find x as a function of ¢ and sketch the phase plane or phase space.
What is the behaviour of x(t) as t — 00 ?

How do our answers depend on the initial value xq ?
How does the behaviour of x(t) depend on parameters p?



B5.6 covers nonlinear dynamics (linear systems were in Prelims/Part A)

Continuous-time dynamical system: Let f: ) x © — R", where ) C R" and © C R™.
Let xg € ©, p € © and x(t) € Q be a solution of the ODE

d
dit( = f(x; ) with the initial condition x(0) = xo
Linear example (Question 1(b) on Problem Sheet 0):
2 1 -1 8
dx
e Mx for M=[1 -1 2 and x(0)= |1

-1 1 2 3



B5.6 covers nonlinear dynamics (linear systems were in Prelims/Part A)

Continuous-time dynamical system: Let f: ) x © — R", where ) C R" and © C R™.
Let xg € ©, p € © and x(t) € Q be a solution of the ODE

d
dit( = f(x; ) with the initial condition x(0) = xg
Linear example (Question 1(b) on Problem Sheet 0):
2 1 -1 8
dx
e Mx for M=[1 -1 2 and x(0)= |1
-1 1 2 3

Closed form solution formula [Prelims Calculus and Part A Differential Equations
courses]:

2 1 5
x(t)=e3 | =1 | +e 2t [ -3 ] +e?' |5
—3 1 5



B5.6 covers nonlinear dynamics (linear systems were in Prelims/Part A)
Continuous-time dynamical system: Let f: ) x © — R", where ) C R" and © C R™.
Let xg € Q, p € © and x(t) € Q be a solution of the ODE
dx

vl f(x; ) with the initial condition x(0) = xg

d
Linear example (Question 2(b) on Problem Sheet 0): d—)t( = Mx for M ( 1 2>
-1 u



B5.6 covers nonlinear dynamics (linear systems were in Prelims/Part A)

Continuous-time dynamical system: Let f: ) x © — R", where ) C R" and © C R™.
Let xg € ©, p € © and x(t) € Q be a solution of the ODE

d
dit( = f(x; ) with the initial condition x(0) = xo
. . d
Linear example (Question 2(b) on Problem Sheet 0): d—)t( = Mx for M ( 1 2>
~\-1
61 ) o) eigenvalues of M are .
° :
» . 1+t /(=14 2v2) (5 — 1 - 2V2)
-3 —
ok _— = 2
3o [0, 0] is the only critical point
3
-4
4 3 -2 -1 0 1 2 3 4 5 6

1

[Part A Differential Equations 1]



B5.6 covers nonlinear dynamics (linear systems were in Prelims/Part A)

Continuous-time dynamical system: Let f: ) x © — R", where ) C R" and © C R™.
Let xg € ©, p € © and x(t) € Q be a solution of the ODE

d
dit( = f(x; ) with the initial condition x(0) = x¢
d
Linear example (Question 2(b) on Problem Sheet 0): d—)t( = Mx for M—( 1 2>
tﬁz&;lﬁf&;‘ eigenvalues of M are —1om
. 1+t /(=14 2v2) (5 — 1 - 2V2)
_— s 2

[0, 0] is the only critical point which is

eigenvalues Ay, A_

AblPiroanmwsao

saddle for p < —2
stable node for —2 < pu < 1 —2v/2
43 210123 45 8 stable spiral for 1 — 2v/2 < —1

! unstable spiral for —1 < pu < 1 +2v/2
unstable node for u > 1+ 2v/2

[Part A Differential Equations 1]



B5.6 covers nonlinear dynamics (linear systems were in Prelims/Part A)

Continuous-time dynamical system: Let f: ) x © — R", where ) C R" and © C R™.
Let xg € ©, p € © and x(t) € Q be a solution of the ODE

d
d)t( = f(x; ) with the initial condition x(0) = xg
d
Linear example (Question 2(b) on Problem Sheet 0): d—)t( = Mx for M—( 1 2>
o o] eigenvalues of M are “Lon
. 1+t /(=14 2v2) (5 — 1 - 2V2)
7 £ 2

[0, 0] is the only critical point which is

eigenvalues Ay, A_

AblPiroanmwsao

saddle for p < —2
stable node for —2 < pu < 1 —2v/2
43 210123 45 8 stable spiral for 1 — 2v/2 < —1

! unstable spiral for —1 < pu < 1 +2v/2
unstable node for u > 1+ 2v/2
center for u = —1, stable/unstable inflected node for 1 = 1 4+ 21/2

[Part A Differential Equations 1]



Nonlinear example: Problem Sheet 0 Question 5

Let 4 € R be a parameter. Consider a planar autonomous ODE system given by:
dz 3
dt
dy
dt

= z—py+yi(l—a)—a

= pr—zy(l+a)+y—y°



Nonlinear example: Problem Sheet 0 Question 5

Let © € (—1,1) be a parameter. Consider a planar autonomous ODE system given by:

dx
% = eyt -n) -2

dy
dt

Part A Differential Equations 1: linearized system next to the critical point [z, y.]

d<az—xc>:M<a:—xc> where M:( 1—y2—3x2 —p+2y: (1 — ) 2>
dt \y — ¥e Y—Ye p—Ye— 2Ty —Te(l+mze)+1— 3y

[0, 0]: unstable spiral M = <1 —,u) eigenvalues: 1 + pi

= pr—zy(l+a)+y—y°

w1
[ 1—u2,u]: stable node M= ( 2_;\—/:257 72; Qﬁv\/lliig) eigenvalues: —2, —/1 — p2

—J1— 12 ul: _( T2A2w pA2ulop ; . 2
[ 1—uw ,u].saddle M_(QH\/? Jo2 +\/7) eigenvalues: —2, \/1 —



dx
dt

= pr—cy(l+z)+y—19°

dy
dt

20
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Let © € (—1,1) be a parameter. Consider a planar autonomous ODE system given by:

Nonlinear example: Problem Sheet 0 Question 5
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Nonlinear example: Problem Sheet 0 Question 5

Let 4 > 1 be a parameter. Consider a planar autonomous ODE system given by:

dx

= o—py+y’(l—a)—a

dt

dy

pr—zy(l+z)+y—y°

dt

p=11
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Nonlinear example: Problem Sheet 0 Question 5

Let 4 € R be a parameter. Consider a planar autonomous ODE system given by:
dz

% = ey ty-n) -2
d
d% = pr—zy(l+z)+y—y°

Prelims Calculus: We transform the ODEs
to polar coordinates by using variables
r(t) and 0(t), where x(t) = r(t) cos 0(t)
and y(t) = r(t)sin(t). We obtain

dr

e =r(1—1%)

We conclude that r(t) — 1 as t — oo for
any initial condition satisfying r(0) > 0.



Nonlinear example: Problem Sheet 0 Question 5

Let 4 € R be a parameter. Consider a planar autonomous ODE system given by:

dz

dt

dy

dt
Prelims Calculus: We transform the ODEs
to polar coordinates by using variables
r(t) and 0(t), where x(t) = r(t) cos 0(t)
and y(t) = r(t) sinf(t). We obtain

dr =r(1—1%)
We conclude that r(t) — 1 as t — oo for

dt
any initial condition satisfying r(0) > 0.
do

4 = M~y =p—rsin)
If > 1, then df/dt > u—1> 0.

z—py+y’(l-z)-=

3

pr—cy(l+z)+y—y°
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Nonlinear example: Problem Sheet 0 Question 5

Let 4 € R be a parameter. Consider a planar autonomous ODE system given by:

dx
— = z—py+y’(l—z)-a
dt
dy
= = pr-sy(l+z)+y—y°
dt
Prelims Calculus: We transform the ODEs w=2
to polar coordinates by using variables NN R NS S857
r(t) and 0(t), where x(t) = r(t) cos 0(t) :5;3355}}}2255??22122
and y(t) = r(t) sinf(t). We obtain NN S et
ar oo S NG
— =il =) oy {77 v PNt S
at SRNRVASEE177 18\
We conclude that r(t) — 1 as t — oo for EXI33NN ===/t
any initial condition satisfying r(0) > 0. Ao S AN
e = AR
4 — M~y =n—rsin(d) pz==TTT o AR
-2 1 0 1 2
If > 1, then df/dt > u—1> 0. "



Nonlinear example: Problem Sheet 0 Question 5

Let 4 € R be a parameter. Consider a planar autonomous ODE system given by:

&yt -z) -2
dt
% = pr—zy(l+a)+y—y°
Prelims Calculus: We transform the ODEs ==
to polar coordinates by using variables AN SSINNINNNNNES R
r(t) and 6(t), where a(t) = r(t) cos 6(t) RN
and y(t) = r(t)sin (). We obtain Thosoos oo e 7720
dr STy NS TI o]
G =0 sorsiiifi el NG
We conclude that r(t) — 1 as t — oo for CIITIN illlizi/;iigsi
any initial condition satisfying r(0) > 0. A== IS=——— 7\
do , sttt A R BN
4 — M~y =n—rsin(d) P TS R R R
-2 -1 0 1 2
If |u| < 1, then df/dt =0 for r = 1 and sin(f) = u. T



ODEs and Chaos

Continuous-time dynamical system: Let f: ) x © — R", where ) C R" and © C R™.
Let xg € ©, p € © and x(t) € Q be a solution of the ODE
dx

vl f(x; p) with the initial condition x(0) = x¢



ODEs and Chaos

Continuous-time dynamical system: Let f: ) x © — R", where ) C R" and © C R™.
Let xg € ©, p € © and x(t) € Q be a solution of the ODE
d
dit( = f(x; ) with the initial condition x(0) = xg
¢ If n =2 and x(¢) is bounded, then x(¢) can either be (i) equal to a critical point or to

a periodic solution; or (ii) it will converge to a critical point or to a periodic solution.



ODEs and Chaos

Continuous-time dynamical system: Let f: ) x © — R", where ) C R" and © C R™.
Let xg € ©, p € © and x(t) € Q be a solution of the ODE

d
dit( = f(x; ) with the initial condition x(0) = xg

¢ If n =2 and x(¢) is bounded, then x(¢) can either be (i) equal to a critical point or to
a periodic solution; or (ii) it will converge to a critical point or to a periodic solution.

e If n > 3, then ODEs can also have chaotic solutions (our logistic map example shows
that discrete-time dynamical systems can be chaotic even for n = 1).



ODEs and Chaos
Continuous-time dynamical system: Let f: ) x © — R", where ) C R" and © C R™.
Let xg € Q, p € © and x(t) € Q be a solution of the ODE
dx

vl f(x; ) with the initial condition x(0) = xg

¢ If n =2 and x(¢) is bounded, then x(¢) can either be (i) equal to a critical point or to
a periodic solution; or (ii) it will converge to a critical point or to a periodic solution.

e If n > 3, then ODEs can also have chaotic solutions (our logistic map example shows
that discrete-time dynamical systems can be chaotic even for n = 1).

® In course B5.6, we will focus on chaotic solutions of ODEs for n = 3,
but chaos is common for n > 3. Examples are discussed in
course B5.1 Stochastic Modelling of Biological Processes.
[video of molecular dynamics simulation of ions in water]




ODEs and Chaos
Continuous-time dynamical system: Let f: ) x © — R", where ) C R" and © C R™.
Let xg € ©, p € © and x(t) € Q be a solution of the ODE
dx

vl f(x; ) with the initial condition x(0) = xg

¢ If n =2 and x(¢) is bounded, then x(¢) can either be (i) equal to a critical point or to
a periodic solution; or (ii) it will converge to a critical point or to a periodic solution.

e If n > 3, then ODEs can also have chaotic solutions (our logistic map example shows
that discrete-time dynamical systems can be chaotic even for n = 1).

® |n course B5.6, we will focus on chaotic solutions of ODEs for n = 3, e ng o

Processes

but chaos is common for n > 3. Examples are discussed in
course B5.1 Stochastic Modelling of Biological Processes.
[video of molecular dynamics simulation of ions in water]

® B5.6: we will consider relatively simple ODEs (small n, polynomials):
(1) good for developing general theory; (2) there are also interesting applications



Chemical reaction networks

Consider a well-stirred (well-mixed) chemical system with n chemical species
X1, X9, ..., X, which are subject to ¢ chemical reactions.

Let x;(t) be the concentration of the chemical species X;, i =1,2,...,n.



Chemical reaction networks

Consider a well-stirred (well-mixed) chemical system with n chemical species

X1, X9, ..., X, which are subject to ¢ chemical reactions.
Let x;(t) be the concentration of the chemical species X;, i =1,2,...,n.
¢
. . . . dx
The time evolution of concentration z(t) is given by the ODE d—tl = ch 75
j=1

where 7; is the rate of the jth reaction and c; is the change in the number of
molecules of X corresponding to the occurrence of one j-th reaction, i.e. it is the
difference between the number (stoichiometric coefficient) in front of X; on the right
hand side of the reaction and the corresponding stoichiometric coefficient on the left
hand side. The rate r; = r;(¢) is computed as a product of the rate constant and the
concentrations of the reactants (mass action kinetics).



Chemical reaction networks

Consider a well-stirred (well-mixed) chemical system with n chemical species

X1, Xo, ..., X,, which are subject to £ chemical reactions.
Let x;(t) be the concentration of the chemical species X;, i =1,2,...,n.
¢
: : : . dz
The time evolution of concentration z1(t) is given by the ODE d—tl = ch 75

j=1
Example: system of n = 3 chemical species which are subject to ¢ = 5 reactions:
X +X X XsHox, 2Xs0 0EH X X +2X%s S X
cp=-1 co =2 c3=0 cy =1 cs = —1
lek‘lSL‘lIg T2:k2133 7“3:]{531‘% T4:ki4 7“5:]{5513156%
dl’l

?:—klxle + 2koxs + kg — ]{:5:(:13?%



Chemical reaction networks

Consider a well-stirred (well-mixed) chemical system with n chemical species
X1, X9, ..., X, which are subject to ¢ chemical reactions.

Let x;(t) be the concentration of the chemical species X;, i =1,2,...,n.
¢
o dz
The time evolution of concentration z1(t) is given by the ODE d—tl = ch 75
j=1

Example: system of n = 3 chemical species which are subject to ¢ = 5 reactions:
X1+ X5 X Xs222X, 2% %0 90X, X 42X S X,
cp=-1 co =2 c3=0 cy =1 cs = —1
lek‘lSL‘l:EQ 7"2:]{221‘3 7“3:]{5313% T4:k34 T5:k5$156§
dl’l
dt
The units of x;(t) are usually moles (or number of molecules) per unit of volume,
k1 and k3 have units of [m3sec™!], ko is in [sec™!], k4 is in [m~3sec™!] and ks is in
[m®sec™!], but we will assume that ;(¢) and all parameters are dimensionless.

= —kyx1xo + 2ky a3 + ky — ks 23



Chemical reaction networks

Consider a well-stirred (well-mixed) chemical system with n chemical species

X1, Xo, ..., X,, which are subject to £ chemical reactions.
Let x;(t) be the concentration of the chemical species X;, i =1,2,...,n.
¢
: : : . dz
The time evolution of concentration z(t) is given by the ODE d—; = ch 75

j=1
Example: system of n = 3 chemical species which are subject to ¢ = 5 reactions:

X1+X2i>X3 X3£>2X1 2X3£>® ngl X1+2X;;£>X2

ct=-1 co =0 c3 =0 cy =0 cs =1
r1 = k121 22 r9 = ko 3 T3 :k‘gl‘% T4 = ky rs = ks 21 x%
dx
d—;:—klxlxg + 2kox3 + kg — ks 2
C|$2

similary for xa(t): =—kix1220 + k511 :17%

dt



Chemical reaction networks

Consider a well-stirred (well-mixed) chemical system with n chemical species

X1, Xo, ..., X,, which are subject to £ chemical reactions.
Let x;(t) be the concentration of the chemical species X;, i =1,2,...,n.
¢
: : : . dz
The time evolution of concentration z3(t) is given by the ODE d—; = ch 75

j=1
Example: system of n = 3 chemical species which are subject to ¢ = 5 reactions:

X1+X2i>X3 X3£>2X1 2X3£>® ngl X1+2X;;£>X2

c1 =1 co = —1 c3 = —2 cy =0 cs = —2
r1 = k121 22 r9 = ko 3 7“3:]{531‘?2) T4 = ky s :kg,l‘l[ﬁg
dx
CTtl = —kyx1xo + 2ky a3 + ky — ks 23
o dx
similary for xa(t): d—; =—kix1220 + k511 :17%
dIg

similary for $3(t)2 = kl 1Ty — kg xr3 — 2]€3 :L‘g — 2k5 I l‘g

dt



Chemical reaction networks

Consider a well-stirred (well-mixed) chemical system with n chemical species

X1, X9, ..., X, which are subject to ¢ chemical reactions.
Let x;(t) be the concentration of the chemical species X;, i =1,2,...,n.
¢
: : : . dz
The time evolution of concentration z1(t) is given by the ODE d—tl = ch 75

j=1
Example: system of n = 3 chemical species which are subject to ¢ = 5 reactions:

X1+X2£>X3 X3£>2X1 2X3£>(/) ngl X1+2X3ﬁ>X2
other examples: Questions 3, 4 and 6 on Problem Sheet 1

Course B5.6: ODEs with relatively small n and simple right hand sides (often
polynomials). They appear in applications as (i) models of (bio)chemical systems; or
(i) they can also be constructed in experiments (synthetic biology, DNA computing).

Polynomials can also approximate more complicated right hand sides of ODEs (stable
manifold, center manifold, bifurcations). Let us go back to some theory.



Theory and Reading List

The B5.6 course material could be introduced with different levels of mathematical rigour,
ranging from the ‘definition-theorem-proof approach’ to an example-based course covering
dynamical systems appearing in applications. There are 6 books in the Reading List:

‘ NONLINEAR
Vel
£ s Stephen Wiggins =7 Differential DYNAMICS 112 | Yuri A, Kuznetsov
3x S Equations and
7 2 7 Elements of
Introduction to AND CHAOS Applied
Applied Nonlinear S Bifurcation
Dynamical Systems Theory
and Chaos Third Edition
GEOFFREY R. GOODSON
| CHAOTIC
| DYNAMICS
FRACTALS s AND STBSHTUTIONS Q) crims

P.G.DRAZIN



Theory and Reading List

The B5.6 course material could be introduced with different levels of mathematical rigour,
ranging from the ‘definition-theorem-proof approach’ to an example-based course covering
dynamical systems appearing in applications. There are 6 books in the Reading List:

y NONLINEAR ol
[, [ Nonlinear DYNAMICS v s
; . : E i
o Systems AND CHAOS [GEEE
), Applied Nonlinear Bifurcation
A Dynamical Systems
@0 70 s ar):d Chaos : l?i:rr.i
GEOFFREY R. GOODSON
| CHAOTIC
| DYNAMICS

&) spinee

P.G.DRAZIN

Our lectures will provide enough background theory for understanding the questions on your
problem sheets and exams, but you could also use one of these books for supplementary reading
about the topics covered by this course. Students interested in building further theory with more
proofs could like [Wiggins] or [Perko], or [Kuznetsov]| (for bifurcations), or [Goodson] (for maps),
while [Drazin] or [Strogatz] could be more appreciated by students interested in applications.



The flow defined by an ODE

Continuous-time dynamical system: Let f: ) x © — R", where ) C R" and © C R™.
Let xg € ©, p € © and x(t) € Q be a solution of the ODE

d
dit( = f(x; ) with the initial condition x(0) = xg

Then we define the flow ¢, : 2 — Q by
dr(x0) = B(t,x0) = x(t)



The flow defined by an ODE
Continuous-time dynamical system: Let f: ) x © — R", where ) C R" and © C R™.
Let xg € ©, p € © and x(t) € Q be a solution of the ODE
d
dit( = f(x; ) with the initial condition x(0) = xg
Then we define the flow ¢, : 2 — Q by

$i(x0) = o(t,%0) = %(t)

Example: Question 1(b) on Problem Sheet 0 for general initial condition x € R?:

dx 2 1 -1
it Mx for M=|1 -1 2
-1 1 2
Then s .
Mg
Bu(x0) = ¢(t,%0) = exp[Mt]xo = | | X0

5=0 o
_— . . Al
where we have used the definition of the matrix exponential:  exp[A] = E —

7=0



The flow defined by an ODE

d
Considering the linear system of ODEs given by dit( = Mx where matrix M € R"*",
the flow ¢, : R™ — R™ is given by ¢y = exp[Mt].



The flow defined by an ODE

d
Considering the linear system of ODEs given by dit( = Mx where matrix M € R"*",
the flow ¢, : R™ — R™ is given by ¢y = exp[Mt].
In particular, the properties of the matrix exponential imply that the flow ¢, satisfies

(@) po=1 (b) ¢s 0 ¢t = Psit (c) prop_t=¢p_yo¢ps =1

where I € R™*"™ is the identity matrix.



The flow defined by an ODE
Considering the linear system of ODEs given by j—j = Mx where matrix M € R"*",
the flow ¢, : R™ — R™ is given by ¢y = exp[Mt].
In particular, the properties of the matrix exponential imply that the flow ¢, satisfies
(a) po =1 (b) ¢s 0 ¢t = Ps (c) ptops=¢ tops=1
where I € R™*"™ is the identity matrix.

For linear systems, the properties (a)—(c) mean:
(a) ¢o(x) = x for all x € R™;
(b) ¢s(Pt(x)) = Ppstt(x)) for all s,¢ € R and x € R™;
(c) Pt(Pp—t(x)) = p_¢(d(x)) =x for all t € R and x € R™.



The flow defined by an ODE

Considering the linear system of ODEs given by j—j = Mx where matrix M € R"*",

the flow ¢, : R™ — R™ is given by ¢y = exp[Mt].

In particular, the properties of the matrix exponential imply that the flow ¢, satisfies
(a) po =1 (b) ¢s 0 bt = Pstt (c) ptops=¢ tops=1

where I € R™*"™ is the identity matrix.

For linear systems, the properties (a)—(c) mean:

(a) ¢o(x) = x for all x € R™;

(b) ¢s(Pt(x)) = Ppstt(x)) for all s,¢ € R and x € R™;

(c) Pt(Pp—t(x)) = p_¢(d(x)) =x for all t € R and x € R™.

d

Nonlinear ODE system: dit( =f(x; p)
Part A Differential Equations 1: Picard’s existence theorem implies the global existence
and uniqueness of solutions for f € C1(R™ x R™) which satisfies the global Lipschitz
condition |f(x; u) — f(y; )| < Clx — y| for all x,y € R", p € R™.
Then ¢; : R™ — R"™ is defined for all ¢ € R and ¢, satisfies the properties (a)—(c).



The flow defined by an ODE

d
Considering the linear system of ODEs given by dit( = Mx where matrix M € R"*",
the flow ¢, : R™ — R™ is given by ¢y = exp[Mt].

In particular, the properties of the matrix exponential imply that the flow ¢, satisfies

(@) po =1 (b) ¢s 0 ¢t = Pstt (c)prop_r=¢p_ropy =1

where I € R™*"™ is the identity matrix.

Note: Assuming the global Lipschitz condition could exclude some interesting ODEs.
Our assumptions on  C R”, © C R™ and f : 2 x ©® — R" could be relaxed. In some

cases, we would only get the local existence of solutions to the nonlinear ODE system

dx
T f(x; )
¢¢ would not be defined for all ¢ € R and ¢; would only satisfy properties (a)—(c)

where it is defined.

Let us illustrate this with an example with n = 1.



The flow defined by an ODE: nonlinear example

d
Consider the ODE ditc = 22 (it does not satisfy the global Lipschitz condition).



The flow defined by an ODE: nonlinear example
d
Consider the ODE - = 22 (it does not satisfy the global Lipschitz condition).

dt
Given the initial condition z(0) = o € R, we can solve this ODE to obtain
Lo
t) = for tel
where I(xg) is the maximal interval of existence given by I(0) = R,

1
I(x) = <—oo, w) for = > 0, and I(z) = (x’oo for z < 0.



The flow defined by an ODE: nonlinear example
d
Consider the ODE . = 2 (it does not satisfy the global Lipschitz condition).

dt
Given the initial condition z(0) = o € R, we can solve this ODE to obtain
Lo
t) = for tel

where I(xq) is the maximal interval of existence given by I(0) = R,
1 1
I(x) = <—oo, ) for z > 0, and I(z) = <,oo> for x < 0.
7 %

In particular, the flow ¢; is defined as the mapping ¢ : Q@ — R, where
Q={(t,x)|reRandt e I(z)} and di(x) = P(t,z) =

1—tx
Problem Sheet 1 Question 7: We can rescale time to get a topologically equivalent
ODE system which has I(z) = R.

In general, the time along trajectories can be rescaled without affecting the phase
portrait. In what follows, we will assume that ¢, is defined for all ¢t € R and
¢ € CY(R x Q) for any considered parameter values u € ©.



Equilibrium points, flow, trajectory - summary

Given f : QO x © — R", where Q C R"”, © C R™, and p € O, we consider ODE system

dx

= _ f(x:
0 (x5 )

® x. is an equilibrium point or critical point or fixed point if f(x.; ) =0

e the flow of the ODE is the map ¢;:Q2 — € such that ¢:(x0) = ¢(t,x0) = x(t;%0),
where x(t;x¢) € Q is the solution with the initial condition x(0) = x¢ € Q

® an orbit or trajectory based on xq is the curve Iy, C ) defined by
Iy, = {x(t;x0) |t € I(z0)} ,
where I(zg) is the maximum interval of existence (WLOG we assume I(xp) = R)

e S C Qis an invariant set if ¢4(S) C S for all t € R



Equilibrium points: stability

Given f : QO x © — R", where Q C R"”, © C R™, and p € O, we consider ODE system
dx

= _ f(x:
0 (x5 )

® x. is an equilibrium point or critical point or fixed point if f(x.; ) =0
® x. is stable if
Ve > 036 > 0 such that Vxo € Bs(x.) and t > 0 we have ¢(x) € B:(x.)
where the open ball of radius 7 is defined by B,(x.) = {x € R"| [|x — x.||<r}

® x. is asymptotically stable if (i) it is stable; and
(i) 36 > 0 such that ¢¢(xg) — %, for all xg € Bs(x.)



Equilibrium points: stability, Lyapunov function

Given f : QO x © — R", where Q C R"”, © C R™, and p € O, we consider ODE system
dx

= _ f(x:
0 (x5 )

® x. is an equilibrium point or critical point or fixed point if f(x.; ) =0
® x. is stable if
Ve > 036 > 0 such that Vxo € Bs(x.) and t > 0 we have ¢(x) € B:(x.)
where the open ball of radius 7 is defined by B,(x.) = {x € R"| [|x — x.||<r}

® x. is asymptotically stable if (i) it is stable; and
(i) 36 > 0 such that ¢¢(xg) — %, for all xg € Bs(x.)
® Lyapunov function: V € C'(A), where A C Q C R" is open and x. € A
V(x) > 0 for x # x, and V(x.) =0
if dV/dt <0 for all x € A\ {x.}, then x. is stable
if dV/dt < 0 for all x € A\ {x.}, then x. is asymptotically stable

Problem Sheet 1 Question 5: proving stability by finding a suitable Lyapunov function



Equilibrium points: linearization

Given f : QO x © — R", where Q C R"”, © C R™, and p € O, we consider ODE system

dx
dar f(x; p)
® x. is an equilibrium point or critical point or fixed point if f(x.; ) =0
e linearization at X, is given by %(Xc) %(Xc) %(Xc)
dx 9f2 (x 825y ... Of2(x
E = Mx M= Df(XC) _ Bml.( C) dacz'( C) . d:vn.( C)
where M is the Jacobian matrix of o : ' o
WT(XC) aTCZ(XC) o ﬁ(xc}

® equilibrium point x. is called
hyperbolic: if none of the eigenvalues of the matrix Df(x.) have zero real part
sink: if all of the eigenvalues of the matrix Df(x.) have negative real part
source: if all of the eigenvalues of the matrix Df(x.) have positive real part
saddle: if it is a hyperbolic equilibrium point and Df(x.) has at least one
eigenvalue with a positive real part and at least one with a negative real part



Invariant manifolds

stable manifold theorem:

® the nonlinear system has locally similar behaviour close to a hyperbolic critical point

® it shows the existence of two invariant manifolds: stable manifold, unstable manifold



Invariant manifolds

stable manifold theorem:

® the nonlinear system has locally similar behaviour close to a hyperbolic critical point
® it shows the existence of two invariant manifolds: stable manifold, unstable manifold
We know what invariant means: set S C Q is invariant if ¢.(S) C S for all t € R

What is a manifold?



Invariant manifolds

stable manifold theorem:

® the nonlinear system has locally similar behaviour close to a hyperbolic critical point
® it shows the existence of two invariant manifolds: stable manifold, unstable manifold
We know what invariant means: set S C § is invariant if ¢;(S) C S for all t € R
What is a manifold? Wiggins [page 29], Perko [page 107], Kuznetsov [page 598]
® |inear settings: a linear vector subspace of R"

® nonlinear settings: a surface embedded in R™ which can be locally represented as a graph



Invariant manifolds

stable manifold theorem:

® the nonlinear system has locally similar behaviour close to a hyperbolic critical point

® it shows the existence of two invariant manifolds: stable manifold, unstable manifold

We know what invariant means: set S C Q is invariant if ¢.(S) C S for all t € R

What is a manifold? Wiggins [page 29], Perko [page 107], Kuznetsov [page 598]

® |inear settings: a linear vector subspace of R"
® nonlinear settings: a surface embedded in R™ which can be locally represented as a graph

® there is also the center manifold (invariant manifold that appears in the center manifold
theorem), but we will start with the stable manifold theorem



Stable manifold theorem: linear systems

. . dx )
Consider the linear system T Mx where M € R™ "™ and none of the eigenvalues

of M € R™ ™ have zero real part.



Stable manifold theorem: linear systems

. . dx )
Consider the linear system T Mx where M € R™ "™ and none of the eigenvalues
of M € R™™™ have zero real part.

Assume that M is diagonalizable (semi-simple) and denote its eigenvalues and
eigenvectors by  A\j =a; +ib; and w;=u;+ivj,
where a;,b; € R, uj,v; € R", for j =1,2,...,n. Then we define

stable subspace: E° = span{uj,vj a; < 0}

unstable subspace: E" = span{u;,v;|a; >0}




Stable manifold theorem: linear systems

. . dx )

Consider the linear system T Mx where M € R™ "™ and none of the eigenvalues
of M € R™™™ have zero real part.
Assume that M is diagonalizable (semi-simple) and denote its eigenvalues and
eigenvectors by  A\j =a; +ib; and w;=u;+ivj,
where a;,b; € R, uj,v; € R", for j =1,2,...,n. Then we define

stable subspace: E° = span{uj,vj aj < 0}

unstable subspace: E" = span{u;,v;|a; >0}

Example (Question 1(b) on Problem Sheet 0): A\; = —2, A2 =2 and A3 =3
2 1 -1 1 1 2
M = 1 —1 2 w1 = -3 5 Wo =
-1 1

s W3 = —1

(\)
—_

1
1
1 1 2
Then we have E° = span -3 , E* = span 11, -1
1 -3



Stable manifold theorem: linear systems

. . dx )
Consider the linear system T Mx where M € R™ "™ and none of the eigenvalues

of M € R™™™ have zero real part.

Denote the eigenvalues and generalized eigenvectors of M by
Aj =a; +ibj and w; = u; +ivy,

where a;,b; € R, uj,v; € R", for j =1,2,...,n. Then we define
stable subspace: E° = span{uj,vj ‘ aj < 0}
unstable subspace: E“ = spanqu;,Vv; ‘ aj > 0}



Stable manifold theorem: linear systems

. . dx )
Consider the linear system T Mx where M € R™ "™ and none of the eigenvalues

of M € R™™™ have zero real part.

Denote the eigenvalues and generalized eigenvectors of M by
Aj =a; +ibj and w; = u; +ivy,

where a;,b; € R, uj,v; € R", for j =1,2,...,n. Then we define
stable subspace: E° = span{uj,vj aj < 0}
unstable subspace: E" = span{u;,v;|a; > 0}

remarks: (1) if A\ is an eigenvalue of matrix M € R™*"™ of algebraic multiplicity m < n,
then for k = 1,2,...,m, any nonzero solution v of (A — A\I)*v =0
is called a generalized eigenvector of M

(2) if some eigenvalues of M € R™*"™ have zero real part, we also define
center subspace: E° = span{u;,v; ‘ aj =0}

examples: Question 1 on Problem Sheet 1



Stable manifold theorem: linear systems

. . dx )
Consider the linear system T Mx where M € R™ "™ and none of the eigenvalues
of M € R™™™ have zero real part.

Assume that M is diagonalizable (semi-simple) and denote its eigenvalues and
eigenvectors by  A\j =a; +ib; and w;=u;+ivj,
where a;,b; € R, uj,v; € R", for j =1,2,...,n. Then we define

stable subspace: E° = span{uj,vj a; < 0}

unstable subspace: E" = span{u;,v;|a; >0}




Stable manifold theorem: linear systems

. . dx )
Consider the linear system T Mx where M € R™ "™ and none of the eigenvalues

of M € R™™™ have zero real part.

Assume that M is diagonalizable (semi-simple) and denote its eigenvalues and
eigenvectors by  A\j =a; +ib; and w;=u;+ivj,
where a;,b; € R, uj,v; € R", for j =1,2,...,n. Then we define

stable subspace: E° = span{uj,vj aj < 0}

unstable subspace: E" = span{u;,v;|a; >0}

n

Moreover, the solution is given by x(t) = ch e twj which implies:
j=1

. _ s . _ . _

if x(t) =% € E?, then tliglo x(t) =0 and t_lggloo |x(t)]|= o0

. _ " . _ . _

if x(t) =x¢ € E*, then tlgélo |x(t)||= 00 and t_l}r_noo x(t) =0



Stable manifold theorem: linear systems

. . dx )
Consider the linear system T Mx where M € R™ "™ and none of the eigenvalues

of M € R™™™ have zero real part.

Assume that M is diagonalizable (semi-simple) and denote its eigenvalues and
eigenvectors by  A\j =a; +ib; and w;=u;+ivj,
where a;,b; € R, uj,v; € R", for j =1,2,...,n. Then we define

stable subspace: E° = span{uj,vj aj < 0}

unstable subspace: E" = span{u;,v;|a; >0}

n

Moreover, the solution is given by x(t) = E cj e twj which implies:
i=1

. _ s . _ . _

if x(t) =% € E?, then tliglo x(t) =0 and t_lggloo |x(t)]|= o0

if x(t) =x0 € EY, then lim |[x(t)||[=0cc and lim x(t) =0
t—o0 t——o0
Question 2 on Problem Sheet 1: this is also true for non-diagonalizable matrix M

(the nonlinear system has locally similar behaviour close to a hyperbolic critical point)



Stable manifold theorem
Given C! vectory field f: 2 x © — R", where Q C R?, © CR™, and p € O, we
consider ODE system dx
dat f(x; p)
WLOG, assume that 0 C Q) is the hyperbolic critical point, i.e. £(0; ) = 0 and matrix
Df£(0) has k eigenvalues with negative real part and n — k eigenvalues with positive
real part. In particular, our discussion of linear systems is applicable to the linear

d
system d—’; = Mx with M = Df(0).



Stable manifold theorem
Given C! vectory field f: 2 x © — R", where Q C R?, © CR™, and p € O, we
consider ODE system dx

= — f(x:
0 (x; )

WLOG, assume that 0 C 2 is the hyperbolic critical point, i.e. £(0; ) = 0 and matrix
Df£(0) has k eigenvalues with negative real part and n — k eigenvalues with positive
real part. In particular, our discussion of linear systems is applicable to the linear

d
system d—’: = Mx with M = Df(0).

Then there exists (local results):
® a k-dimensional differentiable manifold M} . tangent to the stable subspace E* of
the linear system at O such that for all ¢ > 0, we have ¢; (M}’ ) C M} = and for all
Xo € Mlsoc' we have Tian ¢t(x0) -0
t—00
® an (n — k)-dimensional differentiable manifold M}’  tangent to the unstable
subspace E“ of the linear system at 0 such that for all ¢ < 0, we have

G (ML) € M. and for all xg € M, we have thm éi(x0) = 0
——00



Stable manifold theorem: example

example: — = —T1 — Ty
dt
dafg
2
=X+ 27

dt



Stable manifold theorem: example

dy
dt
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Stable manifold theorem: example
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Stable manifold theorem:

example

example: dﬂ = —x] — x% 2 N NN N
dt \ AN NN
\ AN AN
dafg + 2 17 } N\ ~ N

— =xo+z \
di 2 1 / P NI
) . ’ ot NN
0 =[0,0] is a fixed point 7 . NN

Df(0) = (01 (1)>

e sn{ ()}, 5 ome{ ()

M _is of the form z3 = c123 + O(2})

3
1
M is of the form z1 = coz3 + O(23)

—

: - L 1.
differentiating these approximations, we get ¢; = ¢co = —3 ie.
2 2
§ . is of the form zy = =% + O(xf) and M} is of the form z1 = —22 + O(a3)



Global stable and unstable manifolds

global stable and unstable manifolds: M?* = U (M) and MY = U oe (M)
¢<0 >0



Global stable and unstable manifolds
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= J e
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Global stable and unstable manifolds

global stable and unstable manifolds

U ¢t(Mlsoc) and M" = U th(Ml%C)
<0 >0
example: T —x] — 5 S
d$2 2 ? ‘\\
9 T + X7 2 1
observe that A = 3z1x9 + 23 + 23 2o
is time independent:

dA dx dxo
E = 3(1:2 I :L'l) + 3(IE1 S 1‘2) i
= 3(z2 +a7)(~ 961 — 3)

+3(z1 + 23)(z2 +22) = 0
consequently, both stable and unstable
manifolds satisfy A = 3x1x2 + xi’ + CL‘% =0




Global stable and unstable manifolds

global stable and unstable manifolds: M?* = U (M) and MY = U oe (M)

t<0 t>0
d.fUl 2 2 . .
example: — = —x1 — x5 N F NN
dt A N N N N N N N S NN
L L T S N N N N N e
dxy 2 T NN N NN E
7:.%'24-1'1 L R R SN N NN NN
dt L NN N NN YA VNN
A A A A N N N AN A Y N NN
r 7’7 RN N\
observe that A = 3z1x9 + 23 + 23 A INNNNINNINNIN
g . . "\'0// O \
is time independent: 5 . - N
dA dz dz ; VA N
2 1 2 2 / e — N
=3(x2 +27)—— + 3(z1 +25)—— AL s
dt ( ;) dt (2 2) dt ' SooTTIIIO
I \~/ e ~
_3(x2+xlg(_$1_'x22) \\\\ /////:/// =7
+3(z1 +25)(z2+29) =0 2 rtalalatetied ettt
-2 -1 0 1 2
consequently, both stable and unstable

T
manifolds satisfy A = 3x120 + 23 + 23 = 0



Global stable and unstable manifolds

global stable and unstable manifolds: M?* = U (M) and MY = U oe (M)

<0 >0
d.%'l ) 5
example: — = —x1 — x5 VA N <=5
dt NN NN
drs P E
2 ~ — /0
= trort t
dt = + xl 1 Pt ! i NN
s / NN NN
observe that A = 3z1x9 + 23 + 23 Ll NENENIN
o~ v
is time independent: &0 w
dA dzy dzs v
—:31‘24—@"2—4—31‘1—1—1‘2— FIRN
i ~dnt DG 3w F af ]
= 3(z2 + 21)(—21 — 23) NN
+3(21 + 23)(z2 + 27) = 0 ploi T \
2 -1 0 1 2

consequently, both stable and unstable
manifolds satisfy A = 3x1x2 + xi’ + CL‘% =0



Global stable and unstable manifolds

global stable and unstable manifolds: M?® = U (M) and MY = U oe (M)

<0 >0
example: day 1 — X2 2
TP 2 S VA
dt ! 2 VA NN
o NN
dy 42 tt NN
— =X X t ot
dt 2 ! Yo N
rr s NN
observe that A = 3z1x9 + 23 + 23 Vo NN
o . . ;S'OZ/// NN
is time independent: ; s NN
VY N
dA d.’L’ dx Yy ,
2 1 2 2 v o~
=3(xs +27)— + 3(x1 + 25)—— b/ s RS \
ar =3 ;) dt (2 2) 5 R
:3(.%'2+x1)(—$1—$2) NN = e T P e o e = ST T T
N~ e D o — = ~
+3(z1 + 23)(z2 +22) = 0 - ‘ ‘ :
2 -1 0 1 2

consequently, both stable and unstable
manifolds satisfy A = 3x120 + 23 + 23 = 0



Periodic solutions (closed orbits)

[Part A Differential Equations 1]: The existence of suitable A is one possible approach
to prove the existence of periodic solutions (closed orbits) in planar systems.

example: — = —x1 — 25 \ NN
dt \ NN N N N NN
1 NONON NN
de + .’I]'2 'r ANANENENEN
— =T 3 NN NN Y
dt 2 ! Y NN
7 NN
observe that A = 3z1x9 + 23 + 23 ) NENENININ
o o o Q! v 7 NONON N AN Y
is time independent: 50 . NARNR
ER A R A &
= 3(z2 + xlg(—xl - :c22) SISO IITe
+3(z1 +25)(z2+29) =0 2 ‘ ‘ T
L . . -2 -1 0 1 2
periodic solutions around point [—1, —1] )

satisfy A = 3w129 + 23 + 23 = ¢ for ¢ € (0,1)



Periodic solutions (closed orbits)

[Part A Differential Equations 1]: The existence of suitable A is one possible approach

to prove the existence of periodic solutions (closed orbits) in planar systems.
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Periodic solutions (closed orbits)

[Part A Differential Equations 1]: The existence of suitable A is one possible approach
to prove the existence of periodic solutions (closed orbits) in planar systems.

C|.CE1
example: — = x1 — x129 25F1 ] N ]
dt [ N
dzy z :
— == 1T 2 N 3
ar 2+ 2122 E ; N
I N
A =log(r1) — 21 + log(w2) — 72 1501 \
o o o a3 Vo
is time independent N X
1
Vo
Vb
Lotka-Volterra predator-prey equations .
05"

periodic solutions around point [1, 1] S
satisfy A = log(z1) — x1 + log(za) — o = c09 — : : : :

[Part A Differential Equations 1]: 71
see pages 39-41 of your lecture notes from last year



Periodic solutions (closed orbits)

[Part A Differential Equations 1]: The existence of suitable A is one possible approach
to prove the existence of periodic solutions (closed orbits) in planar systems.

d.iL'l
example: F T1 — T122 25} ﬁ f N 3
I N
dCL‘Q b N
— = —29 + 2122 21 N b
di L N
I i
A =log(r1) — 21 + log(w2) — 72 1501
o o o 2 Vo
is time independent = b
1+
Lo
Note: Lotka-Volterra ODE system also b
describes a system of n = 2 chemical 051
species X7 and X5 which are subject oct e - : ‘ ‘
to the following ¢ = 3 chemical reactions: 0 0.5 1 1.5 2 25
)
k k k
X1+X2—1>2X2 X1—2>2X1 X2—3>®

where the values of the rate constants are: k1 = kg = k3 =1



Poincaré-Bendixson theorem (n = 2)
Given C! vectory field f : Q x © — R2, where Q c R%?, © ¢ R™, and umE 0O, we
consider the planar ODE system dx
dr = f(x; )
Suppose that R C 2 is compact (i.e. closed and bounded) and
® R does not contain any fixed points

® there exists xg € R such that ¢;(xg) € R for all t > 0, i.e. the trajectory is
confined in R for ¢t > 0

Poincaré-Bendixson theorem: Then either Iy, is a closed orbit, or ¢:(x¢) spirals
toward a closed orbit as ¢ — oco. In either case, R contains a closed orbit.



Poincaré-Bendixson theorem (n = 2)

Given C! vectory field f : Q x © — R2, where Q c R%?, © ¢ R™, and umE 0O, we

consider the planar ODE system dx
dr = f(x; )
Suppose that R C 2 is compact (i.e. closed and bounded) and
® R does not contain any fixed points

® there exists xg € R such that ¢;(xg) € R for all t > 0, i.e. the trajectory is
confined in R for ¢t > 0

Poincaré-Bendixson theorem: Then either Iy, is a closed orbit, or ¢:(x¢) spirals
toward a closed orbit as ¢ — oco. In either case, R contains a closed orbit.
application of the Poincaré-Bendixson theorem

® we need to find a trapping region: compact connected subset of {2 such that the
vector field f(x; p) points ‘inward’ everywhere on the boundary



Poincaré-Bendixson theorem (n = 2)

Given C! vectory field f : Q x © — R2, where Q c R%?, © ¢ R™, and umE 0O, we

consider the planar ODE system dx
dr = f(x; )
Suppose that R C 2 is compact (i.e. closed and bounded) and
® R does not contain any fixed points

® there exists xg € R such that ¢;(xg) € R for all t > 0, i.e. the trajectory is
confined in R for ¢t > 0

Poincaré-Bendixson theorem: Then either Iy, is a closed orbit, or ¢:(x¢) spirals
toward a closed orbit as ¢ — oco. In either case, R contains a closed orbit.
application of the Poincaré-Bendixson theorem

® we need to find a trapping region: compact connected subset of {2 such that the
vector field f(x; p) points ‘inward’ everywhere on the boundary

® we need to show that any fixed point in the trapping region is unstable, and
remove its small neighbourhood to construct R



Poincaré-Bendixson theorem (n = 2)

Given C! vectory field f : Q x © — R2, where Q c R%?, © ¢ R™, and umE 0O, we

consider the planar ODE system dx
dr = f(x; )
Suppose that R C 2 is compact (i.e. closed and bounded) and
® R does not contain any fixed points

® there exists xg € R such that ¢;(xg) € R for all t > 0, i.e. the trajectory is
confined in R for ¢t > 0

Poincaré-Bendixson theorem: Then either Iy, is a closed orbit, or ¢:(x¢) spirals
toward a closed orbit as ¢ — oco. In either case, R contains a closed orbit.
application of the Poincaré-Bendixson theorem [Question 6 on Problem Sheet 1]

® we need to find a trapping region: compact connected subset of {2 such that the
vector field f(x; ) points ‘inward’ everywhere on the boundary [Question 6(c)]

® we need to show that any fixed point in the trapping region is unstable, and
remove its small neighbourhood to construct R [Question 6(d)]



Center manifold

Given C7 vectory field f : Q x © — R”, where Q C R", © C R™, and u € O, we
consider ODE system dx

= = sz

Assume that x. C § is the critical point, i.e. f(x.; ) = 0 and matrix Df(x.) has
k > 0 eigenvalues with zero real part and n — k eigenvalues with non-zero real part.
Then there exists a k-dimensional C"-manifold M . tangent to center subspace E° of

the linear system at x, such that for all ¢ > 0, we have ¢; (M) C M.



Center manifold

Given C7 vectory field f : Q x © — R”, where Q C R", © C R™, and u € O, we
consider ODE system dx .

E - (Xa N)

Assume that x. C § is the critical point, i.e. f(x.; ) = 0 and matrix Df(x.) has

k > 0 eigenvalues with zero real part and n — k eigenvalues with non-zero real part.
Then there exists a k-dimensional C"-manifold M . tangent to center subspace E° of

the linear system at x, such that for all ¢ > 0, we have ¢; (M) C M.

® |f the unstable manifold is non-empty, then the fixed point x. is unstable.



Center manifold

Given C7 vectory field f : Q x © — R”, where Q C R", © C R™, and u € O, we
consider ODE system dx .

E - (Xa N)

Assume that x. C § is the critical point, i.e. f(x.; ) = 0 and matrix Df(x.) has

k > 0 eigenvalues with zero real part and n — k eigenvalues with non-zero real part.
Then there exists a k-dimensional C"-manifold M . tangent to center subspace E° of

the linear system at x, such that for all ¢ > 0, we have ¢; (M) C M.

® |f the unstable manifold is non-empty, then the fixed point x. is unstable.

® Suppose the unstable manifold is empty and the system has both a non-empty
stable and center manifold. Then the stability of the fixed point x. is governed by
the dynamics on the center manifold.



Reduction to the center manifold

d.iL'l
example: e 22 (zg — 3)
=T — T2

dt



Reduction to the center manifold
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Reduction to the center manifold

d.%'l
. _ .2 3 2 A I B B
example: T =zi(ra—2y) - —--=C SN
444444 ~
O s SEEEEEE
2 _ 2 - JEZZZzz =N
-V =r—-r2 A== Sl
dt e e S
””””””” [ ST
consider fixed point x. = 0 = [0, 0] DT
80 ®
0 0 futetete /R R NN
Df(O): 2 A T U TR T T A W N N
0 -1 [ I TN W T S S T N NN
_1,././//TNN\1TT\\\\\\\\‘_
I N N T S T W AN
1 0 B TN N B I B NENINN =
¢ _ s _ I S T S B NS
E°€ = span 0 , E° =span 1 I N N S T S T B RSN A 1
2 PRI LSS B B S AR
-2 -1 0 1 2
T

Warning: On the center linear subspace, we have xo = 0. Substituting x5 = 0 into the
first equation gives dz1/dt = —x3, but this does not mean that the origin is stable!



Reduction to the center manifold
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Reduction to the center manifold
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e substituting

2
1

d.I'Q

x{ — h(z1)

dt

1),

2
1

d$1

(h(z1) — =
we have 22 — h(z1) = (2hoxy + 3hzz? + ..

X

dt

D ai(h(z1) — a3)



Reduction to the center manifold

d.%'l
example: —— = x2(zy — x3)
dt
— =T — X2
dt !
.
loc is of the form .
_ _ 2 3 4 S I R N N
$2—h(331)—h2$1+h3331+h4x1+--- peatetete N BN A NN
I /2 A T U SR T (R R N W N NGO NG
AR B B I NN
o o o L - / N ~ ;
o differentiating, we get RO B U NN Sy C
B A S TR U B B B NN NENNG =P
dzo ol a2 dz; I B S S Y B NN e |
—_—° = oo ) 27000 vt e ]
dt ( 2%1 F SR F )dt ) PRI NN log
e substituting -2 -1 0 1 2
dx dx o
| ) 3 2 2
dr = zy(h(x1) — 27), dt = x1] — h(71)

we have 22 — h(z1) = (2hox1 + 3hzx? +...) 22 (h(z1) — 23)
e equating coefficients of powers of x1 gives hos =1, h3 =0 and hy =0



Reduction to the center manifold
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Reduction to the center manifold
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Reduction to the center manifold

d
example: % = 22(zy — x3) 2
E =T — T2 1
loc is of the form -
8
z2 = h(z1) = 22 + O(z})
on the center manifold the dynamics is -1
given by
d$1 -2
ar $%(h(9ﬁl) - 95?)
=z — 2} + O(z])

which implies

that the origin is unstable
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Reduction to the center manifold

d
example: % = 22(zy — x3) 2
E =T — T2 1
loc is of the form -
8
z2 = h(z1) = 22 + O(z})
on the center manifold the dynamics is -1
given by
d$1 -2
ar $%(h(9ﬁl) - 95?)
=z — 2} + O(z])

which implies

that the origin is unstable
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Reduction to the center manifold

d.%'l 2
example: —— = 22(zy —23) LI TC
d - Y e
dzy T
2
—= =7 — 29 1
dt ! miafetededeie
S SO 4
loc is of the form - ~ A
_ .2 5 8 \
T2 = h‘(xl) - xl +O(x1) 1 : oo : N\
| S S T B SN
LU U S S L T AN
. . . | LAY T T A A R DA NN
on the center manifold the dynamics is TR R A I
o AN\ T T S B A NN
given by VAL
dz NSRRI INN
1 2 3 -2 =
o7 = rilh(z1) —21) 2 1 0 1 2
T

=21 — 2} + O(a])
which implies that the origin is unstable



Reduction to the center manifold

dzy 2
example: — = az%(z9 —23) - -T
d - e
dzo Tt
2
— =] — 29 1
d A
e - ; Yy
loc is of the form - ~ A
— — 2 5 8 R NN
T2 = h‘(xl) - xl +0(ZL‘1) f 7' [ TR : AN
| R A T A WA
LT T A T B B WA
. . . -1 L T A B AN
on the center manifold the dynamics is Yt
c AT T A B A B W
given by RN A IR NN
d SRR
! 2 3 -2
o7 = rilh(z1) —21) -2 -1 0 1 2
T

=21 — 2} + O(a])
which implies that the origin is unstable

another example: Question 3 on Problem Sheet 1



Bifurcations

Continuous-time dynamical system: Let f: ) x © — R", where ) C R"™ and © C R™.
Let xg € Q, p € © and x(t) € Q be a solution of the ODE
d
dit‘ = f(x;p) with the initial condition x(0) = x € Q
Bifurcations: The qualitative structure of the flow can change as parameters p are

varied. For example, critical points (fixed points) can be created or destroyed, or limit
cycles can be created or destroyed. The parameter values at which these qualitative
changes in the dynamics occur are called bifurcation points.



Bifurcations

Continuous-time dynamical system: Let f: ) x © — R", where ) C R"™ and © C R™.
Let xg € Q, p € © and x(t) € Q be a solution of the ODE
dx

P f(x; p) with the initial condition x(0) = x¢ € Q

Bifurcations: The qualitative structure of the flow can change as parameters p are
varied. For example, critical points (fixed points) can be created or destroyed, or limit
cycles can be created or destroyed. The parameter values at which these qualitative
changes in the dynamics occur are called bifurcation points.

Some bifurcations can occur for n = 1, so we start with them.

saddle-node bifurcation

transcritical bifurcation
® supercritical pitchfork bifurcation

® subcritical pitchfork bifurcation



Saddle-node bifurcation

dxl 2
example: e W+ xq

flzip) = p+ a2t



Saddle-node bifurcation

dxl 2
example: e W+ xq

floyp) =p+a?

©w<0

=
g

two fixed points at 1 = —/—p (stable)

and z1 = y/—pu (unstable)




Saddle-node bifurcation

dml 2
example: e W+ xq

floyp) =p+a?

S
=
as u approaches zero from below, 05|
the two fixed points —y/—p and /—p
move toward each other -1r
. . . -1.5 ‘ ‘ :
1 = 0: the fixed points coalesce into 2 -1 0 1

a half-stable fixed point at 1 =0 1



Saddle-node bifurcation

example: e W+ xq

fl@p) =p+ a3

> 0: no fixed points

=1
1
05+
ﬁi 0 > > >
S—y
-0.5
-1t
1.5 :
-2 -1 0 1

X1



Saddle-node bifurcation

example dzy + 2 1 s
X L — = T ~
p dt 2 1 \\\
0.5+ R
Y
N
. . . \
bifurcation diagram 50
saddle node bifurcation is a simple
mechanism by which critical points 0.5
can be created or destroyed
1 ‘
-1 -0.5 0

terminology:

critical point: fixed point, equilibrium point a

saddle-node bifurcation: fold bifurcation, turning point bifurcation



Saddle-node bifurcation
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Saddle-node bifurcation

dxl 2
example: e W+ xq
C|{L‘2
2
dt 2

as u approaches zero from below,
the two fixed points [—+/—p, 0] and
[v/— £, 0] move toward each other

1 = 0: the fixed points coalesce into
a (saddle-node) fixed point at x = [0, 0]

=20
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Saddle-node bifurcation

dz1
dt

drz
dt

example:

> 0: no fixed

p+

—9

points




Saddle-node bifurcation

da:l

example: o + 22
C|{L‘2
2 _
dt ?

bifurcation diagram

Ty

057

-0.5

0.5




Saddle-node bifurcation

dxl 2 \\\
example: T w+ ] SO
flmisp) = p+ i 057 N\

bifurcation diagram

Z1
o

saddle node bifurcation is a general
mechanism by which critical points 0.5 ¢
can be created or destroyed

if it occurs at 1 = z. and p = pe, -1
we have
of
cy Me) = d ——(zc; pe) =
f(@e;pe) =0 an 8xl(fﬂ pre) =0
Taylor expansion: f
flzyp) = (n— MC)@(ZEC; pe) + (x — z)? 5 87:5%(%; pe)+ ... (normal form)



Saddle-node bifurcation

example day 2

X P —— =u—x]
dt

2

flzip) = p— a1

©w>0
two fixed points at 21 = /i (stable)
and x1 = —/t (unstable)




Saddle-node bifurcation

p=20
example day 2 "o
X L —=u—x
p a M 1 i
fle;p) = p—af
(15 p) = p— 27 05|
& o
S
as u approaches zero from above, 05 |
the two fixed points —,/u and /i
move toward each other -1F
. . . -1.5 ; : :
1 = 0: the fixed points coalesce into 2 -1 0 1 2

a half-stable fixed point at 1 =0 1



Saddle-node bifurcation

example day 2

X P —— =u—x]
dt

2

flzip) = p— a1

1 < 0: no fixed points

A

y §
Y




Saddle-node bifurcation

— )]

| it
e ror e
s/

__ orrrsr s/
P

b7 2
br s rrr 77
Lo o e r
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\
\
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[—/1%, 0] saddle

two fixed points at

pn>0
and

X

[\/1, 0] stable node

X =

Z1



Saddle-node bifurcation

=0
dzy 2 v T
5 — 2 A R NSy s
example E—M_xl I AV R I A Y A A o
- sy I AN
— sy Vol Lo e
@:—x Ty VW Y
dt 2 e S Vol s e e
- = o P |
S0 O imooooo
as u approaches zero from above, TR T N NN
the t fixed int [ O] d —— e NN ;; ;;\\\\\k\
e two fixed points [— an A= — ey AN
P Vi L NN Py AN~~~
[/, 0] move toward each other ~~~a PN NN S~~~
~ o~ N N VAN Pt AT T U N N N NN
~ >~ N\ tt L T W N NI N NN
) N (IR RS EEEUE R

1 = 0: the fixed points coalesce into 2 -1 0 1 P

a (saddle-node) fixed point at x = [0, 0] x



Saddle-node bifurcation

example day 2
X T — = m =7
dt
C|{L‘2
— = —I
dt 2

1 < 0: no fixed points




Saddle-node bifurcation

example day 2
X P —— =u—x]
dt
2 0.5

flzip) = p— a1

bifurcation diagram

I
o

saddle node bifurcation is a general
mechanism by which critical points 0.5 |
can be created or destroyed

if it occurs at 1 = z. and p = pe, -1
we have
of
cy Me) = d cs Me) =
f(@e;pe) =0 an 8xl(fﬂ pre) =0

Taylor expansion:




Transcritical bifurcation

1
example: el L z?

flw1;p) = poy — 23

dz
t



Transcritical bifurcation

dxl 9
example: el L Sl

flw1;p) = poy — 23

w<0

two fixed points at 1 = u (unstable)
and z; = 0 (stable)

0.4

A




Transcritical bifurcation

p=20
example day 2 "
X I — =pur—
P dar 1 i
far; p) = pay — o
(15 1) = p 1 05|
& o
S
as p approaches zero, 05 |
the two fixed points p and 0
move toward each other -1
. . . -1.5 ; : :
1 = 0: the fixed points coalesce into 2 -1 0 1 2

a half-stable fixed point at 1 =0 1



Transcritical bifurcation

p=1
b 0.4
example: =1 = pxy — 3
dt
fwy; p) = pay — o 027
200 -
g
w>0
two fixed points at x1 = u (stable) 0.2 |
and z; = 0 (unstable)
-0.4




Transcritical bifurcation

dxl 9
example: el L Sl

bifurcation diagram

0.5 1



Transcritical bifurcation
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Transcritical bifurcation

p=0
duy ) S I e
example:d—:uml—xl A, Vi s e
t ey N s
— sy I A, Lo e
7dx2:_$ 1T A
dt 2 e S VoL s e e e
- = L P |
0ot S rroooooo
as 1 approaches zero, TR T N NN
. . NN vt AN N s
the two fixed points [u, 0] and N N NN I NN .
PN NN AN N
[0, 0] move toward each other NN ALY
~ NN A
~ >~ N\ tt L T W N NI N NN

' _ _ 2 Ny bttty

1 = 0: the fixed points coalesce into 2 -1 0 1 P

a (saddle-node) fixed point at x = [0, 0] x



Transcritical bifurcation
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Transcritical bifurcation

da:l

example: el L z?
C|{L‘2
=2 _
dt 2

bifurcation diagram

0.5 1



Transcritical bifurcation

dxl 9
example: el L Sl

fx1; p) = pay — 2 057

bifurcation diagram

1
o
\

-0.5 | L’

Other examples of ODE systems with bifurcations:

Questions 1, 2, 4 and 6 on Problem Sheet 2

0.5 1



Supercritical pitchfork bifurcation

dxl 3
example: el L Sl

flw1;p) = poy — o3



Supercritical pitchfork bifurcation

dxl 3
example: — = ux; — 9 0.4+
dt
flai;p) = pzy — o 02|
& 0
g
w>0
-0.2 ¢

three fixed points at xy = 4, /u (stable)

and z; = 0 (unstable) 04l




Supercritical pitchfork bifurcation

dxl 3
example: el L Sl

flw1;p) = poy — o3

as u approaches zero from above,

two fixed points /i and —,/u
move toward the third one

1 = 0: the fixed points coalesce into
a stable fixed point at ;1 =0

f(x1)

p=0

04+
0.2+

0 > L 4 <
-0.2
-0.4

-2 -1 0 1

T




Supercritical pitchfork bifurcation

dxl 3
example: el L Sl

flw1;p) = poy — o3

1 < 0: one stable fixed point at z; =0

0.4t

0.2r

f(xy)

-0.2 |

04|

A

Y

Iy




Supercritical pitchfork bifurcation

dxl 3
example: el L Sl
3

f(z1; ) = py — x5

bifurcation diagram

Z1

057

-0.5 |

-0.5

o

0.5




Supercritical pitchfork bifurcation

pn>0

three fixed points at

[—/1, 0] (stable node)

[0, 0] (saddle)

X
X
X

[\/12, 0] (stable node)



Supercritical pitchfork bifurcation

p=20

da 2 N T S R A
|-441_ 3 NN I A
example: = Ur1 — Iy == >N\ Vbbb e
dt N N VL e
e = N\ R A s
igf——x 1 -——==~<\\ by frsmmm
dt — 2 === ==\ [ Y A S
I U [ iy

1 = 0: the fixed points coalesce into 2 -1
a stable fixed point at x = [0, 0]
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Supercritical pitchfork bifurcation

dxl 3
example: o - HEL T
C|{L‘2

dt

w<0:
one stable fixed point at x = [0, 0]
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Supercritical pitchfork bifurcation

dxl 3
example: el L Sl

C|{L‘2

.

dt 2

bifurcation diagram

Z1

057

-0.5 |

-0.5

0.5




Subcritical pitchfork bifurcation

d.'L'l 3
example: — = px + 23

dt
Sl p) = poy + o3



Subcritical pitchfork bifurcation

dxl 3
example: — = px + 23

dt
Sl p) = poy + o3

u<0

three fixed points at

x1 = £4/—p (unstable)

and z; = 0 (stable)




Subcritical pitchfork bifurcation

dxl 3
example: — = px + 23

dt
Sl p) = poy + o3

as u approaches zero from below,

two fixed points —y/—p and /—pu

move toward the third one

1 = 0: the fixed points coalesce into
an unstable fixed point at ;1 =0

f(z1)

p=20

0.4+
0.2+

0 < O >
0.2t
04 ¢+

-2 -1 0 1

X




Subcritical pitchfork bifurcation

dxl 3
example: — = px + 23

dt
Sl p) = poy + o3

u>0:
one unstable fixed point at 1 =0

f(x1)

0.4

0.2

-0.2 ¢

-0.4 |

A

Y




Subcritical pitchfork bifurcation

d.'L'l 3
example: ! + zj

Sl p) = poy + o3

bifurcation diagram

0 0.5 1



Subcritical pitchfork bifurcation

S NENE NN
NNNN NN
NV A L
Vi

Al ~—

u<0

three fixed points at

—+/—1,0] (saddle)
[0,0] (stable node)
[v/=1,0] (

[

X
X
X

saddle)



Subcritical pitchfork bifurcation

dxl 3
example: ! + zj

dzy

— = —ZI

dt ?

as pu approaches zero from below,

two fixed points [—v/—pu, 0] and \/—p, 0]

move toward the third one

1 = 0: the fixed points coalesce into
an unstable fixed point at x = [0, 0]

NS

O -

8
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Subcritical pitchfork bifurcation
u>0:

=)

)

0

[

one unstable fixed point at x




Subcritical pitchfork bifurcation

d.'L'l 3
example: ! + zj

dzy

— = —ZI

dt ?

bifurcation diagram

0 0.5 1



Subcritical pitchfork bifurcation

d 5
example: % = pxy + 23 — 28

dzy

— = —ZI

dt ?

bifurcation diagram

17 //
05 NI
50 J-----=-==
o5 .o
a4t \\\
04 02 0 02 04



Subcritical pitchfork bifurcation

d.'L'l 5 L /
example: o = M + 2§ — a3 1 /
dzy N
—_— = — 05+ e
a — .
g 0 q--------
bifurcation diagram -7
051 .7
h les:
Other examples 4l \\\
Questions 1 and 6 on Problem Sheet 2 04 _0‘.2 0 0.‘2 04



Extended center manifold
da:l
dt
dCCQ
dt

example: =22 — 1

= UTy — T1X2



Extended center manifold

example: djtl =22 o [z1,22] = [0,0] is axcritical point
linearized system — = Mx
dCL‘Q dt
— = ury — 11T
dg P2 172

-1 0
forM—<0 M>



Extended center manifold
dxl

example: = x% _— [x1, 29, u] = [0,0,0lcis a critical point
das linearized system o Mx
—= = ur9 — T 1T
dt nux2 122 P
dﬁ _0 forM=|10 0 0
dt 0O 0 0



Extended center manifold

example: dd% =22 o [x1, 29, u] = [0,0,0l(is a critical point
lineari dx
iy inearized system 3 Mx
dt = pT2 T1x2 10 0
du _, for M=( 0 0 0
dt 0 0 0

the center manifold is given by
z1 = h(z2, 1) = c20 25 + c11 pL T2 + cop pi? + O(23, B3p, Top®, p3)



Extended center manifold

example: dd% = x% _— [x1, 29, u] = [0,0,0l(is a critical point
das linearized system o Mx
—= = ur9 — T 1T
dt nux2 122 P
dﬁ _0 forM=|10 0 0
dt 0O 0 0

the center manifold is given by
x1 = h(w, 1) = c20 T3 + c11 pas + cop p? + O(a3, x3p, xop?, 1)
d.%'l oh C|£L‘2 oh CLU

ar 8752(932”“) 9 + 87;(902”“) i



Extended center manifold

example: dd% =22 o [x1, 29, u] = [0,0,0l(is a critical point
dig linearized system = Mx
—= = uzT9 — T1T
dt Hx2 122 10 0
du _, for M=( 0 0 0
dt 0 0 0
the center manifold is given by
z1 = h(z2, 1) = c20 25 + c11 pL T2 + cop pi? + O(23, B3p, Top®, p3)
dx oh dx oh d oh
23 - T= = A (w2, p) = + (M(wz,u) &~ oy (x2, 1) (pw2 — T122)



Extended center manifold

example: dd% = x% _— [x1, 29, u] = [0,0,0lcis a critical point
das linearized system o Mx
—= = ur9 — T 1T
dt nux2 122 P
dﬁ _0 forM=|10 0 0
dt 0O 0 0

the center manifold is given by
z1 = h(z2, p) = c20 23 + c11 paa + oz p? + O(23, 23, 242, p3)
_dny oh dry Oh dj _ Oh

2 _ e drg Oh _ oh B
¥ - =g 8332(932’“) = +8M(w2,u) i 81,2(9:2#) (pxe — m172)

x5 — o0 a3 — c11 w2 — cop P = (2c0 2 + €11 ) pw2 + O(a3, 25p, wops?, 1)



Extended center manifold

example: dd% = x% _— [x1, 29, u] = [0,0,0l(is a critical point
das linearized system o Mx
—= = ur9 — T 1T
dt nux2 122 P
dﬁ _0 forM=|10 0 0
dt 0O 0 0

the center manifold is given by
x1 = h(xa, 1) = co0 3 + 11 pp 2 + cop p® + O(a3, 23, Top?, 1)
_dxy oh dze  Oh dp _ Oh

2 _ =l 2 ) " — _
23 - T= = A (w2, p) = + 8u(x2’”) &~ oy (x2, 1) (pw2 — T122)
T3 — con a3 — e g — cog p = (220 T2 + c11 p) pwe + O3, w3, wop®, 1)
co0 = 1, c11 =0, co2 =0

center manifold: x1 = x3 + O(x3, 23p, Top?, 1)

d
the dynamics on the center manifold: % = pxo — x5+ O(x3, x3u, xop?, 1)



Extended center manifold
da:l

example: E:x% = &y
dCL‘Q
— = [Ty — T1T
dg P2 172

center manifold:

xlzx%—i-...

dynamics on the center manifold:

de 3
gzuxg —.'I)2+

supercritical pitchfork bifurcation

w=—0.2
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”””””””” NN N i
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Extended center manifold

example Eo .
xample: — =15 — X1
dt
dCL‘Q
— = ur9 — IT1X
dt HIT2 122

center manifold:

xlzx%—i-...

dynamics on the center manifold:

de 3
gzuxg —.'I)2+

supercritical pitchfork bifurcation

/L:

1 ~ Y
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Extended center manifold
example: doy =22 — 1
dt
dCL‘Q

— = UT2 — T1T
dt HIT2 122

center manifold:

xlzx%—i-...

dynamics on the center manifold:
d:L'Q

supercritical pitchfork bifurcation

1 <
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T = - - - = % VAR
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Extended center manifold
da:l
dt
dCL‘Q

— = UT2 — T1T
dt HIT2 122

example: =z -z

center manifold:

xlzx%—i-...

dynamics on the center manifold:

de 3
gzuxg —.'I)2+

supercritical pitchfork bifurcation

C -z
=
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Extended center manifold

example —dxl = z2 04
xample: =x5 — 1
dt S A
dxo 222
—= = ur9 — T1T
dt pa2 12 —

[ T | A O B
[ | A T B B B
[ A A A R R R
AN N A AR AR A

g 0
center manifold: -
=25+ ... 05L 1T =3
dynamics on the center manifold: E S S~ 1\ i - - - %
dzo 3 -1 :
—— = [Ty — Ty + ... -0.5 0 0.5 1
dt 1

supercritical pitchfork bifurcation



Extended center manifold

dxl 2
example: — =125 — x 1
P& g — %27 1
dCL‘Q
—= = ur9 — T1T 1
dt Hx2 122 0.5
g 0
center manifold:
xlzx%—l— _0.57
dynamics on the center manifold:
de 3 '1
= Ures — T -1
i 2+

supercritical pitchfork bifurcation

Another example: Question 6 on Problem Sheet 2
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Bifurcations of continuous-time dynamical systems — summary

Continuous-time dynamical system: Let f: ) x © — R", where ) C R"™ and © C R™.
Let xg € Q, p € © and x(t) € Q be a solution of the ODE
(jT)t( = f(x; 1) with the initial condition x(0) =xg € Q

We have discussed bifurcations of fixed points, which can occur for n > 1 and m > 1
(so, they can be explained on examples with n =1 and m = 1):

® saddle-node bifurcation

® transcritical bifurcation

e pitchfork bifurcation (supercritical, subcritical)



Bifurcations of continuous-time dynamical systems — summary

Continuous-time dynamical system: Let f: ) x © — R", where ) C R"™ and © C R™.
Let xg € Q, p € © and x(t) € Q be a solution of the ODE
(jT)t( = f(x; 1) with the initial condition x(0) =xg € Q

We have discussed bifurcations of fixed points, which can occur for n > 1 and m > 1
(so, they can be explained on examples with n =1 and m = 1):

® saddle-node bifurcation
® transcritical bifurcation

e pitchfork bifurcation (supercritical, subcritical)

We will discuss later in the course:
® bifurcations of limit cycles (n > 1)

e bifurcations with more than one parameter (m > 1)

Next, we will discuss bifurcations of discrete-time dynamical systems.



Fixed points

Discrete-time dynamical system: Let F: 2 x © — 2, where Q C R" and © C R™.
Let xg € 2, u € © and x;, €  be defined iteratively by

Xpy1 = F(xp; p)



Fixed points

Discrete-time dynamical system: Let F: 2 x © — 2, where Q C R" and © C R™.
Let xg € 2, u € © and x;, €  be defined iteratively by

Xpy1 = F(xp; p)

* o€ is a fixed point if a = F(o; p)



Fixed points
Discrete-time dynamical system: Let F: 2 x © — 2, where Q C R" and © C R™.
Let xg € 2, u € © and x;, €  be defined iteratively by
Xp+1 = F(xp; )
* o€ is a fixed point if a = F(o; p)
® fixed point « is stable if

Ve > 036 > 0 such that Vxo € Bs(a) and k € Ny we have x;, € B:(«)
where the open ball of radius r is defined by B, () = {x € R"| ||x — a||< 7'}



Fixed points

Discrete-time dynamical system: Let F: Q x © — €, where Q C R™ and © C R™.
Let xg € 2, u € © and x;, €  be defined iteratively by
xp+1 = F(xp; )
* o€ is a fixed point if a = F(o; p)
® fixed point « is stable if
Ve > 036 > 0 such that Vxo € Bs(a) and k € Ny we have x;, € B:(«)
where the open ball of radius r is defined by B, () = {x € R"| ||x — a||< 7'}

e fixed point av is asymptotically stable if (i) it is stable; and
(i) 30 > 0 such that Vx¢ € Bs(a) we have klim Xp =
—00



Fixed points

Discrete-time dynamical system: Let F: Q x © — €, where Q C R™ and © C R™.
Let xg € 2, u € © and x;, €  be defined iteratively by

Xpy1 = F(xp; p)

* o€ is a fixed point if a = F(o; p)

fixed point « is stable if
Ve > 036 > 0 such that Vxo € Bs(a) and k € Ny we have x;, € B:(«)
where the open ball of radius r is defined by B, () = {x € R"| ||x — a||< 7'}

fixed point « is asymptotically stable if (i) it is stable; and
(i) 30 > 0 such that Vx¢ € Bs(a) we have klim Xp =
—00

Prelims Constructive Mathematics: we considered n = 1 where 1 = F(xy)
e o € Ris a fixed point if a = F(«)
e if |[F'(a)| <1, then « is asymptotically stable



Example

Tpr1 =1 — 6z + 153:%— 10x%



Example
Tpr1 =1 — 6z + 15xi— 10;1:%
F(z)=1- 6z + 1522 — 1023

fixed points: solving F(a) = «



Example

Tpr1 =1 — 6z + 15xi — 103:%
F(z)=1- 6z + 1522 — 1023
fixed points: solving F'(a) = o, we get
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Example
Tpr1 =1 — 6z + 15xi — 103:%
F(z)=1- 6z + 1522 — 1023
fixed points: solving F'(a) = o, we get

_ 1 5 _1 _ 1,5
=50 m=3 =3+

F'(z) = —6 + 30z — 302>
F’(al) = F,(ag) = 0, F/(OQ) S %
a1 and ag are asymptotically stable

a9 is unstable
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Example

Tpr1=1— 6z + 1527 — 107} 1
F(z)=1- 6z + 152% — 1023 08 |
fixed points: solving F'(a) = o, we get 06
w=}-F =} w=}+f F

0.4

F'(z) = —6 + 30z — 302>

F’(al) = F,(ag) =0, F’(Oég) = % 0.2+

a1 and ag are asymptotically stable

0

a9 is unstable 0 0.5 1

fixed point a with |F'(«)| < 1 is asymptotically stable
fixed point o with |F'(«)| > 1 is unstable
(

fixed point o with |F’(«)| = 0 is called super-attracting because |F'(«)| = 0 gives very
fast convergence to the fixed point for nearby points



Example

Tpy1 =1 — 62 + 1522 — 10z 1 —
F(x)=1—6x+15x2—10x3 08 | ® 2y =03 0z =09]
fixed points: solving F(a) = a, we get 00080000e0esscccssssssscssse
0.60°_o®
V5 2 o®

1 5 1 1 5
0.4 B

F,(:C) - _6 + 3OI a 30$2 "O...Oéoooooooooooooooooooooooo

F’(O[l) = F,(ag) =0, F/(OQ) = % 0.2r
®

a1 and ag are asymptotically stable

0 L L L
a9 is unstable 0 10 & 20 30

fixed point o with |F’(a))| < 1 is asymptotically stable

()
fixed point o with |F'(«)| > 1 is unstable
(

fixed point o with |F’(«)| = 0 is called super-attracting because |F'(«)| = 0 gives very
fast convergence to the fixed point for nearby points



Fixed points
Discrete-time dynamical system: Let F: 2 x © — 2, where Q C R"” and © C R™.
Let xg € 2, p € © and x; € () be defined iteratively by

X1 = F(xp; 1)



Fixed points
Discrete-time dynamical system: Let F: 2 x © — 2, where Q C R"” and © C R™.
Let xg € 2, p € © and x; € () be defined iteratively by

Xpy1 = F(xp; )

® o€ is a fixed point if a = F(a; p)



Fixed points
Discrete-time dynamical system: Let F: 2 x © — 2, where Q C R"” and © C R™.
Let xg € 2, p € © and x; € () be defined iteratively by

X1 = F(xp; p)
® o€ is a fixed point if a = F(a; p)
® fixed point « is stable if

Ve > 030 > 0 such that Vxg € Bs(a) and k € Ny we have x;, € B.(«x)
where the open ball of radius r is defined by B, () = {x € R"| ||x — at||< 7'}



Fixed points
Discrete-time dynamical system: Let F: 2 x © — 2, where Q C R"” and © C R™.
Let xg € 2, p € © and x; € () be defined iteratively by

X1 = F(xp; p)
® o€ is a fixed point if a = F(a; p)
® fixed point « is stable if
Ve > 030 > 0 such that Vxg € Bs(a) and k € Ny we have x;, € B.(«x)
where the open ball of radius r is defined by B, () = {x € R"| ||x — at||< 7'}

e fixed point v is asymptotically stable if (i) it is stable; and
(i) 30 > 0 such that Vx¢ € Bs(a) we have klim Xp =
—00



Fixed points
Discrete-time dynamical system: Let F: 2 x © — 2, where Q C R"” and © C R™.
Let xg € 2, p € © and x; € () be defined iteratively by

Xp+1 = F(xp; )
® o€ is a fixed point if a = F(a; p)
® fixed point « is stable if
Ve > 030 > 0 such that Vxg € Bs(a) and k € Ny we have x;, € B.(«x)
where the open ball of radius r is defined by B, () = {x € R"| ||x — at||< 7'}
e fixed point v is asymptotically stable if (i) it is stable; and
(i) 30 > 0 such that Vx¢ € Bs(a) we have klggo Xp =

® using notation F(x; u) = F,,(x), we observe that x; = F,(xq)
x2 = F(x1) = Fju (Fu(x0)) = B (xo), where B = F, o F,
— W
Xk o (%0)
which we can also use in above definitions.



Fixed points
Discrete-time dynamical system: Let F: 2 x © — 2, where Q C R"” and © C R™.
Let xg € 2, p € © and x; € () be defined iteratively by

Xp+1 = F(xp; p) = Fpu(xp)

* o€ Qis a fixed point if o = F,, ()

fixed point « is stable if
Ve > 039 > 0 such that Vxo € Bs(a) and k& € Ny we have F‘(Lk) (x0) € B:(ax)
where the open ball of radius r is defined by B, () = {x € R"| ||x — a||< 7}

fixed point « is asymptotically stable if (i) it is stable; and
(i) 30 > 0 such that Vx¢ € Bs(a) we have klim Fl(f)(xo) =
—00
® using notation F(x; u) = F,,(x), we observe that x; = F,,(x0)
x2 =F,(x1) =F, (F“(x())) = F,(f)(xo), where Fl(f) =F,oF,,

k
xi, = F{” (xo)
which we can also use in above definitions.



Fixed points, periodic points and N-cycles
Discrete-time dynamical system: Let F: 2 x © — 2, where Q C R"” and © C R™.
Let xg € 2, p € © and x; € () be defined iteratively by
Xpt1 = F(xp; p) = Fu(xyp)

® o € () is a periodic point with period N € N if

a:F,SN)(a) and a#F,Sk)(a) fork=1,2,...,N —1

and the set {a,FH(a),Ff)(a), e ,FL(LNfl)(a)} is called an N-cycle



Fixed points, periodic points and N-cycles
Discrete-time dynamical system: Let F: 2 x © — 2, where Q C R"” and © C R™.
Let xg € 2, p € © and x; € () be defined iteratively by
X1 = F(xp; p) = Fu(xp)

® o € () is a periodic point with period N € N if
«a :F,SN)(a) and « #F,(Lk)(a) fork=1,2,...,N —1

and the set {a,F“(a),Ff)(a), e ,FF(LNfl)(a)} is called an N-cycle

® in particular, if a € € is a periodic point with period NV € N then it is a fixed
point of map F,SN)



Fixed points, periodic points and N-cycles
Discrete-time dynamical system: Let F: 2 x © — 2, where Q C R"” and © C R™.
Let xg € 2, p € © and x; € () be defined iteratively by
Xp+1 = F(xp; p) = Fpu(xp)

® o € () is a periodic point with period N € N if
«a :F,SN)(a) and « #F,(Lk)(a) fork=1,2,...,N —1

and the set {a,F“(a),Fg)(a), e ,FﬁNﬁl)(a)} is called an N-cycle

® in particular, if a € € is a periodic point with period NV € N then it is a fixed
point of map F,SN)

® periodic point a¢ € () is stable if it is a stable fixed point of FL(LN)
(resp. asymptotically stable, unstable)



Fixed points, periodic points and N-cycles
Discrete-time dynamical system: Let F: 2 x © — 2, where Q C R"” and © C R™.
Let xg € 2, p € © and x; € () be defined iteratively by

Xp+1 = F(xp; p) = Fpu(xp)

® o € () is a periodic point with period N € N if
«a :F,SN)(a) and « #F,(Lk)(a) fork=1,2,...,N —1

and the set {a,F“(a),Fg)(a), e ,FF(LNfl)(a)} is called an N-cycle

® in particular, if a € € is a periodic point with period NV € N then it is a fixed
point of map F,SN)

® periodic point a¢ € () is stable if it is a stable fixed point of FL(LN)

(resp. asymptotically stable, unstable)

® to find periodic points and the corresponding N-cycles, we need to solve
o= F;(LN)(a) and we also need to exclude solutions with some lesser period
Question 5 on Problem Sheet 2



Fixed points, periodic points, N-cycles, orbits and bifurcations

Discrete-time dynamical system: Let F: 2 x © — 2, where Q C R"” and © C R™.
Let xg € 2, p € © and x; € () be defined iteratively by

Xpt1 = F(xp; p) = Fu(xyp)
® given xg € (2, the orbit of map Fy, is the set
{XO7 F”(Xo), F,(,?) (Xo), F,(f) (Xo), F,(jl) (Xo)7 000 } = {Xo, X1,X92,X3,X4,. .. }



Fixed points, periodic points, N-cycles, orbits and bifurcations

Discrete-time dynamical system: Let F: 2 x © — 2, where Q C R"” and © C R™.
Let xg € 2, p € © and x; € () be defined iteratively by

X1 = F(xp; p) = Fu(xp)
® given xg € (2, the orbit of map Fy, is the set
{XO, F,,(x0), F,(f) (x0), F,gS) (x0), F,(f) (x0), - - } = {x0, X1, X2, X3, X4, ... }
® if x¢ is a periodic point with period N, then its orbit is a finite set (/NV-cycle)
e if orbit is a finite set, then it is (evenfcually) periodic,

i.e. there exists j € Ny such that Fﬁj)(xo) is a periodic point with period N € N



Fixed points, periodic points, N-cycles, orbits and bifurcations
Discrete-time dynamical system: Let F: 2 x © — 2, where Q C R"” and © C R™.
Let xg € 2, p € © and x; € () be defined iteratively by
Xp+1 = F(xp; p) = Fpu(xp)

® given xg € (2, the orbit of map Fy, is the set
{XO, F,,(x0), F,(f) (x0), F,(f') (x0), F,(f) (x0), - - } = {x0, X1, X2, X3, X4, ... }
® if x¢ is a periodic point with period N, then its orbit is a finite set (/NV-cycle)
e if orbit is a finite set, then it is (eventually) periodic,
i.e. there exists j € Ny such that Fﬁj)(xo) is a periodic point with period N € N

® if orbit is an infinite set, then it can approach a fixed point or an N-cycle, or it
can be chaotic - we will illustrate this on examples with n =1 and m =1

® bifurcations: the qualitative behaviour of orbits can change as parameters p are
varied (for example, fixed points or N-cycles can be created or destroyed, or their
stability changes); the parameter values at which these qualitative changes in the
dynamics occur are called bifurcation points



Example
Tpy1 = (1 — ) (1 — 5z + pas)



Example
Tpy1 = (1 — ) (1 — 5z + pas)
Flo;) = (1—2)(1 - 5+ pa?)
fixed points: F(x;u) =z



Example

Tpp1 = (1 — zp)(1 — Bz + pj)
F(z;p) = (1-2)1 -5z + pa?)
fixed points: F(x;u) =z

our previous example: p = 10
Tpr1 =1 — 6z + 153:% — 10x%

F(z;10)=1 — 6z + 1522 — 1023

T
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u =10
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Example
Tpy1 = (1 — ) (1 — 5z + pas)
Flo;) = (1—2)(1 - 5+ pa?)
fixed points: F(x;u) =z

our previous example: p = 10
Tpr1 =1 — 6z + 15x% — 10;1:%

F(z;10)=1 — 6z + 1522 — 1023
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Example
Tpy1 = (1 — ) (1 — 5z + pas)
Flo;) = (1—2)(1 - 5+ pa?)
fixed points: F(x;u) =z
If ue©=1[6.3118],
then F(x;u) € [0,1] for all 2 € [0, 1].

We study dynamics and bifurcations
of F': Q2 x© — Q, where Q = [0, 1].
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Example
Tpy1 = (1 — ) (1 — 5z + pas)
Flo;) = (1—2)(1 - 5+ pa?)
fixed points: F(x;u) =z
If ue©=1[6.3118],
then F(x;u) € [0,1] for all 2 € [0, 1].

We study dynamics and bifurcations
of F': Q2 x© — Q, where Q = [0, 1].

three fixed points for p € (u1, pi2) where
11 =9.7066... and puy = 10.518. ..

one fixed point for © < w1 and @ > o
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Example
Tpy1 = (1 — ) (1 — 5z + pas)
Flo;) = (1—2)(1 - 5+ pa?)
fixed points: F(x;u) =z
If ue©=1[6.3118],
then F(x;u) € [0,1] for all 2 € [0, 1].

We study dynamics and bifurcations
of F': Q2 x© — Q, where Q = [0, 1].

three fixed points for p € (u1, pi2) where
11 =9.7066... and puy = 10.518. ..

one fixed point for © < w1 and @ > o
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Example
Tpy1 = (1 — ) (1 — 5z + pas)
Flo;) = (1—2)(1 - 5+ pa?)
fixed points: F(x;u) =z
If ue©=1[6.3118],
then F(x;u) € [0,1] for all 2 € [0, 1].

We study dynamics and bifurcations
of F': Q2 x© — Q, where Q = [0, 1].

three fixed points for p € (u1, pi2) where
11 =9.7066... and puy = 10.518. ..

one fixed point for © < w1 and @ > o
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Example
Tpy1 = (1 — ) (1 — 5z + pas)
Flo;) = (1—2)(1 - 5+ pa?)
fixed points: F(x;u) =z
If ue©=1[6.3118],
then F(x;u) € [0,1] for all 2 € [0, 1].

We study dynamics and bifurcations
of F': Q2 x© — Q, where Q = [0, 1].

three fixed points for p € (u1, pi2) where
11 =9.7066... and puy = 10.518. ..

one fixed point for © < w1 and @ > o

0.8
<06
=04t

0.2

0
0

0.2 0.4 0.6

0.8




Example

—_

Tpr1 = (1 — z)(1 — 5zg + pxy)
Flo;) = (1—2)(1 - 5+ pa?)
fixed points: F(x;u) =z

o
™

o
o)

If u € ©=[6.3,11.8],

then F(x;u) € [0,1] for all 2 € [0, 1].
We study dynamics and bifurcations

of F': Q2 x© — Q, where Q = [0, 1].

fixed points
o
~

o
o

three fixed points for p € (u1, pi2) where 0
1 =9.7066... and o = 10.518. .. 9

one fixed point for © < w1 and @ > o

Tr —5z2 — 1

9.5 10 10.5

~ 2—10z + 142® — 52°

p1 and po can be found by solving 0 = i/ (x) = L =0
— )T

11



Example

=10

Tkl :(1—xk)(1—5xk+ux%) 1 "u ;
F(z;u) = (1—2)(1 -5z + pz?) 08|
fixed points: F(x;u) =z

<06 |
If ne®=16.3,11.8], i
then F(z;p) € [0,1] for all z € [0,1]. =04+
We study dynamics and bifurcations
of F:Qx 0 — Q, where Q = [0,1]. 0.2
three fixed points for p € (u1, pi2) where 0 : : : :
11 = 9.7066 ... and po = 10.518. .. 0 02 04 N 06 08

one fixed point for pu < py and p > po

stability: F'(z;pu) = —6 + (2u + 10)2 — 3uz?
fixed point o with |F’(cy; )| < 1 is asymptotically stable
fixed point o with |F”(a; p)| > 1 is unstable



Example
Tpy1 = (1 — ) (1 — 5z + pas)
Flo; ) = (1-2)(1 — 52 + pa?)
fixed points: F(x;u) =z
If ue©=1[6.3118],
then F(x;u) € [0,1] for all 2 € [0, 1].

We study dynamics and bifurcations
of F': Q2 x© — Q, where Q = [0, 1].

three fixed points for p € (u1, pi2) where
11 =9.7066... and puy = 10.518. ..

one fixed point for © < w1 and @ > o

0.8 r

0.6¢
=
8

0.4

0.2

0
0

stability: F'(z;pu) = —6 + (2u + 10)2 — 3uz?
fixed point o with |F’(cy; )| < 1 is asymptotically stable
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fixed point o with |F”(a; p)| > 1 is unstable



Example

1 =9.7066
Tht1 = (1—xk)(1—5xk+ux%) 1 : ‘
F(z;u) = (1—2)(1 -5z + pz?) 08
fixed points: F(x;u) =z
506
If ne®=16.3,11.8], g
then F(z;p) € [0,1] forall z € [0,1]. =04+
We study dynamics and bifurcations
of F:Qx 0 — Q, where Q = [0,1]. 02
three fixed points for p € (u1, pi2) where 0 : : : :
11 = 9.7066 ... and po = 10.518. .. o 02 04 N 0.6 08

one fixed point for pu < py and p > po

stability: F'(z;pu) = —6 + (2u + 10)2 — 3uz?
fixed point o with |F’(cy; )| < 1 is asymptotically stable
fixed point o with |F”(a; p)| > 1 is unstable



Example
Tpy1 = (1 — ) (1 — 5z + pas)
F(z;p) = (1-2)1 -5z + pa?)
fixed points: F(x;u) =z
If ue©=1[6.3118],
then F(x;u) € [0,1] for all 2 € [0, 1].

We study dynamics and bifurcations
of F': Q2 x© — Q, where Q = [0, 1].

three fixed points for p € (u1, pi2) where
11 =9.7066... and puy = 10.518. ..

one fixed point for © < w1 and @ > o

2
8

0.8¢

0.6

0.4
°

0.2

0
0

stability: F'(z;pu) = —6 + (2u + 10)2 — 3uz?
fixed point o with |F’(cy; )| < 1 is asymptotically stable

1 =9.7066
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@z —010a =06
®x)=0302)=0.8
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fixed point o with |F”(a; p)| > 1 is unstable
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©w=9

Tht1 = (1—.7}k)(1—5xk+[1,.7}%) 1 ‘
F(z;u) = (1—2)(1 -5z + pz?) 08|
fixed points: F(x;u) =z

<06 |
If ne®=16.3,11.8], g
then F(xz;p) € [0,1] for all z € [0,1]. =04+
We study dynamics and bifurcations
of F:Qx 0 — Q, where Q = [0,1]. 0.2
three fixed points for p € (u1, pi2) where 0 : : : :
11 = 9.7066 ... and po = 10.518. .. 0 02 04 N 06 08

one fixed point for pu < py and p > po

stability: F'(z;pu) = —6 + (2u + 10)2 — 3uz?
fixed point o with |F’(cy; )| < 1 is asymptotically stable
fixed point o with |F”(a; p)| > 1 is unstable



Example

=9
Tpy1 = (1 — ) (1 — 5z + pas) 1 s o oo
xrog = U. o = U.

Fam=(1-2) -5z +ps?)
fixed points: F(x;u) =z

0.6¢
If u € ©=[6.3,11.8], < |8
then F(x;u) € [0,1] for all z € [0,1]. 0.4 o8
We study dynamics and bifurcations “."3@@@@@@@@‘\ 00000000
of F:Qx 0 — Q, where Q = [0,1]. 0.2 1

[ ]

three fixed points for p € (u1, pi2) where 0 : : :
11 = 9.7066 ... and po = 10.518. .. 0 10 By 20 30

one fixed point for pu < py and p > po

stability: F'(z;pu) = —6 + (2u + 10)2 — 3uz?
fixed point o with |F’(cy; )| < 1 is asymptotically stable
fixed point o with |F”(a; p)| > 1 is unstable



Example

=38

Tpy1 = (1—.7}k)(1—5xk+[1,.7}%) 1
F(z;u) = (1—2)(1 -5z + pz?) 08l
fixed points: F(x;u) =z

<06
If ne®=16.3,11.8], g
then F(z;p) € [0,1] for all z € [0,1]. = 04|
We study dynamics and bifurcations
of F:Qx 0 — Q, where Q = [0,1]. 0.2/
three fixed points for p € (u1, pi2) where 0 : : : :
(1 =9.7066. .. and ps = 10.518. .. 0 02 04 06 08

one fixed point for © < w1 and @ > o

stability: F'(z;pu) = —6 + (2u + 10)2 — 3uz?
fixed point o with |F’(cy; )| < 1 is asymptotically stable
fixed point o with |F”(a; p)| > 1 is unstable



Example
Tpy1 = (1 — ) (1 — 5z + pas)
F(z;p) = (1-2)1 -5z + pa?)
fixed points: F(x;u) =z
If ue©=1[6.3118],
then F(x;u) € [0,1] for all 2 € [0, 1].

We study dynamics and bifurcations
of F': Q2 x© — Q, where Q = [0, 1].

three fixed points for p € (u1, pi2) where
11 =9.7066... and puy = 10.518. ..

one fixed point for © < w1 and @ > o

e
8

=38
o ) :‘ 0.1 @ xg= 0.6‘
oxy=0.3 zo = 0.9

0.8 |

069
°
0.4
o]

0.2r i 1
008000000000000000000000000000
[ ]

0 L L L
0 10 20 30

stability: F'(z;pu) = —6 + (2u + 10)2 — 3uz?
fixed point o with |F’(cy; )| < 1 is asymptotically stable

fixed point o with |F”(a; p)| > 1 is unstable



Example
Tpy1 = (1 — ) (1 — 5z + pas)
Flo;) = (1—2)(1 - 5+ pa?)
fixed points: F(x;u) =z
If ue©=1[6.3118],
then F(x;u) € [0,1] for all 2 € [0, 1].

We study dynamics and bifurcations
of F': Q2 x© — Q, where Q = [0, 1].

three fixed points for p € (u1, pi2) where

pi1 = 9.7066 ... and pp = 10.518 ...

one fixed point for © < w1 and @ > o

08}
<06
=04

0.2 r

stability: F'(z;pu) = —6 + (2u + 10)2 — 3uz?
fixed point o with |F’(cy; )| < 1 is asymptotically stable

0
0

0.2 0.4 0.6 0.8

fixed point o with |F”(a; p)| > 1 is unstable




Example

w=r
Thy1 = (1 —2)(1 — Bag + pay) 1 ‘ ‘
®xr)=0102y=06
F(z;u) = (1—2)(1 -5z + pz?) 08| ® 2 =03 0 =09
fixed points: F(x;u) =z
0.6¢ °C e °© % 8°
If p€ ©®=16.3,11.8], & o* o ®
then F(x;u) € [0,1] for all z € [0,1]. 04 e . ° o o o®
We study dynamics and bifurcations ® L el0’® T e
of F: Qx © — Q, where Q = [0, 1]. 0.2 {058008g50ogegBgealas aSgdecss
, 7 [ °® HERS 8 ece 0o
three fixed points for u € , where 0 : : ‘
X . (,Ul M2) 0 10 20 30

u1 =9.7066... and puy = 10.518. ..
one fixed point for pu < py and p > po

stability: F'(z;pu) = —6 + (2u + 10)2 — 3uz?
fixed point o with |F’(cy; )| < 1 is asymptotically stable
fixed point o with |F”(a; p)| > 1 is unstable



Example

w=T7
Tyl = (1 = .’Ek)(l — 5z —|-/,L.’L'£) 1 :
o ®zr)=0.10z)=0.6
Flz;u)=(1-2)1 -5z + ux?) 08 ® 2y =0.3 0a =09

fixed points: F(x;u) =z
If u e © = [6.3,11.8],
then F(z; p) € [0,1] for all z € [0,1].

We study dynamics and bifurcations
of F': Q2 x© — Q, where Q = [0, 1].

three fixed points for p € (u1, pi2) where
p1 =9.7066... and puy = 10.518. ..

one fixed point for © < w1 and @ > o

stability: F'(x;pu) = —6 4+ (2u + 10)x — 3uz?
fixed point o with |F’(cy; )| < 1 is asymptotically stable
fixed point o with |F”(a; p)| > 1 is unstable



Example

w=11

Tpy1 = (1—.7}k)(1—5xk+[1,.7}%) 1
F(z;u) = (1—2)(1 -5z + pz?) 08l
fixed points: F(x;u) =z

<06
If ne®=16.3,11.8], g
then F(z;p) € [0,1] for all z € [0,1]. = 04|
We study dynamics and bifurcations
of F:Qx 0 — Q, where Q = [0,1]. 0.2/
three fixed points for p € (u1, pi2) where 0 : : : :
(1 =9.7066. .. and ps = 10.518. .. 0 02 04 06 08

one fixed point for © < w1 and @ > o

stability: F'(z;pu) = —6 + (2u + 10)2 — 3uz?
fixed point o with |F’(cy; )| < 1 is asymptotically stable
fixed point o with |F”(a; p)| > 1 is unstable



Example
Tpy1 = (1 — ) (1 — 5z + pas)
F(z;p) = (1-2)1 -5z + pa?)
fixed points: F(x;u) =z
If ue©=1[6.3118],
then F(x;u) € [0,1] for all 2 € [0, 1].

We study dynamics and bifurcations
of F': Q2 x© — Q, where Q = [0, 1].

three fixed points for p € (u1, pi2) where
11 =9.7066... and puy = 10.518. ..

one fixed point for © < w1 and @ > o

e
8

0.8 |

0.6¢

0.4

0.2

®xr)=010z=06
®x)=0.3 xg=0.9

0
0

stability: F'(z;pu) = —6 + (2u + 10)2 — 3uz?
fixed point o with |F’(cy; )| < 1 is asymptotically stable

fixed point o with |F”(a; p)| > 1 is unstable

10

k

20 30



Example
Tpy1 = (1 — ) (1 — 5z + pas)
Floip) = (1-2)(1 - 52 + pa?)

—_

\

fixed points: F(x;u) =z »

Zos|
If ue® =1[6.3,118], 2
then F(x;u) € [0,1] for all z € [0,1]. E 0.4 BRI

We study dynamics and bifurcations
of F: Q2 x © — Q, where Q = [0, 1]. ' —stablo

- -unstable

9.5 10 10.5 11

o
N

three fixed points for p € (u1, pi2) where 0
1 =9.7066... and o = 10.518. .. 9

one fixed point for pu < py and p > po

stability: F'(z;pu) = —6 + (2u + 10)2 — 3uz?
fixed point o with |F’(cy; )| < 1 is asymptotically stable
fixed point o with |F”(a; p)| > 1 is unstable



Example

—_

Tpr1 = (1 — ) (1 — 5y +ux%)
Flz;p) = (1-2)(1 =52+ pz?)

\

fixed points: F(x;u) =z »

Zos|
If ue® =1[6.3,118], 2
then F(x;u) € [0,1] for all z € [0,1]. E 0.4 BRI

We study dynamics and bifurcations _____///

of F: Q2 x © — Q, where Q = [0, 1]. “| —stablo

- -unstable

9.5 10 10.5 11

o
N

three fixed points for p € (u1, pi2) where 0
1 =9.7066... and o = 10.518. .. 9

one fixed point for © < w1 and @ > o

we have saddle-node bifurcations at = p1 and u = us
we also have period doubling bifurcations at p ~ 8.71988... and p ~ 10.5877...



Example

Tk+1 = (1 - .’L'k;)(l - 53319 + [L.'L'%) 1 —stable
- -unstable

F(ac,,u):(l—x)(l—5x+,u:c2) 08" : I
fixed points: F(x;u) =z " /

206" N
If p€ ©®=16.3,11.8], 2 RN
then F(z;u) € [0,1] for all z € [0,1]. E 04! N
We study dynamics and bifurcations | ____//—/
of F: Q2 x© — Q, where Q = [0,1]. 021
three fixed points for € (u1, p2) where ‘ ‘
p1 = 9.7066 ... and g = 10.518. .. 8 9 . 10

one fixed point for © < w1 and @ > o

we have saddle-node bifurcations at = p1 and u = us

11

we also have period doubling bifurcations at p ~ 8.71988... and p ~ 10.5877...



Stability of N-cycles

Discrete-time dynamical system (n =1, m = 1):
Let FF: Q2 x O — Q, where Q C R and © C R.
Let 2o € 0, p € O and z, € ) be defined iteratively by
Tpy1 = Fag; p) = F(zr)
® o € is a periodic point with period N € N if
o' :P;L(N)(oz) and oz;é}?;fk)(oz) fork=1,2,...,N —1

and the set {a,EL(a),}*L(Q)(a), e ,}*L(N_l)(oz)} is called an N-cycle



Stability of N-cycles

Discrete-time dynamical system (n =1, m = 1):
Let FF: Q2 x O — Q, where Q C R and © C R.
Let 2o € 0, p € O and z, € ) be defined iteratively by

Tpy1 = Fag; p) = F(zr)

® o € is a periodic point with period N € N if
oz:P;L(N)(oz) and oz;é}?;fk)(oz) fork=1,2,...,N —1

and the set {a,EL(a),}*L(Q)(a), e ,F#(N_l)(a)} is called an N-cycle

® N-cycle is asymptotically stable if « is an asymptotically stable fixed point of F,fm



Stability of N-cycles

Discrete-time dynamical system (n =1, m = 1):
Let FF: Q2 x O — Q, where Q C R and © C R.
Let 2o € 0, p € O and z, € ) be defined iteratively by

Tpy1 = Fag; p) = F(zr)

® o € is a periodic point with period N € N if
a:P;L(N)(oz) and Oz#FLL(k)(oz) fork=1,2,...,N —1

and the set {a,EL(a),}*L(Q)(a), e ,F#(N_l)(a)} is called an N-cycle

® N-cycle is asymptotically stable if « is an asymptotically stable fixed point of F,fm

® |let xp = «, then the N-cycle can also be written as
{OJ, Et(a)7 F;j,(Z)(a)‘) 000 F;L(Nil)(a)} - {.’EO, T1,T2, .- 7$N—1}



Stability of N-cycles

Discrete-time dynamical system (n =1, m = 1):
Let FF: Q2 x O — Q, where Q C R and © C R.
Let 2o € 0, p € O and z, € ) be defined iteratively by

Tpy1 = Fag; p) = F(zr)

® o € is a periodic point with period N € N if
a:P;L(N)(oz) and Oz#FLL(k)(oz) fork=1,2,...,N —1

and the set {a,EL(a),}*L(Q)(a), e ,F#(N_l)(a)} is called an N-cycle

® N-cycle is asymptotically stable if « is an asymptotically stable fixed point of F,fm

let xg = «, then the N-cycle can also be written as
{OJ, Et(a)7 F;j,(Z)(a)‘) 000 F;L(Nil)(a)} - {.’EO, T1,T2, .- 7$N—1}
N-cycle is asymptotically stable if |F;|(xo) F(z1) ... Fi(zn_1)| <1

® N-cycle is unstable if |E(xo) F(z1) ... Fj(xn_1)| > 1



Example: logistic map 1 = pag (1 — )
F:Qx0 —Q, where Q=[0,1], © =[0,4] and F(z;pu) = F,(z) = px (1 — )



Example: logistic map 1 = pag (1 — )
F:Qx0 —Q, where Q=[0,1], © =[0,4] and F(z;pu) = F,(z) = px (1 — )

Problem Sheet 0 Question 3: Starting with zg = 0.7 € €, we calculate xy, for
k=0,1,2,...,200, by x1 = F(x; p) = F,(xy) as follows:

@ =0.5

0 50 100 150 200



Example: logistic map 1 = pag (1 — )
F:Qx0 —Q, where Q=[0,1], © =[0,4] and F(z;pu) = F,(z) = px (1 — )

Problem Sheet 0 Question 3: Starting with zg = 0.7 € €, we calculate xy, for
k=0,1,2,...,200, by x1 = F(x; p) = F,(xy) as follows:

p =2

0 50 100 150 200
k



Example: logistic map 1 = pag (1 — )
F:Qx0 —Q, where Q=[0,1], © =[0,4] and F(z;pu) = F,(z) = px (1 — )

Problem Sheet 0 Question 3: Starting with zg = 0.7 € €, we calculate xy, for
k=0,1,2,...,200, by x1 = F(x; p) = F,(xy) as follows:

@ =3.2

0 50 100 150 200
k



Example: logistic map 1 = pag (1 — )
F:Qx0 —Q, where Q=[0,1], © =[0,4] and F(z;pu) = F,(z) = px (1 — )

Problem Sheet 0 Question 3: Starting with zg = 0.7 € €, we calculate xy, for
k=0,1,2,...,200, by x1 = F(x; p) = F,(xy) as follows:

B =3.5

0 50 100 150 200
k




Example: logistic map 1 = pag (1 — )
F:Qx0 —Q, where Q=[0,1], © =[0,4] and F(z;pu) = F,(z) = px (1 — )

Problem Sheet 0 Question 3: Starting with zg = 0.7 € €, we calculate xy, for
k=0,1,2,...,200, by x1 = F(x; p) = F,(xy) as follows:

1 =3.55
1 '...s..s..vov‘#....Ovts..v.v.s.‘.v.VOv.s..s......‘%..v.v.v.v..o...‘

§ O " 5 ....0...0...0.:0.:::::::........0...0...O...:::::::..:0.0.0.0.0.0.:::::::;
0 | | | |
0 50 100 150 200

k



Example: logistic map 1 = pag (1 — )
F:Qx0 —Q, where Q=[0,1], © =[0,4] and F(z;pu) = F,(z) = px (1 — )

Problem Sheet 0 Question 3: Starting with zg = 0.7 € €, we calculate xy, for
k=0,1,2,...,200, by x1 = F(x; p) = F,(xy) as follows:

1 @ =3.8
00 © 09 00 04 0¢ o. 0. Py o.o.o.. o.o.o. 09 0. ® 00 0o ‘
e ".:.o:o:o‘ o.:.o o .‘.‘..:”.:'o ° 0..:0.‘ 0.0:'.~:.o.0
&05 ... ... ...o ° A o.o.o..o :.. o‘%o...i
O | | |
0 50 100 150 200



Example: logistic map 1 = pag (1 — )
F:Qx0 —Q, where Q=[0,1], © =[0,4] and F(z;pu) = F,(z) = px (1 — )

Problem Sheet 0 Question 3: Starting with zg = 0.7 € €, we calculate xy, for
k=0,1,2,...,200, by x1 = F(x; p) = F,(xy) as follows:




Example: logistic map 1 = pag (1 — )
F:Qx0 —Q, where Q=[0,1], © =[0,4] and F(z;pu) = F,(z) = px (1 — )

fixed points: solve «

= Fu(a)
a=pa(l—a)



Example: logistic map x;.1 = pxy
F:Qx0 —Q, where Q =10,1], © = [0,

fixed points: solve oo = F}, (o)
a=pa(l—a)

one fixed point for p € [0, 1]:

ar =0, Fj(a)=p _

aq is asymptotically stable for € [0, 1] E:;

(1 — )
4] and F(z;p) = Fi(z) = pz (1 — )

©n=0.5
1 : :

0.8 r

0.6 r

0.4+

0.2+

0

0 0.2 0.4 0.6 0.8



Example: logistic map x;.1 = pxy
F:Qx0 —Q, where Q =10,1], © = [0,

fixed points: solve oo = F}, (o)
a=pa(l—a)

one fixed point for p € [0, 1]:

ar =0, Fj(a)=p _

aq is asymptotically stable for € [0, 1] E:;

(1 — )
4] and F(z;p) = Fi(z) = pz (1 — )

p=1
1 ‘ ‘

0.8 r

0.6 r

0.4+

0.2+

0

0 0.2 0.4 0.6 0.8



Example: logistic map 1 = pag (1 — )

F:Qx0 —Q, where Q=[0,1], © =[0,4] and F(z;pu) = F,(z) = px (1 — )

. . =2
fixed points: solve oo = F}, (o) 1 i
a=pa(l—a)

. . 0.8t
one fixed point for p € [0, 1]:
a1 =0, Fj(a1)=np 06!
aq is asymptotically stable for € [0, 1] \:g

. . 0.4+
two fixed points for all p € (1,4]:
a1 = 0 is unstable for © > 1 02t

1
az=1——, El(ag)=2-
2 1 H( 2) K odf .

ay is asymptotically stable for € [1, 3] 0 0.2 0.4 . 0.6 0.8

«vg is unstable for p > 3
Qg is super-attracting for p = 2



Example: logistic map 1 = pag (1 — )

F:Qx0 —Q, where Q=[0,1], © =[0,4] and F(z;pu) = F,(z) = px (1 — )

. . =3
fixed points: solve oo = F}, (o) 1 S
a=pa(l—a)

. . 0.8t
one fixed point for p € [0, 1]:
a1 =0, Fj(a1)=np 06!
aq is asymptotically stable for € [0, 1] Sg

. . 0.4
two fixed points for all p € (1,4]:
a1 = 0 is unstable for © > 1 02t

1
az=1——, El(ag)=2-
2 1 H( 2) 1% 0d . . . .

ay is asymptotically stable for € [1, 3] 0 0.2 0.4 . 0.6 0.8

«vg is unstable for p > 3
Qg is super-attracting for p = 2



Example: logistic map 1 = pag (1 — )

F:Qx0 —Q, where Q=[0,1], © =[0,4] and F(z;pu) = F,(z) = px (1 — )

. . =3.2
fixed points: solve oo = F}, (o) 1 H :
a=pa(l—a)

. . 0.8 |
one fixed point for p € [0, 1]:
a1 =0, Fj(a1)=np 06"
aq is asymptotically stable for € [0, 1] E:g

. . 0.4
two fixed points for all p € (1,4]:
a1 = 0 is unstable for > 1 02t

1
az=1——, El(ag)=2-
2 1 H( 2) 2 o . . . .

ay is asymptotically stable for € [1, 3] 0 0.2 0.4 . 06 08

«vg is unstable for p > 3
Qg is super-attracting for p = 2



Example: logistic map 1 = pag (1 — )
F:Qx0 —Q, where Q=[0,1], © =[0,4] and F(z;pu) = F,(z) = px (1 — )

fixed points: solve oo = F}, (o) V=
a=pa(l—a) - -unstable

. - 0.8 [ ]
one fixed point for p € [0, 1]: PPt
a; =0, F’(al) 1 § 0.6}
aq is asymptotically stable for € [0, 1] _f;

€04l
two fixed points for all p € (1,4]: &
a1 = 0 is unstable for p > 1 0.2
1 /

012:1—;, F,;(OQ):Q_:UJ 0 - -
ay is asymptotically stable for € [1, 3] 0 ! 2 8 4

«vg is unstable for p > 3
Qg is super-attracting for p = 2



Example: logistic map 1 = pag (1 — )
F:Qx0 —Q, where Q=[0,1], © =[0,4] and F(z;pu) = F,(z) = px (1 — )

w=2.8

2-cycles: solve x = Ep) (x) 1

z=plz(1-2)(1-pz(l-zx))
0.8t

0.6 |

2 (x)

=04t

0.2




Example: logistic map 1 = pag (1 — )
F:Qx0 —Q, where Q=[0,1], © =[0,4] and F(z;pu) = F,(z) = px (1 — )

=3
2-cycles: solve z = FM(Q) (x) 1 A=
z=plz(1-2)(1-pz(l-zx))
0.8t
one 2-cycle for € (3,4]:
— 0.6
{c_,c4} for a
e = LHpEVR-3)(+1) 04l
+ o
0.2
00

0 0.2 0.4 0.6 0.8



Example: logistic map 1 = pag (1 — )

F:Qx0 —Q, where 2 =10,1], © =

2-cycles: solve x = FM(Q) ()
z=plz(1-2)(1-pz(l-zx))
one 2-cycle for € (3,4]:

{c_,cq} for

_1tpt Ve -3)(t1)
2p

C+

[0,4] and F(z;p) = Fy(z) = px (1 — )

n=3.2

0.8 r

0.6 |

()

0.4 |

0.2




Example: logistic map 1 = pag (1 — )
F:Qx0 —Q, where Q=[0,1], © =[0,4] and F(z;pu) = F,(z) = px (1 — )

=1 6
2-cycles: solve x = FM(Q) () 1 =T \/_
z=plz(1-2)(1-pz(l-zx))
0.8 r
one 2-cycle for € (3,4]:
—0.6
{c_,cq} for &
_ltpE /(e =3)(k+1) 04!
ct =
2p
2-cycle is asymptotically stable 0.2 )

foru€(3,1+\/6]

2-cycle is unstable for p > 1 + /6
2-cycle is super-attracting for =1+ +/5



Example: logistic map 1 = pag (1 — )
F:Qx0 —Q, where Q=[0,1], © =[0,4] and F(z;pu) = F,(z) = px (1 — )

2-cycles: solve x = Ep) () V=
.TE:[L2$(1—$)(]. —,U“’E(].—$)) ] - -unstable
© 0.8
one 2-cycle for € (3,4]: &
[N}
<06
{c_,c4} for 8
_l+pE/(p=3)(p+1) 204
CL — &)
2u a,
X =]
2-cycle is asymptotically stable E 027
foru€(3,1+\/6] 0
0 1

2-cycle is unstable for > 1+ /6
2-cycle is super-attracting for =1+ +/5



Example: logistic map 1 = pag (1 — )

F:Qx0 —Q, where Q=[0,1], © =[0,4] and F(z;pu) = F,(z) = px (1 — )

4-cycles: solve z = EL(4) ()

,u,:1+\/675




Example: logistic map 1 = pag (1 — )
F:Qx0 —Q, where Q=[0,1], © =[0,4] and F(z;pu) = F,(z) = px (1 — )

p=1++6

4-cycles: solve z = EL(4) () 1

0.2 0.4 0.6 0.8



Example: logistic map 1 = pag (1 — )
F:Qx0 —Q, where Q=[0,1], © =[0,4] and F(z;pu) = F,(z) = px (1 — )

p=1++v6+e¢

4-cycles: solve z = Fu(4) () 1

4-cycle exists and is asymptotically
stable for u € (1 +/6, 3.544090 . ..




Example: logistic map 1 = pag (1

— )

F:Qx0 —Q, where Q=[0,1], © =[0,4] and F(z;pu) = F,(z) = px (1 — )

4-cycles: solve z = Fu(4) () 1

4-cycle exists and is asymptotically 0.8
stable for u € (1 +/6, 3.544090 . ..

8-cycle exists and is asymptotically =
stable for p € (3.544090. .., 3.564407 .. .]

0.2
this is called the period doubling

route to chaos o
0

additional example:
Question 3 on Problem Sheet 2

pu=1++V6+¢

0.2 0.4 0.6 0.8 1



Example: logistic map 1 = pag (1 — )
F:Qx0 —Q, where Q=[0,1], © =[0,4] and F(z;pu) = F,(z) = px (1 — )

i . a 1
bifurcation diagram —stable

- -unstable

fixed points and 2-cycles
o o o
IN o) @

o
o




Example: logistic map 1 = pag (1 — )

F:Qx0 —Q, where Q=[0,1], © =[0,4] and F(z;pu) = F,(z) = px (1 — )

i . a 1
bifurcation diagram —stable

- -unstable

0.8

0.6 r

0.4

02r




Example: logistic map 1 = pag (1 — )
F:Qx0 —Q, where Q=[0,1], © =[0,4] and F(z;pu) = F,(z) = px (1 — )

bifurcation diagram 1
oy is asymptotically stable for € (1,3] g
asymptotically stable 2-cycle exists 06 |
forp€<3,1+\/6} 5 -
. . 0.4+
asymptotically stable 4-cycle exists
for € (1 + /6, 3.544090 . } 02!
asymptotically stable 8-cycle exists 0 \ \ ‘
for pu € (3.544090. .., 3.564407 ... ] 0 1 2 8 4

m
16-cycle, 32-cycle, 64-cycle, ... period doubling route to chaos



Example: logistic map 1 = pag (1 — )
F:Qx0 —Q, where Q=[0,1], © =[0,4] and F(z;pu) = F,(z) = px (1 — )

bifurcation diagram 1
g is asymptotically stable for € (1,b1] gg|
asymptotically stable 2-cycle exists 06 |
for pu € (b1, ba] o
asymptotically stable 2F-cycle exists 0471
for p € (bg, b
r p € (bg, b1 02 |
Feigenbaum’s constant: ‘
b, —b % 1 2 3 4
lim 1 — 46692016 ...
k—o0 bg1 — by #

additional example: Question 3 on Problem Sheet 2



Example (from Lecture 5)

Tk+1 = (1 - .’L'k;)(l - 51’]€ + [L.'L'%) 1 —stable

- -unstable

F(aip) = (1—2)(1 - 5z + pa?)

If pc©=1[6.3,11.8],
then F(x;u) € [0,1] for all 2 € [0, 1].

We have studied dynamics _______,__—-——’/

fixed points
o o
EN o
-
’
’
,

o
e}
1
\
\
. )

of F1: Q2 x © — , where Q = [0,1]. 0.2
three fixed points for p € (u1, p2) where 0y S . .
p1 = 9.7066.... and pz = 10.518.... .

one fixed point for p < pq and g > po
we have saddle-node bifurcations at u = p1 and = s

we also have period doubling bifurcations at p ~ 8.71988... and p ~ 10.5877. ..



Example (from Lecture 5) — bifurcation diagram

Tpy1 = (1 — ) (1 — 5z + pas) Ly

Flz;p) = (1— 2)(1 - 52 + pz?) 08 4,

If p e © =1[6.3,11.8], 06
then F(z;p) € [0,1] forallz € [0,1]. = |
044 f

We have studied dynamics

of F': Q) x© — Q, where Q = [0, 1]. 0.2

three fixed points for p € (u1, p2) where  0° - . S . »
p1 = 9.7066.... and pz = 10.518.... P

one fixed point for p < pq and g > po
we have saddle-node bifurcations at u = p1 and = s
we also have period doubling bifurcations at p ~ 8.71988... and p ~ 10.5877. ..



3-cycles: logistic map xj1 = payg (1 — xp)

asymptotically stable 2¥-cycle exists 1
for pu € (bg, bgs1] where ___fltfslszle
by =3 0.8
bo=1+6
bs = 3.544090. .. 06 ¢
by = 3.564407 . .. 8
4t
lim by = 3.56994567 . .. 0
k—o00
0.2+
0
0 1




3-cycles: logistic map xj1 = payg (1 — xp)

asymptotically stable 2¥-cycle exists
for p € (bg, bgs1] where

b =3

by =1++6

bs = 3.544090.. ..
by = 3.564407 . . .

lim b = 3.56994567 . ..
k—o00

3-cycles: solve z = F,)(?’) (x)

1

0.8

0.6 r

8

0.4

0.2

—stable
- -unstable




3-cycles: logistic map xj1 = payg (1 — xp)

asymptotically stable 2F-cycle exists p=1+ \/g‘_ €

1

for p € (bg, bgs1] where

by =3 0.8 |
by =1++6

by = 3.544090. . . 506
by = 3.564407 . .. 5

lim b = 3.56994567 . ..
k—o00

3-cycles: solve z = F,)(?’) (x)
no 3-cycles for 1 < 14 /8 = 3.82842712 .. .Oi

0 0.2 0.4 0.6 0.8 1



3-cycles: logistic map xj1 = payg (1 — xp)

asymptotically stable 2¥-cycle exists
for p € (bg, bgs1] where

; p=1+v8

b1 =3 0.8 |
by =1+6
b = 3.544090 . .. —06 |
by = 3.564407 . .. 5;
lim by, = 3.56994567 . .. 04
k—oo
3-cycles: solve x = F,)(?’) () 0-2
no 3-cycles for 1 < 1+ /8 0

one 3-cycle for i = 1+ /8 =3.82842712... 0 %% 04 06 08

fer, 2,03} = {er, Bule), B (1) } where | B9 (e1)| = [El(er) Bi(e2)i(es)| =1



3-cycles: logistic map xj1 = payg (1 — xp)

asymptotically stable 2¥-cycle exists
for p € (bg, bgs1] where

; p=1+8+¢

b1 =3 0.8+
by =1++6
bs = 3.544090. . . 06|
by = 3.564407 . .. s,
lim by = 3.56994567 . .. 04
k—o0
0.2

3-cycles: solve z = F,)(?’) (x)
no 3-cycles for 1 < 1+ /8 0& ‘ ‘ ‘ ‘
one 3-cycle for u = 1+ V8 = 3.82842712... © %2 04 06 08

T

fer, 2,03} = {er, Bule), B (1) } where | B9 (e1)| = [El(er) Bi(e2)i(es)| =1

two 3-cycles for i € (1 + V8, 4} ... ‘cyan 3-cycle’ and ‘yellow 3-cycle’



3-cycles: logistic map xj1 = payg (1 — xp)

asymptotically stable 2*-cycle exists
for p € (bg, bgs1] where

; p=1+8+¢

b1 =3 0.8+
by =146
bs = 3.544090. .. 06 |
by = 3.564407 . .. s,
lim by = 3.56994567 . .. 04
k—o0
0.2

3-cycles: solve z = F,)(?’) (x)
no 3-cycles for 1 < 1+ /8 0& ‘ ‘ ‘ ‘
one 3-cycle for u = 1+ V8 = 3.82842712... © %2 04 06 08

T

fer,ea sk = {e, Buer), B (e1) | where | B ()| = |Ei(er) Bi(ea) Bilea)| =1

two 3-cycles for € (14 /8, 4] ... ‘cyan 3-cycle’ and ‘yellow 3-cycle’
‘cyan 3-cycle’ is stable for p =1+ V8 4 ¢ for sufficiently small &
‘cyan 3-cycle’ is super-attracting for ¢ = 0.00344693 ..., i.e. for = 3.831874. ..



3-cycles: logistic map xj1 = payg (1 — xp)

asymptotically stable 2¥-cycle exists

for p € (bg, bgs1] where

by =3
by=1++6

bs = 3.544090. ..
by = 3.564407 . ..

lim b = 3.56994567 . ..
k—o00

3-cycles: solve z = F,)(?’) (x)

no 3-cycles for < 1+ /8

<
8

1

0.8

0.6

04r

02r

0

° o ©
® LY

© =3.831874

one 3-cycle for p =1+ V8 = 3.82842712. .. 0 20 k
fer 2, ca} = {1, Fuler), BV (1) } where |[E (e0)| = | El(er) El(ea)Biles)| = 1

two 3-cycles for yu € (1+ V8, 4]

40 60 80 100

‘cyan 3-cycle’ and ‘yellow 3-cycle’

‘cyan 3-cycle’ is stable for = 1 4 /8 + ¢ for sufficiently small
‘cyan 3-cycle’ is super-attracting for ¢ = 0.00344693 ..., i.e. for = 3.831874. ..



3-cycles: logistic map xj1 = payg (1 — xp)

asymptotically stable 2¥-cycle exists 1 ‘ K =4 ‘
for p € (bg, bgs1] where

by =3 0.8 |

by =146

bs = 3.544090. .. <06

by = 3.564407 ... =

lim b = 3.56994567 . ..
k—o00

3-cycles: solve z = F,)(?’) (x)
no 3-cycles for 1 < 1+ /8 0 ‘ ‘ ‘ ‘
one 3-cycle for =1+ /8 =3.82842712... 0 %% 04 06 08

fer, 2,03} = {er, Bule), B (1) } where | B9 (e1)| = [El(er) Bi(e2)i(es)| =1

two 3-cycles for 1 € (1+V/8,4] ... ‘cyan 3-cycle’ and 'yellow 3-cycle’
Question 5 on Problem Sheet 2: closed formulas for both 3-cycles derived for ;= 4
both 3-cycles are unstable because F,)(?’)(cl) = F(c1) E|(c2)F}(c3) = £2° = +8



Sharkovsky's Theorem

Sharkovsky's ordering:

3050 T>...02X302%X50...022%x3022x5>...022%x3>02x%x5p...
>2"x3>02"x5pb...02" 2" 15232221

Sharkovsky's Theorem (1964):
Let Q = [a,b] C R be an interval and F' : 2 — € be continuous.
If F' has a point of period n, then it has points of period & for all £ € N with n > k.



Sharkovsky's Theorem

Sharkovsky's ordering:

3050 T>...02X302%X50...022%x3022x5>...022%x3>02x%x5p...

b2 x3p2"x5> ... 022" 2822201

Sharkovsky's Theorem (1964):
Let Q = [a,b] C R be an interval and F' : 2 — € be continuous.
If F' has a point of period n, then it has points of period & for all £ € N with n > k.

We have shown that the logistic map zjy1 = pag (1 — x) has 3-cycles (points of
period 3) for any p € [1 + V8, 4].

Sharkovsky's theorem implies that the logistic map has points of period k (i.e.
k-cycles) for all k € N for € [1+ V8, 4].



Sharkovsky's Theorem

Sharkovsky's ordering:

3050 T>...02X302%X50...022%x3022x5>...022%x3>02x%x5p...
>2"x3>02"x5pb...02" 2" 15232221

Sharkovsky's Theorem (1964):
Let Q = [a,b] C R be an interval and F' : 2 — € be continuous.
If F' has a point of period n, then it has points of period & for all £ € N with n > k.

We have shown that the logistic map zjy1 = pag (1 — x) has 3-cycles (points of
period 3) for any p € [1 + V8, 4].

Sharkovsky's theorem implies that the logistic map has points of period k (i.e.
k-cycles) for all k € N for € [1+ V8, 4].

Question 5 on Problem Sheet 2: closed formulas for k-cycles can be derived for p = 4,
we can also show that k-cycles are unstable by calculating the corresponding derivatives



Invariant distribution (Question 7 on Problem Sheet 2)

Questions 3 and 4 on Problem Sheet 0: Starting with 2o = 0.7, we obtain x;, as:

$k+1 = 4£Uk(1 — :Uk)

O e
0 2000 4000 6000 8000 1 0000



Invariant distribution (Question 7 on Problem Sheet 2)

Questions 3 and 4 on Problem Sheet 0: Starting with 2o = 0.7, we obtain x;, as:

Lhil1 — 4£Uk(1 — :Uk)

[ A R S Ca—
m 2 C 1 mmm

AN L T
R R T R N s

0 2000 4000 6000 8000 10000




Invariant distribution (Question 7 on Problem Sheet 2)

Histogram of values xy, for k = 0,1,2,...,10° (blue bars): zy 11 = 42, (1 — %)

Question 4 on Problem Sheet 0:

red line:

- - Let X be a continuous random variable on
T (l—z) interval [0, 1] with the probability density
function p(z). Then the random variable
XkJrl = F(Xk) = 4Xk (1 — Xk> has

the same probability density function p(z).

02 04 06 08 1 [Prelims Probability and Calculus]
T

p(z)
O = NDNwWwpProrooN

o



Invariant distribution (Question 7 on Problem Sheet 2)

Histogram of values xy, for k = 0,1,2,...,10° (blue bars): zy 11 = 42, (1 — %)

7 red line: Question 4 on Problem Sheet 0:

g p(z) = ——— Let X} be a continuous random variable on
T4 T (l—z) interval [0, 1] with the probability density
=3 function p(z). Then the random variable

2 XkJrl :F(Xk) :4Xk (1—Xk> has

(1) the same probability density function p(z).

0 02 04 06 08 1 [Prelims Probability and Calculus]
xZ

invariant distribution p(z): if the random variable X is distributed according to p(z),
then the random variable F'(X) is also distributed according to p(z)

Question 7 on Problem Sheet 2: calculate invariant distributions for some other
chaotic maps and compare them with the histograms of orbits

theoretical justification is given by ergodic theory (Birkhoff ergodic theorem)



Problem Sheet 2: bifurcations of continuous-time dynamical systems

Continuous-time dynamical system: Let f: ) x © — R", where ) C R"™ and © C R™.
Let xg € ©, p € © and x(t) € Q be a solution of the ODE

c;—): = f(x; ;) with the initial condition x(0) = x¢ € Q
Questions 1, 2, 4 and 6 on Problem Sheet 2 cover bifurcations of fixed points, which
can occur forn > 1 and m > 1:

® saddle-node bifurcation

® transcritical bifurcation

® supercritical pitchfork bifurcation

® subcritical pitchfork bifurcation
We have explained them in our lectures on examples with n = 1,2 and m = 1.

Next, we will discuss some additional examples to help you solve Problem Sheet 2,

including examples with m > 2 and n = 3.



Example: n =1, m =2

9] + .
e 1T — X
dt H2 H1T1 1

flz1; ) = po + iz — o3



1o = 0: supercritical pitchfork bifurcation

dz, L : 0.4
— = r1T — & S0
g M2t M 1
fle;p) = po + mz — o3 0.2+
& 0
S
p1 >0, p2 =0
three fixed points at 1 = £,/11 (stable) 02
and z; = 0 (unstable) 04|




1o = 0: supercritical pitchfork bifurcation

M1 :07 ,LLZZO
dzq 3 ‘ ‘ ‘
?:/Q‘F,ull‘l—.%l 04+

fle;p) = po + mz — o3 02+
g o0 > °
g

as p1 approaches zero from above,

two fixed points /i1 and —,/p1 0.2}
move toward the third one

1 = 0: the fixed points coalesce into 2 1 0
a stable fixed point at 1 =0 X1



1o = 0: supercritical pitchfork bifurcation

pr=—1, =0

9] + 3 0.4
— = T — 4 ¢
dt K2 T K11 1
fla; p) = po + g — 23 02}
& o > -
w1 < 0: one stable fixed point at 21 =0
-0.2
04 |
2 -1 0 1

x1



1o = 0: supercritical pitchfork bifurcation

9] + .
e 1T — X
dt H2 H1T1 1

f(zi; p) = po + iz — 23

bifurcation diagram

1

057

1
o

-0.5 1

2

-0.5

H1

0.5




2)

p2 = 0: supercritical pitchfork bifurcation (n

L e A B A A B
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N—r

p2 = 0: supercritical pitchfork bifurcation (n = 2

2 X

g s T CIIIN
dl’Q 1
= —X2 ~——— =

dt CTIINR

VAV AV A ey —

as p1 approaches zero from above, oI

two fixed points [—,/u1,0] and /i1, 0] AE====2
move toward the third one S
l

[ N T

1 = 0: the fixed points coalesce into 2 1
a stable fixed point at x = [0, 0]

=



p2 = 0: supercritical pitchfork bifurcation (n

— = T — T
dt M2 H1T1 1
dl‘Q
_— = -2
dt 2

w<0:

one stable fixed point at x = [0, 0]

I
[\
~

2

'

rorN

/A

Pt NN N o~ ]
e - =~ A 7/ NN NS~ — — — ]
e - - = / VA R T AN A U
e - = 7 7/7 1 1T\ N S —

2 s A B L L U\ N

2 -1 0 1 2

8
%



p2 = 0: supercritical pitchfork bifurcation (n

— = T — T
dt M2 H1T1 1
dl’Q

= — 5

dt 2

bifurcation diagram

1

1

057

-0.5 1

:2)

2

-0.5

H1

0.5




Cusp catastrophe (u2 = 0.1)

dzy = + x x3
dt = M2 H1T1 1

f(zi; p) = po + iz — 23

H1 = 1, 2 =0.1

three fixed points given as
solutions of g + p1z; — 3 =0

M1 = 17 ,LL2:01




Cusp catastrophe (u2 = 0.1)

dzy = + x x3
dt = M2 H1T1 1

f(zi; p) = po + iz — 23

M1 = 0.5, M2 = 0.1

three fixed points given as
solutions of s + p1z; — 3 =0




Cusp catastrophe (u2 = 0.1)

M1 = 0, M2 = 0.1
dz; ‘ ‘ ‘

¥:M2+M11‘1—$? 04

flzr; w) = po + ey — a3 02!

f(flfl)
 J
A

as p1 approaches the bifurcation value
-0.2 ¢

He=\"1
04 |

from above, two (smaller) fixed points

move toward each other

(saddle-node bifurcation) =

11 < e one stable fixed point



Cusp catastrophe (u2 = 0.1)

9] + .
e 1T — X
dt H2 H1T1 1

flz1; ) = po + iz — o3

bifurcation diagram

1

0.5

-0.5 1

I/ -
—_2 = 0.1
—p2 =0
1 -0.5 0 0.5 1

M1



Cusp catastrophe (u2 = 0.1)
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Cusp catastrophe (u2 = 0.1)

M1 = 0.5, Ho = 0.1

3
1

d.Z'l

dt

p2 + p1T1 —

dl‘Q

dt
1 > e three fixed points given as

solutions of uo + p1x1 — ac:f =0




Cusp catastrophe (u2 = 0.1)

0 p =0, p2=0.1
N IR
dzy + _ .3 eSS R A
d = M2 H1 a1 SN N et
t =N\ N A
NN VoV oV
dﬂ:_$2 1T=——=~ R
[T ™ ™=\ [ R A /A |
dt ™ = 7= =~~~ N\ \ v b W /= = =— = =
W S IIZION o rmEE ]
| e, o
as ju1 approaches the bifurcation value ettt/ NN
1/3 | /v b I N NN o ]
2 [ [ - A/ I NS o —
275 [Ettatetet 2 A I SR SR AR IR I\ Nt
He = | —— [ Ay A N B I B B A W N
4 o e bt AN — —
i i [ 2P,y A A E I A S B T\ W N NI N
from above, two (smaller) fixed points 2 200 8 T T T T W
move toward each other 2 -1 0 1 2
x1

(saddle-node bifurcation)

11 < e one stable fixed point



Cusp catastrophe

— = T — T
dt M2 H1T1 1
dl’Q

= — 5

dt 2

bifurcation diagram

0.5 /
O -
g -
-0.5
—_2 = 0.1
—p2 =0
-1 -0.5 0 05 1

M1



Cusp catastrophe

d:lj'l

f(zi; p) = po + iz — 23

bifurcation diagram

5 =kt ma —

-1 -0.5 0 0.5 1

Mo = 0.1

H1



Cusp catastrophe

M2 = 0.01
dxy i 3 1
= 1 — T
dt M2 T H1T1 1
fla; p) = po + g — 23 0.5
g 0 J '— —————
bifurcation diagram
-0.5
-1 L L
-1 -0.5 0 0.5

H1



Cusp catastrophe
d:lj'l
5 = e - 3

f(zi; p) = po + iz — 23

bifurcation diagram




Cusp catastrophe

ue = —0.01
d:ll'l i 3 1
dt M2 H1 1 1
f(x1;m) = po + iy — o} 0.5
— O \\ -
g -
bifurcation diagram \
-0.5
-1
-1 0.5 0 0.5 1

H1



Cusp catastrophe

9] + .
e 1T — X
dt H2 H1T1 1

f(zi; p) = po + iz — 23

bifurcation diagram

Tl

0.5+

-0.5

M2 = —0.1

M1

0.5 1



Cusp catastrophe

dzq i 3 1
= T — T
dt M2 H1T1 1
f(ib“l; M) = po + izt — IL‘Z{’ 05+ 1 fixed point
g O0r 3 fixed points
-0.5
- ‘
-1 -0.5 0 0.5 1



Example: n =2, m =2

dl‘l
dt
d:L‘Q
dt

= pg + a1 — a7

= —:L‘2



Example:

dl’l
dt
d:I}Q
dt

o = 0: transcritical bifurcation

n=2 m=2

= 2 + 11 — T}

=] —x2

po =0
’
05+
50 CREEEEEE
7
7’
e
,/
05| -
7
7’
4
-1 ‘ ‘
-1 -0.5 0 0.5 1



Example: n =2, m =2

=0.1

dﬂ = po + p1zy — 23 1 "

dt M2 T (171 1

d:I}Q

i R 0.5+

= —x

dt 2 _/
o = 0: transcritical bifurcation g 0 —]
The saddle-node bifurcation is robust 05| ,/’
under small changes of parameters, ,//
but transcritical and pitchfork R Rt ‘
bifurcations change under -1 -0.5 0 0.5 1

small perturbations.



Example: n =2, m =2

dxl 2
T = p2 + p1T1 — T
d:I}Q .

il

o = 0: transcritical bifurcation

The saddle-node bifurcation is robust
under small changes of parameters,
but transcritical and pitchfork
bifurcations change under

small perturbations.

M2 = 0.01

-

0 0.5




Example: n =2, m =2

dxl 2
T = p2 + p1T1 — T
d:I}Q .

il

o = 0: transcritical bifurcation

The saddle-node bifurcation is robust
under small changes of parameters,
but transcritical and pitchfork
bifurcations change under

small perturbations.

pe =0
1
0.5
0 Bt
7
7’
e
,/
0.5 L’
7
7’
R ‘ ‘
-1 -0.5 0 0.5 1
M1



Example: n =2, m =2

dxl 2
T = p2 + p1T1 — T
d:I}Q .

il

o = 0: transcritical bifurcation

The saddle-node bifurcation is robust
under small changes of parameters,
but transcritical and pitchfork
bifurcations change under

small perturbations.

M2 = —0.01

0.5
0 —————
/
e
,/
-0.5 ad
e
'
//
7
-1 ‘ ‘
-1 -0.5 0 0.5
Ha




Example: n =2, m =2

dxl 2
T = p2 + p1T1 — T
d:I}Q .

il

o = 0: transcritical bifurcation

The saddle-node bifurcation is robust
under small changes of parameters,
but transcritical and pitchfork
bifurcations change under

small perturbations.

M2 = —-0.1
1
0.5
0
-0.5 s
4
7/
d
vy
R ‘ ‘
-1 -0.5 0 0.5
M1




Example with n = 3, m = 3: Lorenz equations (Part 1)

dxl ( )

— = T9 — T

dt M2 (T2 1

dZL'Q

— = T — Ty — XT1X
dt H1T1 2 173
dwg

— = X1T9 — T

i 122 H3 T3

® | ecture 8: we started with a 3D demonstration viewing trajectories in the phase
space for different values of parameters 1, po, p3 and illustrating the convergence
to fixed points, limit cycles, chaos, strange attractor and transient chaos

® derivation on whiteboard (no slides): we used the Lorenz system in Lecture 8 to
further practice techniques on Problem Sheets 1 and 2 including:
® finding the Lyapunov function to prove the global stability of the fixed point at
origin 0 = [0,0,0] for pu; < 1
® using the extended center manifold theory to analyze the supercritical pitchfork
bifurcation at p1; = 1, calculating the center manifold and the dynamics on it

® Part 2: we will consider the Lorenz system again when we discuss chaos in ODEs



Bifurcations
Continuous-time dynamical system: Let f: 2 x © — R", where ) C R" and © C R™.
Let xg € ©, p € © and x(t) € Q be a solution of the ODE
d
dit( = f(x; ) with the initial condition x(0) = xg € 2
Bifurcations: The qualitative structure of the flow can change as parameters u are

varied. For example, critical points (fixed points) can be created or destroyed, or limit
cycles can be created or destroyed. The parameter values at which these qualitative
changes in the dynamics occur are called bifurcation points.



Bifurcations of fixed points
Continuous-time dynamical system: Let f: 2 x © — R", where ) C R" and © C R™.
Let xg € ©, p € © and x(t) € Q be a solution of the ODE
d
dit( = f(x; ) with the initial condition x(0) = xg € 2
Bifurcations: The qualitative structure of the flow can change as parameters u are

varied. For example, critical points (fixed points) can be created or destroyed, or limit
cycles can be created or destroyed. The parameter values at which these qualitative
changes in the dynamics occur are called bifurcation points.
Problem Sheet 2: bifurcations of fixed points
they can occur for n > 1, we studied examples withn =1, n =2 and n =3

® saddle-node bifurcation

® transcritical bifurcation

® supercritical pitchfork bifurcation

® subcritical pitchfork bifurcation



Bifurcations of limit cycles
Continuous-time dynamical system: Let f: 2 x © — R", where ) C R" and © C R™.
Let xg € ©, p € © and x(t) € Q be a solution of the ODE
dx

vl f(x; p) with the initial condition x(0) = xo €

Bifurcations: The qualitative structure of the flow can change as parameters u are
varied. For example, critical points (fixed points) can be created or destroyed, or limit
cycles can be created or destroyed. The parameter values at which these qualitative
changes in the dynamics occur are called bifurcation points.

Problem Sheet 3: bifurcations of limit cycles
they can occur for n > 2, we will first explain them on the case n = 2
® supercritical Hopf bifurcation
® subcritical Hopf bifurcation
® saddle-node bifurcation of cycles
e infinite-period bifurcation (SNIC, SNIPER)

® homoclinic bifurcation (saddle-loop bifurcation)



Supercritical Hopf bifurcation

example:
da:l
dt
dzo
dt

=pury — T3 — xl(x%—i-x%)

=21 + pry — T2(x? + 23)



Supercritical Hopf bifurcation

example:
dxl
—— = px1 — xg — z1(af + 73)
dt
dry 9 9
o = + pxe — xo(xf + x3)

fixed point at 0 = [0, 0]

linearization Df(0) = <lf _Ml>

eigenvalues Ay = u+1



Supercritical Hopf bifurcation

RNENENENENY

N NN\

NN NN G T 777777777 N
NMNNNNN Vs
NNNNNVAVV A s
NN\NNANN VS
NNNNNN N /g7 r
NSNNNNN\ Ny ofrrre s
PNNNNNN \\ lllllll

\ AL

\

lllll /v//J‘\./////////
¢¢¢¢¢¢¢¢¢ PRV E AT U (NN NN
xxxxxxx Py Z2 1A NANENANAN
R P o 1A I I S\ \NANANENEN
D VA A B B T U U \\ AN N
B A B IR A TN NANAN !
oo 72PNV
P A I B B SRR NN\
s 720 PP EE VAV AN
/4724 EPEANAAANN
~ - o -
<
A~ A~~~
/
+ o+ -
N e =
& &
N~— SN~—
— [\l
g 8 _ 32
S
=
™ ™ = o 3
R
| o S o
S - @ =
3 8 £ Q o
[} Il Il ‘S " =
= — N o .m W
Eflsfls g § &
e © © X c
(0] = 2= (5]

L1

[0,0] is a stable spiral

@ < 0: fixed point 0
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[0,0] is a stable spiral

@ < 0: fixed point 0



Supercritical Hopf bifurcation
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Supercritical Hopf bifurcation

p=0

example: AN I Z,
NNNNNN NV Y S S s s s e s A
dxl (2+ 2) NNNNN DV VU Sy s rr s
— = uUxr] — T2 — T1\T €T NNNNNN L | U W S d o T mm =
dt KT 2 11 2 LI NN N
SANNNN Y f T
dzo NS\ e
_ _ 2, .2 CIIIN Y 4 St
o S a tee m o) EIIINNU SN ST

g Op===s iy bt NN N~
N NN = q S~~~
0 S e T A t A\ NN N~
fixed point at 0 =1[0,0] ool AN
A= A/ B BN NN NN
i . . /’L _]_ B VAV A/ A NN NN N
||near|zat|oan(0): e~ 20 2 B B BN NN
1 W B DAV ANy N N LR NENENNN
P AV AV A AV A A/ A N N L T WY NN

. . . 2 v PN A8 IR ER B SR ML VNN
eigenvalues Ay = u+1 5 1 0 1 5

I

as  increases from negative to positive values, eigenvalues cross the imaginary axis
from left to right

w1 = 0: fixed point 0 = [0, 0] is a still stable spiral, though a very weak one
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[0,0] is an unstable spiral
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stable circular limit cycle of radius
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Supercritical Hopf bifurcation

example:
da:l
—— = px1 — xg — z1(af + 73)
dt
dry ) )
9 =z + pxe — zo(xy + 23)

fixed point at 0 = [0, 0]

o g g [ —1
linearization Df(0) = <1 ) >
eigenvalues Ay = u+1

bifurcation diagram

[show 3D animation]

€2




Hopf bifurcation - general case

general case: eigenvalues A\(u) = a(u) £ iw(p) with «(0) =0 and w(0) # 0

behaviour close to the fixed point: normal form (in polar coordinates)

d
g = o)+ a(wr + 06)
dé 9 4
g = @) + b(u)r® + 007
Taylor expanding: j—: =/ (0)pur + a(0)r3 + O(u?r, pur3, r°)
dé

37 =90 + O+ b(0)1? + OG22, 1)



Hopf bifurcation - general case

general case: eigenvalues A\(u) = a(u) £ iw(p) with «(0) =0 and w(0) # 0

behaviour close to the fixed point: normal form (in polar coordinates)

d
g = o)+ a(wr + 06)
dé 9 4
& =) + b + O
Taylor expanding: j—: =/ (0)pur + a(0)r3 + O(u?r, pur3, r°)
D — w(0) + (O 1+ b(0)r? + O, 1)

our previous example: o/(0) =1, a(0) = —1, w(0) =1, &'(0) = b(0) =0
supercritical Hopf bifurcation: a(0) < 0  (periodic orbit is asymptotically stable)

subcritical Hopf bifurcation: a(0) >0  (periodic orbit is unstable)



Supercritical Hopf bifurcation

general case: a(0) < 0
d
Cii (0)ur + a(0)r®
dt
dé

S =0 + /O + b0



Supercritical Hopf bifurcation

general case: a(0) < 0

dr 3
E—O[(O),UT"‘G(O)T
do ’ 9

eigenvalues Ay = o/(0) u & iw(0)



Supercritical Hopf bifurcation
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Supercritical Hopf bifurcation
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Supercritical Hopf bifurcation
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Supercritical Hopf bifurcation

general case: a(0) < 0 T

d 1.
ditﬂ =a/(0)ur + a(0)r?
0.5
%—wmwwﬂm + b(0) 2
dt B i S 0.
eigenvalues Ay = o/(0) p £ iw(0) -0.5
example: o/(0) =1, a(0) = —1, 1l

w(0) =1, w'(0) = b(0) = 0 S~ /;;>
b< 0: 0= [07 0] is a stable spiral ) N )

> 0: 0=[0,0] is an unstable spiral

stable circular limit cycle of radius r = /1




Subcritical Hopf bifurcation

general case: a(0) > 0

dr 3
E—O[(O),UT"‘G(O)T
do ’ 9

eigenvalues Ay = o/(0) u & iw(0)



Subcritical Hopf bifurcation

general case: a(0) > 0 1 TN
) . N
. (0)ur + a(0)r®
dit
do p 9
= =w(0) + w'(0)p + b(0)r

eigenvalues Ay = o/(0) u & iw(0)

example: o/(0) =1, a(0) = 1,
w(0) =1, w'(0) =b(0) =0

1 <0: 0=][0,0] is a stable spiral
unstable circular limit cycle of radius r = /i

T

> 0: 0=[0,0] is an unstable spiral




Subcritical Hopf bifurcation

general case: a(0) > 0

d 1. P

dt
W N
g = w0+ (0)p + b(0)r 5
eigenvalues A\ = o/(()) u+ ZOJ(O) 1 //_/ - =
-1 AN
example: /(0) =1, a(0) =1, 0\\

I

1 <0: 0=][0,0] is a stable spiral
unstable circular limit cycle of radius r = /i

> 0: 0=[0,0] is an unstable spiral



Subcritical Hopf bifurcation

general case: a(0) > 0

:—: =o' (0)pur + a(0) 7> — 1°
do ’ 9
= =w(0) + w'(0)p + b(0)r

eigenvalues Ay = o/(0) u & iw(0)



Subcritical Hopf bifurcation

general case: a(0) > 0

:—: =o' (0)pur + a(0) 7> — 1°
do ’ 9
= =w(0) + w'(0)p + b(0)r

eigenvalues Ay = o/(0) u & iw(0)
example: o/(0) =1, a(0) =1,

w(0) =1, w'(0) =5b(0) =0
1 <0: 0=][0,0] is a stable spiral
@ >0: 0=1[0,0] is an unstable spiral
subcritical Hopf bifurcation at 4 =0



Subcritical Hopf bifurcation
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w=-0.5

Subcritical Hopf bifurcation

[0,0] is a stable spiral
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Saddle-node bifurcation of cycles
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Subcritical Hopf bifurcation and

general case: a(0) > 0

:—Z = (0)pur 4 a(0)r3 — °
do ’ 9
= =w(0) + w'(0)p + b(0)r

eigenvalues Ay = o/(0) u & iw(0)
example: ¢/(0) =1, a(0) =1,

w(0) =1, w'(0) =5b(0) =0
@ <0:0=][0,0] is a stable spiral
> 0: 0=[0,0] is an unstable spiral
subcritical Hopf bifurcation at ;=0

saddle-node bifurcation of cycles
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general case: a(0) > 0

:—Z =o' (0)pur + a(0) 7> — 1°
do ’ 9
= =w(0) + w'(0)p + b(0)r

eigenvalues Ay = o/(0) u & iw(0)
example: o/(0) =1, a(0) =1,

w(0) =1, w'(0) =5b(0) =0
1 <0: 0=][0,0] is a stable spiral
@ >0: 0=1[0,0] is an unstable spiral
subcritical Hopf bifurcation at ;=0




Question 6 on Problem Sheet 1
System of n = 2 chemical species X; and X» which are subject to ¢ = 4 reactions:
2X; 4+ Xy 43X, 02 x, X1 2350 054 x,

Assuming mass action kinetics, concentrations x;(t) and z2(t) evolve by
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Assuming mass action kinetics, concentrations x;(t) and z2(t) evolve by
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= k‘ll‘%l‘g + ko — ksx
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Question 6 on Problem Sheet 1
System of n = 2 chemical species X; and X» which are subject to ¢ = 4 reactions:
2X; 4+ Xy 43X, 02 x, X1 2350 054 x,

Assuming mass action kinetics, concentrations x;(t) and z2(t) evolve by

dx

o k‘ll‘%l‘g-}-kg—/{?gﬂfl

dt

d.TUQ

E —k1$%x2—|—k¢4

Using k1 = ko =1, k3 = pand kg = 2, we get: szlmg—kl—,uxl

dwg
iR

Question 6 on Problem Sheet 1: We considered u = 9. We showed that the fixed point
[1/3,18] is unstable and we found a trapping region (closed bounded connected set
such that the vector field points inward everywhere on its boundary). We applied the
Poincaré-Bendixson theorem to prove that there exists a periodic solution.



Question 6 on Problem Sheet 1

dl’l
dt
d:UQ
dt

:x%m—l—l—uxl

= —:c%:vg + 2
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Question 6 on Problem Sheet 1

d
%zx%m—l—l—uwl
d:UQ

W:—ZE%J/‘Q + 2

Question 6 on Problem Sheet 1:

p="9
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—limit cycle
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We decrease the value of parameter p

and the limit cycle shrinks.
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3.05

lj/:

—nullclines

—limit cycle

d331

:c%wg +1—-px

dt
dzy
dt

= —:v%xg + 2

We decrease the value of parameter p

and the limit cycle shrinks.
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Question 6 on Problem Sheet 1

d o

% =2l + 1 — px T
d:UQ

pr = —17% Ty + 2

bifurcation diagram

[show 3D animation]
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d
%:x?zg—i—l—u:cl
d:UQ

o -T2

bifurcation diagram

[show 3D animation]
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Bifurcation analysis of chemical system in Question 6 on Problem Sheet 1

dl’l
dt
d:UQ
dt

:x?wg—l—l—u:cl

= —17%132 + 2



Bifurcation analysis of chemical system in Question 6 on Problem Sheet 1

d
%:x%xg—l—l—uxl
d:L'Q
W:—$%l‘2+2
: : 3 2u?
fixed point at x, = [, ,u}
w9

_ 2
Jacobian Df(x) = <2x12x; . H 36;2)
—aL1L2 —47

_( w3 9
pree) = (s 4,2



Bifurcation analysis of chemical system in Question 6 on Problem Sheet 1

I
dxq : : : 4
F::c%xg—l—l—;uvl _ 2

3
d = T
ﬂ:—m%l‘g—FZ ,2*17 3.5
dt El

. . 3 2u? .

fixed point at x, = [, ,u} 50 3

w9 a
&
_ 2 < 41
Jacobian Df(x) = <2x1x2 : %2) 8 1 25
—2r1x0 —T7) & —
g ) ———

_( w3 9w e _— P
Df(xc) = (—4u/3 —9/u? 06 04 02 0 02
real part Re(As(u))

. 9 pw 9 1({p 9 u? 81 42
lving A2 — — L k= =0 tdr=— -S4+ - =
solving S <M2 3> " we get A4 5 (3 2 9 +



Bifurcation analysis of chemical system in Question 6 on Problem Sheet 1

d
%:»’U%Hl—uxl 04
0.2r
d =
e —alxy + 2 X
dt < 0
3 2 2 =
fixed point at x. = [, ,u} = ol
w9 e
=04
_ 2\ =04
Jacobian Df(x) = <2x1x2 H x12> S
—2r129  —W7) *F 06
(w3 9w ‘ ‘
Df(xc) = (_4,“/3 _9/'“2 2 25 3 3.5 4

. 9 9 1 9 2 81 42
SO|VIng)\2—|—(/ﬂ—g))\+uzo,weget)\i:2<§_2:|: 'L;+4_>



Bifurcation analysis of chemical system in Question 6 on Problem Sheet 1
d
%:x%m—i—l—uxl

dxo
EZ—QJ%xQ + 2



Bifurcation analysis of chemical system in Question 6 on Problem Sheet 1

dz
! :x%xQ—Fl—/L{El
dt ,
2 . 3 2u
ds 2 fixed point at x. = | —, ——
= _.'1:1 2 + 2 Iu 9

dt

2212 — x% 'u/3 9/,&
Jacobian Df(x) = ( I at x. is Df(x.) = e —9/,u

: 9 9 L{p 9
lving A2 ST =0 tdr=-|%— S +4/5 - —

bifurcation at 4 = 3, when AL = +4 V3



Bifurcation analysis of chemical system in Question 6 on Problem Sheet 1

dz
! :x%w2+1—ufl?1
dt ,
2 . 3 2u
ds 2 fixed point at x. = | —, ——
= _‘Tl 2 + 2 Iu 9

dt

2212 — :17% 'u/g 9/,&
Jacobian Df(x) = ( I at x. is Df(x.) = e —9/,u

/ 42
soIving/\2+</?2—3>/\+z—0weget)\i—Q( —j: —)

bifurcation at 4 = 3, when AL = +4 V3

. . _ 3 _ 2u? -3 .
using new variables T1 = 1 — —, To = x9 — 9 = —3 we obtain
dz N I _ —\2-2 2 _ o
W:(l%‘u)ﬂ?l"‘mﬁz-}-Q(l—f—/j) $1+1 ﬁ$1x2+x1$2
dz 1 2
d—: = —A(l+mT — Ty — 20+ 0)%T — —— T Ty — T

(1+m)?



Bifurcation analysis of chemical system in Question 6 on Problem Sheet 1

dz; L 1 - 9 2 _ _9__
?:(l—l—u)xl—l—mm—i—%l—l—u)zm%—i— ] 7%1:[)24—32%%2
dzo = I 2.2 2 _ o
- = —4(1+p)T — mxg —2(1+m)°zy — 1+ﬁx1$2 — T T



Bifurcation analysis of chemical system in Question 6 on Problem Sheet 1

dz; L 1 - 9 2 _ _9__
?:(l—l—u)xl—l—mm—i—%l—l—u)zm%—i— ] 7%1:[)24—32%%2
dzo = I 2.2 2 _ o
- = —4(1+p)T — mxg —2(1+m)°zy — 1+ﬁx1$2 — T T

= =\ —2
bifurcation at 7z = 0, fixed point 0 with Df(0) = M () = <—41(Irfu) _(§1++M;)_2>



Bifurcation analysis of chemical system in Question 6 on Problem Sheet 1

dz; L 1 - 9 2 _ _9__
?:(l—l—u)xl—l—m@—i—%l—l—u)zm%—i— ] 7%1:[)24—28%%2
dzo = I 2.2 2 _ o
- = —4(1+p)T — mxg —2(1+m)°zy — 1+ﬁ1:1:v2 — T T

= =\ —2
bifurcation at 7z = 0, fixed point 0 with Df(0) = M () = <—41(Irfu) _(%1‘:_[2)_2)

T1 Ty + f% T2 and rewrite the system as:

denote ¢(Z1,Zo; 1) = 2(1 + @)’ 75 + oo

i(g) — M(p) (2) + 9(Z1, T2 D) (11>



Bifurcation analysis of chemical system in Question 6 on Problem Sheet 1

7dt = (1+u)x1 + mlﬁ + 2(1+M) x1 + 1+ﬁ$1 To + 1 T2
T A4 BE -~ T - 4R - T, - BT
—_— = — r1T — 77— —5 T2 — Tr1 — 1T — T4

l+m (1 +u)2>
—4(1+m) -(1+p)7

T1 Ty + f% T2 and rewrite the system as:

bifurcation at 7z = 0, fixed point 0 with Df(0) = M () = <

denote ¢(Z1,Zo; 1) = 2(1 + 11)° T3
enote ¢(Z1, T2; i) (1+m) "z + 1+

i(i;) — M(p) (2) + 9(Z1, T2 D) (11>

at 1 = 0, we have M(0) = <_14 _11)

eigenvalues A\ = +4 \/3 eigenvectors v = <_14) +1 <\é§>



Bifurcation analysis of chemical system in Question 6 on Problem Sheet 1

7dt = (1+M)$1 + ml? + 2(1+M) x1 + 1+ﬁ$1 To + 1 T2
T A4 BE -~ T - 4R - T, - BT
—_— = — r1T — 77— —5 T2 — Tr1 — 1T — T4

l+m (1 +u)2>
—4(1+m) -(1+p)7

T1 Ty + f% T2 and rewrite the system as:

bifurcation at 7z = 0, fixed point 0 with Df(0) = M () = <

denote ¢(Z1,Zo; 1) = 2(1 + 11)° T3
enote ¢(Z1, T2; i) (1+m) "z + 1+

i(i;) — M(p) (2) + 9(Z1, T2 D) (11>

at 1 = 0, we have M(0) = <_14 _11)

eigenvalues Ay = +1i/3, eigenvectors v = , change of variables

)=

(52) = (L ) () win merse (1) = 22 (3 °) (52)



Bifurcation analysis of chemical system in Question 6 on Problem Sheet 1

a(5) 20 () - wnman (1)



Bifurcation analysis of chemical system in Question 6 on Problem Sheet 1
d (7 . T o 1
2(2) -0 (2) <o 1)
(T _ (1 V3 y1> <Z/1> _ 1 (0 —\/§> <x1>
change of variables: <$2) = (_4 0 ) <y2 and w) = 173 \4 1 T



Bifurcation analysis of chemical system in Question 6 on Problem Sheet 1
d (7 . T o 1
2(2) -0 (2) <o 1)
(T _ (1 V3 y1> <Z/1> _ 1 (0 —\/§> <x1)
change of variables: <$2) = (_4 0 ) <y2 and w) = 173 \4 1 T

) =220 YD)



Bifurcation analysis of chemical system in Question 6 on Problem Sheet 1

(0) =30 (32) + stz (1)
crsge ovarisies: (11) = (1, ) (1) e (1) = 12 (0 V%) ()
i) =aale &)

4/3

4
)= 2 (0 D)o (2) + 22 (0 V) smmn (1)



Bifurcation analysis of chemical system in Question 6 on Problem Sheet 1
d (7 . T o 1
dt<$2> =M <$2> + g(l‘l,l'Q,O) <_1>

(T _ (1 V3 (n vy _ 1 (0 =3\ (T

change of variables: <$2> = (_4 0 ) <y2> and <y2> =5 (4 1 T
dfm)_ 1 (0 —v3\d/m
dt\y2) 43 \4 dt\T»
)
dt\y2)  4/3
) ~aa e
dt\y2 43 \4

—
=)
~—



Bifurcation analysis of chemical system in Question 6 on Problem Sheet 1
. (T (1 V3 Y Y1\ 1 0 —/3 [

change of variables: <$;> = (_4 0 ) <y;> and <y;> = m (4 1 ) <$;>
i) ~ma s 1) ale)
dt\v2) 43 \4 1 ) dt\T2
diyy\ 1 (0 -3 z 1L /0 -3\ _ _ 1
aln) =7l D)0 E)+ 750 ) smao ()
d/y 1 (0 -3 1 V3 (y 1/1 _
)55 ¢ o (D)) (o
diy) _ V3\ (1 1/1 _
1)~ (2 $)6) 3 (o

where (%1, T2;0) = 273 + 271 T2 + 73 T2 , \ ; ,
=6yl — 412 V3 + 693 — 4y — 8yl V3 — 1293 ;

—
=)
~—

V)

[an}



Bifurcation analysis of chemical system in Question 6 on Problem Sheet 1

i) = (g D)) 3 (Us)

where h(y1,y2) = — 397 — 29192 V3 + 393 — 205 — 4y V3 — 6ys



Bifurcation analysis of chemical system in Question 6 on Problem Sheet 1

1(0)- (s D) 3o

where h(y1,y2) = =342 — 2y1 2 V3 + 395 — 205 — 49292 V3 — 6y

= —\—2
71 close to the bifurcation point @ = 0: matrix M () = (_41&:{‘”) _(212_“;)_2)

has eigenvalues Ay (1) = a() £+ iw(@) where

@=z(1+m- — dw(@) = -4 —1— 25— !
= = —_— an = == — = = = _



Bifurcation analysis of chemical system in Question 6 on Problem Sheet 1

1(0)- (s D) 3o

where h(y1,y2) = =342 — 2y1 2 V3 + 395 — 205 — 49292 V3 — 6y

= —\—2
71 close to the bifurcation point @ = 0: matrix M () = (_;&qu) _(212_“;)_2)

has eigenvalues Ay (1) = a() £+ iw(@) where

() 1 (1 +7 L > and w(f) L/ 14 1 m_ 1
a(f) = = = w(p) = —= —-1- —
W= """ arne W="9\1+% B 0+

which implies a(0) = 0, w(0) = —v/3, «/(0) = g and «'(0) =

=
“"‘% |



Bifurcation analysis of chemical system in Question 6 on Problem Sheet 1

1(0)- (s D) 3o

where h(y1,y2) = =342 — 2y1 2 V3 + 395 — 205 — 49292 V3 — 6y

= —\—2
71 close to the bifurcation point @ = 0: matrix M () = (_;&qu) _(212_“;)_2)

has eigenvalues Ay (1) = a() £+ iw(@) where

() L (1 +7 _t > and w(@) L/ 14 1-25—u? 1
a(f) = = = w(p) = —= —-1- —
W= """ arne W="9\1+% B 0+

which implies a(0) = 0, w(0) = —v/3, «/(0) = g and «'(0) =
normal form in polar coordinates:
dr
s
do
dt

o[& T

o (0)Er + a(0)r® + O@?r, @rs, r°)

w(0) + W'(0)T + b(0)r? + O, mr?, )



Bifurcation analysis of chemical system in Question 6 on Problem Sheet 1

i) = (g D)) 3 (Us)

where h(y1,y2) = =342 — 2y1 2 V3 + 395 — 205 — 49292 V3 — 6y

= —\—2
71 close to the bifurcation point @ = 0: matrix M () = (_;&qu) _(212_“;)_2)

has eigenvalues Ay (1) = a() £+ iw(@) where

() L (1 +7 _t > and w(@) L/ 14 1-25—u? 1
a(f) = = = w(p) = —= —-1- —
W= """ arne W="9\1+% B 0+

which implies a(0) = 0, w(0) = —v/3, «/(0) = g and «'(0) =
normal form in polar coordinates:
dr 3

3 =377+ o017+ O

Vit LR h0r + O )

o[& T



Calculation of a(0)

supercritical Hopf bifurcation: a(0) <0  (periodic orbit is asymptotically stable)
subcritical Hopf bifurcation: a(0) >0  (periodic orbit is unstable)



Calculation of a(0)

supercritical Hopf bifurcation: a(0) <0  (periodic orbit is asymptotically stable)
subcritical Hopf bifurcation: a(0) >0  (periodic orbit is unstable)

Lemma: Assume that the ODE system with Hopf bifurcation at 77 = 0 was

transformed to
d<y1> _ < 0 —w(0)><y1> B <h1(y1,y2)>
dt\y2 w@©) 0 Y2 ha(y1,92)
where h1(y1,y2) and ha(y1,y2) contain only higher-order nonlinear terms that vanish
at the origin. Then
1 (03 03hy 03hs 03hsy 1 0%hy (0?hy  0’Ry
a(0) = 7= 3 T 2 5. T 33 | T 5 T 55
16 \ 9y} ~ Oy1dy;  OyjOy2 Oy ) 16w(0) |Oy10y2 \ Oyi ~ Oy;
B 0?hsy <82h2 N 82h2> B 0?hy 0%hsy n 0hy 82112}
Oyidy2 \ 9yi ~ Oy3 ) Oyt Oyi  Oys Oy

where the partial derivatives are evaluated at the origin 0.




Bifurcation analysis of chemical system in Question 6 on Problem Sheet 1

owension 55) = (s 0)) 2 (V) o

where h(y1,y2) = =332 — 212 V3 + 315 — 245 — 4922 V3 — 6yLys

T3 () - ()

where wo = —v/3, h1(y1,v2) = h(y1,92)/2 and ha(y1,y2) = V3h(y1,y2)/2 .



Bifurcation analysis of chemical system in Question 6 on Problem Sheet 1

- diyy (0 V3\(wm 1/1
Our equation dt(yg) = (_\/g 0 ><y2 + 2 \v3 h(y1,y2)
where h(y1,y2) = =312 — 2142 V3 + 355 — 205 — 4yl ya V3 — 6y1 43
is in the form d<y1> _ < 0 —w(O))<y1> i (h1(y1,y2)>
dt\ y2 w(©0) 0 Y2 ha(y1,y2)
where wo = —v/3, hi(y1,42) = h(y1,42)/2 and ha(y1,12) = V3h(y1,y2)/2
Substituting (partial derivatives evaluated at the origin 0):

3 3 3 3 2
87}?:—6, 8h12:_67 0°ho _ 19 Lh;:o, 37@1:_3’
yy 0y10y; Y2 ys Oy h
0%hy 0%hy 0?2 hg 0%hs 0%hs
= — 9 _— = 3’ = 3\/7 = —3’ —a — 3 \/§
0y10y2 oy3 3 0y10y2 dy3

we get a(0) = —

3 " . .
3 == supercritical Hopf bifurcation



Bifurcation analysis of chemical system in Question 6 on Problem Sheet 1

normal form:

dt 2" T2
do
dt:—xf+\fu+

Origin O is stable for 1 <0 & pu <3
and unstable forz >0 < p >3



Bifurcation analysis of chemical system in Question 6 on Problem Sheet 1

normal form:

dt 2" T2
do
dt:—xf+\fu+

Origin O is stable for 1 <0 & pu <3
and unstable forz >0 < p >3

A stable limit cycle is born with

— 2
i and period il

3 V3

amplitude



Bifurcation analysis of chemical system in Question 6 on Problem Sheet 1

normal form:

dt 2" T2
do
dt——xf+\fu+

Origin O is stable for 1 <0 & pu <3
and unstable forz >0 < p >3

A stable limit cycle is born with

. w— : 2w
amplitude and period —
Y 3 p V3
-3
The limit cycle is y% + y% = 'UT which corresponds to an ellipse in 7 and zs:

1 16(u — 3
73 + 3(4$1+x2)2:(u3)



Bifurcation analysis of chemical system in Question 6 on Problem Sheet 1

normal form:

dt 2" T2
do
dt——xf+\fu+

Origin O is stable for 1 <0 & pu <3
and unstable forz >0 < p >3

A stable limit cycle is born with

— 2
i and period il

3 V3

-3
The limit cycle is y% + y% = 'UT which corresponds to an ellipse in 7 and zs:

2w2\% 1 12 2u2\% 16(u—3
(m_“) +<4x1+:p2—ﬂ—”> _ 16(u—3)

amplitude

3 9 3



Bifurcation analysis of chemical system in Question 6 on Problem Sheet 1

n=31

normal form: 3 ; < .
7ot - N\ —nullclines
dr 3_ 3 3 1ot \ \|—limit cycle
E = 5 nr — 5 A S [ /ot —- ellipse (approximation)
ot Q AR R N
do_ g, V3 200 N
—=—Vv3+ —u+ ...
dt TRt gl ) N
Origin O is stablefor z < 0 < pu <3 11; - ,
and unstable forz >0 < p >3 ] ;
. . . t
A stable limit cycle is born with 0 i
: p— ., 27 0 2 3
amplitude and period —
P 3 p /3 1
-3
The limit cycle is y% + y% = 'UT which corresponds to an ellipse in 7 and zs:

3

2w2\% 1 12
(932—#) +<4x1+I2_,u_

)2 _ 16(z—3)

3



Bifurcation analysis of chemical system in Question 6 on Problem Sheet 1
p=3.05

normal form: 3 ; .
rr . |—nullclines
dr 3 _ 3 3 rrot 2 [—limit cycle
— =—ur — =r° +. fot g\ —-ellipse (approximation)
dt 2 2 1S ; DRIV RIS
e L2 RN
=—-Vv3+ —_ TF g \ J
dt a SR B\ RRRNRR
Or|g|n0|sstableforu<0@u<3 14§ Q\ll//ﬁ// b
and unstable forz >0 < p >3 P N ii\:&//ééﬁﬁ
.. . . rr N N NSNS e
A stable limit cycle is born with 0 A NN
. ) 27
amplitude and period ﬁ 0 ! - 2 8
- : -3 . .
The limit cycle is y% + y% = 'uT which corresponds to an ellipse in 7 and zs:

2w2\% 1 12 2u2\% 16(u—3
(m_i> +_(4x1+$2_g_i> _ 16(u—3)



Bifurcation analysis of chemical system in Question 6 on Problem Sheet 1

=3.01
normal form: 3 . .
oo —nullclines
dr . 3 _ 3 3 resrot \ |—limit cycle
E = 5 ur = 5 [ R [ ; ; - ellipse (ap;\)\roximgtivin)
2¢ 1t 3
® B+ R
dt 2 g i
Origin O is stablefor z < 0 < pu <3 1: ; \
and unstable forz >0 < p >3 AN
. . . f \
A stable limit cycle is born with 0 AR NN
. ) 27
amplitude and period — 0 ! 2 8
V3 “

-3
The limit cycle is y% + y% = 'uT which corresponds to an ellipse in 7 and zs:

2w2\% 1 12 2u2\% 16(u—3
(m_i) +_(4$1+$2_E_L> _ 16(u—3)



Bifurcation analysis of chemical system in Question 6 on Problem Sheet 1

=3.01
normal form: 3 . .
oo —nullclines
dr . 3 _ 3 3 resrot \ |—limit cycle
E = 5 ur = 5 [ R [ ; ; - ellipse (ap;\)\roximgtivin)
2¢ 1t 3
® B+ R
dt 2 g i
Origin O is stablefor z < 0 < pu <3 1: ; \
and unstable forz >0 < p >3 AN
. . . f \
A stable limit cycle is born with 0 AR NN
. ) 27
amplitude and period — 0 ! 2 8
V3 “

-3
The limit cycle is y% + y% = 'uT which corresponds to an ellipse in 7 and zs.

Additional examples: Questions 1 and 2 on Problem Sheet 3.



Bifurcation analysis of chemical system in Question 6 on Problem Sheet 1
—p=31—p=3.01—p=29

‘\MMA\&\W\J\MJ\J\J\J\

UMMM aond

0 10 20 30 40 50
time ¢

. . . . =3 ) 27
A stable limit cycle is born with amplitude and period — ~ 3.6
y p 3 p \/§
Close to the bifurcation point © = p., the amplitude is O<~/\M — ,uC])

—_

TODAY: we will consider global bifucations when the amplitude will satisfy O (1),
i.e. the amplitude of the limit cycle does not go to zero as the parameter p
approaches the bifurcation value u = .



Bifurcations of (stable) limit cycles

’ bifurcation at u = p. ‘ amplitude ‘ period
supercritical Hopf bifurcation O(\/|,u - ,uc\> 0(1)
saddle-node bifurcation of cycles O(1) O0(1)

1
infinite-period (SNIC, SNIPER) O(1) 0()
V |:U’ - ,uc‘
homoclinic (saddle-loop) bifurcation O(1) (9(] log |pu — ,ucH)




Bifurcations of (stable) limit cycles

’ bifurcation at u = p. ‘ amplitude ‘ period
supercritical Hopf bifurcation (9(\/|,u - Mc\) 0(1)
saddle-node bifurcation of cycles O(1) O0(1)

1
infinite-period (SNIC, SNIPER) O(1) (’)()
V |:U’ - ,uc‘
homoclinic (saddle-loop) bifurcation O(1) (9(] log |pu — ,ucH)

saddle-node bifurcation of cycles: we have already presented an example when we
discussed the subcritical Hopf bifurcation



Example: saddle-node bifurcation of cycles

saddle-node bifurcation of cycles at u = —1/4: a half-stable cycle appears, it splits
into a pair of limit cycles for 1 > —1/4, one stable, one unstable, or, viewed in the
other direction, a stable and unstable cycle collide and disappear as p decreases
through = —1/4
dr
dt
do
dt

:,ur+r3—r5

=1



Example: saddle-node bifurcation of cycles

saddle-node bifurcation of cycles at u = —1/4: a half-stable cycle appears, it splits
into a pair of limit cycles for 1 > —1/4, one stable, one unstable, or, viewed in the

other direction, a stable and unstable cycle collide and disappear as p decreases
through = —1/4

dr . 0.01 p="0-2
pr =ur +1r° —r 0
% =1 001 |
dr-0.02 ¢
dt 0,03 |
0.04 |
-0.05 |
-0.06




Example: saddle-node bifurcation of cycles

saddle-node bifurcation of cycles at u = —1/4: a half-stable cycle appears, it splits
into a pair of limit cycles for 1 > —1/4, one stable, one unstable, or, viewed in the

other direction, a stable and unstable cycle collide and disappear as p decreases
through = —1/4

dr . 0.01 =02
pr =ur +1r° —r 0
% =1 001 |
dr-0.02 ¢
dt 0,03 |
0.04 |
-0.05 |
-0.06




Example: saddle-node bifurcation of cycles

saddle-node bifurcation of cycles at u = —1/4: a half-stable cycle appears, it splits
into a pair of limit cycles for 1 > —1/4, one stable, one unstable, or, viewed in the

other direction, a stable and unstable cycle collide and disappear as p decreases
through = —1/4

dr . 0.01 =024
pr =ur +1r° —r 0
% =1 001 |
dr-0.02 ¢
dt 0,03 |
0.04 |
-0.05 |
-0.06




Example: saddle-node bifurcation of cycles

saddle-node bifurcation of cycles at u = —1/4: a half-stable cycle appears, it splits
into a pair of limit cycles for 1 > —1/4, one stable, one unstable, or, viewed in the
other direction, a stable and unstable cycle collide and disappear as p decreases
through = —1/4

d 2
d—::ur+r3—r5

dé 1
dt [~~~ ~

I
1
—_

NI U s
NN N e
AR NN
NN

NN N = e
» \\ NN e

< 0: 0=[0,0] is a stable spiral § 0p—=

7

/

/
111707070
I R e
/////////////
////Kkkr/////
N

VT

SRR
R NN

b O - o7
[/

brrrrr e o o -




Example: saddle-node bifurcation of cycles

saddle-node bifurcation of cycles at u = —1/4: a half-stable cycle appears, it splits
into a pair of limit cycles for 1 > —1/4, one stable, one unstable, or, viewed in the
other direction, a stable and unstable cycle collide and disappear as p decreases
through = —1/4

w=-0.5
dr 3 5 2 TN S S e A I A A A

—=ur+7r° —r NNNNAN NNV S S
dt NN NNNAN N VAN A A A AL A
NNSNNNNN VY s st s s s
d@ SSNNN N\ | S ST A S s s A
1\\\\\\;¢///// PRy
— =1 NN\ araafils zzz]
dt N~ NN\ |/ = = T —
M~~~ L = \i ﬁﬁﬁﬁﬁ
q . ~ ===\l (7= =

@ <0:0=][0,0] is a stable spiral § 0 ==~ LA\ YT
= — — <\ W\ ae o — =]
b — — S Ry /3 B R \ NN N
- = - —— e — t AN N
br e e o . o /7t NN N~
_1////// —= - 7 /AN N N N
brororor o F s S 2PV NN N NN
PPl AV AV AV A VA & B U U WA NI NO NI NN
o7 VNN NN NN
VS 270001 [ S S W U N N N NN

2 AV AVAVEN N IR A

-2 -1 0 1 2



Example: saddle-node bifurcation of cycles

saddle-node bifurcation of cycles at 4 = —1/4: a half-stable cycle appears, it splits
into a pair of limit cycles for 1 > —1/4, one stable, one unstable, or, viewed in the
other direction, a stable and unstable cycle collide and disappear as p decreases

through = —1/4

uw= —025—¢
dr 3 5 2 NNKN NV VYV 77777
—=ur +1r° —r NNNNNNN NNt s S
dt NNNNNNN VAV I Nt
SCSNNSNN NN NV S Py
de NN NN N\ | S s s s s e
__1 1\\\\\\‘¢//// \:(/////
t SN ——— N\
: - 2 oz RSl
@ <0:0=][0,0] is a stable spiral g 0—==<\({ ) NN
TN = AN .|
~\
— -0 = 7 NN o~ o~ ]
br - AN N N~
A== ST S\ NN NN
e roror F s s /2N B U U\ NI NI NN
P LA A A A Ay A B LA NONIRN
A v A AV B A B T U N NI NN
s S T T | IR T W WA NI N N NN
2 VAV S B B U S WL NN
-2 -1 0 1 2



Example: saddle-node bifurcation of cycles

saddle-node bifurcation of cycles at u = —1/4: a half-stable cycle appears, it splits
into a pair of limit cycles for 1 > —1/4, one stable, one unstable, or, viewed in the
other direction, a stable and unstable cycle collide and disappear as p decreases

through = —1/4

w=-0.25
dr 3 5 2 R S S A N A AT A

—=ur +1r° —r NNSNNNANAN NV A
dt SNANNANNN NSNS S st s s A
NNNNNN V| S s s ss s s
de MNMNNNNN\ W\ | S o rw o T s e
_1 1\\\\\\‘//// T o i o
. >~~~ N\ /7 e ST
dt NN ///»\ ~— ]
LY/ AN\t
a . ™ ™~ ~\ oo - N |} I —
@ <0:0=][0,0] is a stable spiral § 0p===\ (\'.» IR Y ) L INS e
""”“:i \\\\\</;//, NN o~ — ]
))))) DN S 7 NN s~
e o I SN [ NN
A= — /AN N N s
Lr orr F s s /2R B U NN NN NEN
P LAy £ B N U NN N\ON NN
e APV RV A A/ B A U U NN NN

L VAV AV AV AV A AN [ U W U N IR N

) AV 2 B B B L B S N VN
-2 -1 0 1 2

8



Example: saddle-node bifurcation of cycles

saddle-node bifurcation of cycles at u = —1/4: a half-stable cycle appears, it splits
into a pair of limit cycles for 1 > —1/4, one stable, one unstable, or, viewed in the
other direction, a stable and unstable cycle collide and disappear as p decreases

through = —1/4

d
d—::ur+r3—r5
do

— =1

dt

< 0: 0=[0,0] is a stable spiral

pw= —025+¢
N NNV VT T
NNNNNNANN NS LS S
CNNNNNAN NV VNS At
NNSNNNNN VIV Wt s
NSNNNN\ N\ | S s s o s e A
MNNSNN NN /S e =
M~~~ \\/ 7 TS T e
NN /) T =~ T —
e~~~ 7,0 - - <~ S\ ~——
e~~~ / PN NN— — — ]
e \y . @ N N =
= — — =0\ \\\<,r[ N~ — — ]
<\ NN~ - - 2?4 NN o~ ~—
,,,,, O NSy /4 NN
P PN N N~
P = /7 PANN N
Py 4V AR B U NN NN
AV AV AV AV A /NN B NN NN NANEN
VAV AV A | A B T U U U AN ~ N
VAV AV ENEN) [T U W N NI NN N
WA I T O O AN
-1 0 1 2



Example: saddle-node bifurcation of cycles and subcritical Hopf bifurcation

saddle-node bifurcation of cycles at u = —1/4: a half-stable cycle appears, it splits
into a pair of limit cycles for 1 > —1/4, one stable, one unstable, or, viewed in the
other direction, a stable and unstable cycle collide and disappear as p decreases
through = —1/4

©w=-0.1
dr 3 5 2 AT TN N S R B O O
— =ur +7r° —-r NNSNNNN NVl

dt SNNSNANN VUi
NNNNNNN Vs s s s
d@ SSNNNN\ N\ YA s s T s s s
-1 T~~\\ /2 ="
dt NN B AN Nt
NN A O N et
a . ~ ==~ ~\ //,/,,\\\\1\ —— ]
@ <0:0=][0,0] is a stable spiral 8 0===xili v 1@y R =
) _ IR\ NN A N
. = 1) Ul I1s an 1instanle spiral - ———— — - - — = -~ N~~~
p>0: 0=10,0] is an unstable spiral -~ —-—-< AR /2 NN
L. i i A== /20 BN\ N NN
— EIEAPAly Par a4y /2N B NN\ NENE NN
subcritical Hopf bifurcation at p1 =0 Sl Ay A ENININNNN
= ey A v A A AN/ B N T U U NN NENIRN
(becausea(O)—1>0) A A A A A | IR S U WL R NI NI NN

2 V2 2 B B U N RN
-2 -1 0 1 2



Example: saddle-node bifurcation of cycles and subcritical Hopf bifurcation

saddle-node bifurcation of cycles at u = —1/4: a half-stable cycle appears, it splits
into a pair of limit cycles for 1 > —1/4, one stable, one unstable, or, viewed in the
other direction, a stable and unstable cycle collide and disappear as p decreases
through = —1/4

p=0
dr 3 5 2 T S A A Y A o

— =ur +7r° —-r NNNSNNNAN N VA Gt S
dt NNNSNSNANN NN G s s
NNNNNNN s s s s
d@ 1\\\\\\L¢/////////////
D \\\\\\J//k\\\ :::////
ar ! SIS ONTI o
\\\\l\j///,,\\\\\\k&__‘,
N N — —

L0 — : g i 1 N AP NI RN
@ <0:0=][0,0] is a stable spiral ) oaaa:l “r\\Q’ A NN
X i ,_.,Q‘\\\\\\‘A/// NN o — ]
@>0: 0=][0,0] is an unstable spiral - ——— NS £ NN
////// AN N
. i . _1/////,,. 7 PV N N ]
— BRI i 4/ B U N N NN
subcritical Hopf bifurcation at p1 =0 Sl Ay A ENINANNNIN
= P A AV AV AN A/ B A TN NN
(becausea(O)—1>0) A A AV AV VAN [T U W N NI NN N
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Example: saddle-node bifurcation of cycles and subcritical Hopf bifurcation

saddle-node bifurcation of cycles at u = —1/4: a half-stable cycle appears, it splits
into a pair of limit cycles for 1 > —1/4, one stable, one unstable, or, viewed in the
other direction, a stable and unstable cycle collide and disappear as p decreases
through = —1/4

©n=0.1
dr 3 5 2 AT N N R A O AT e

— =ur +7r° —-r NNNSNNNAN N VA G s sl S
dt NSNSNNN VAN L
NNNNNNAN NV s s s s
_1 NN NN =777
1. M~~~ N\ 4 —— N — — — —
dt o~~~ \/ //*\\\\\\\ rrrrr

- ~ A\ N —
™~~~ X\ J oo ——
. . N NN MU

< 0: 0=[0,0] is a stable spiral § 0O==~\{" " -0 /==
BN SN <~
. . o — 3 \\\\\,///7:i\\\\
@ >0: 0=][0,0] is an unstable spiral | ———— AR £ NN
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Example: saddle-node bifurcation of cycles and subcritical Hopf bifurcation

saddle-node bifurcation of cycles at u = —1/4: a half-stable cycle appears, it splits
into a pair of limit cycles for 1 > —1/4, one stable, one unstable, or, viewed in the

other direction, a stable and unstable cycle collide and disappear as p decreases
through = —1/4

w=0.5
dr 3 5 2 NN N VN [T

— =ur +7r° —-r NNNNNNAN N VA Gt S
dt NSNSNNN VN AN S
CNNNNN W\ VY Y S sss  F L s
df PRSI R
E:]- \\\\\)/(“\\\\;?\ //////

— — ~ N ~—
~~~N\//-— —_——
b — — SN T A A \
RN AN A A )\

@ <0:0=][0,0] is a stable spiral & 0F—=~/ 70 s/ )Ss
I\ VAR RS I

i ; TN ey T T
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subcritical Hopf bifurcation at u =0 PP N NN
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Example: saddle-node bifurcation of cycles and subcritical Hopf bifurcation

saddle-node bifurcation of cycles at u = —1/4: a half-stable cycle appears, it splits
into a pair of limit cycles for 1 > —1/4, one stable, one unstable, or, viewed in the

other direction, a stable and unstable cycle collide and disappear as p decreases
through = —1/4

p=1
dr 3 5 2 T S A AT A A A e
— =ur +7r° —-r NNNSNNNAN NV Gt S
dt NSNSNNNN NN YN s
NN\NN\NN\N\VN VSV Sprwr v dw 2w
do NN A Z-=ENENENIND i
— =1 \\\\\”,\\\\\xm /////
~ 2 TSNy N2
dt \\:\\\ :,rk\ ~ov L;; ~ e
- ~ 1 7 _— ]
- . AN A
@ <0:0=][0,0] is a stable spiral §0-—=f. - - -0 2 /=
BN (R N
b~ — N~ —
i ; TTN\/ /s T
w>0: 0=10,0] is an unstable spiral i AR NN
D e T S VL LN N N~ — AU NN
. . . i \\\\\\,r\T\\\\\
subcritical Hopf bifurcation at p1 =0 o NRNRR
broro s 7PV NN N
= VA AV AV AV AN/ & B B U A NN N NN
(becausea(O)—1>0) A AV AV A AN | U U W N N NN N
2 AV 2 B B N U U W NN
-2 -1 0 1 2
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Example: saddle-node bifurcation of cycles and subcritical Hopf bifurcation

saddle-node bifurcation of cycles at 4 = —1/4: a half-stable cycle appears, it splits
into a pair of limit cycles for 1 > —1/4, one stable, one unstable, or, viewed in the
other direction, a stable and unstable cycle collide and disappear as p decreases
through = —1/4

d
d—::ur+r3—r5
do

— =1

dt

< 0: 0=[0,0] is a stable spiral
@ >0: 0=1[0,0] is an unstable spiral

subcritical Hopf bifurcation at ;=0
(because a(0) =1 > 0)




Bifurcations of limit cycles

’ bifurcation at u = p. ‘ amplitude ‘ period
supercritical Hopf bifurcation O(M) o)
subcritical Hopf bifurcation O(\/W) 0(1)
saddle-node bifurcation of cycles 0(1) O(1)

P . 1
infinite-period (SNIC, SNIPER) O(1) O(M)
homoclinic (saddle-loop) bifurcation O(1) O(|log | — pel])




Bifurcations of limit cycles

’ bifurcation at u = p. ‘ amplitude ‘ period ‘
supercritical Hopf bifurcation O(M) o)
subcritical Hopf bifurcation O(M) 0(1)
saddle-node bifurcation of cycles 0(1) O(1)

P . 1
infinite-period (SNIC, SNIPER) O(1) O(M)
homoclinic (saddle-loop) bifurcation O(1) O(|log | — pel])

infinite-period bifurcation: we have already presented an example on Problem Sheet 0
SNIC ... saddle-node bifurcation on invariant circle

SNIPER ... saddle-node infinite-period bifurcation



Example: infinite-period (SNIC, SNIPER) bifurcation

dl’l
dt
dZL‘Q
dt

:xl—u:cg—i—:zg(l—xl)—x‘;’

=pz1 — 122 (L4 31) + 22 — 23



Example: infinite-period (SNIC, SNIPER) bifurcation

diBl

—— =z —pxo+ (1 — z1) — 23

dt

de 3
I =pry — 2122 (14 21) + 22 — 25

Problem Sheet 0 Question 5:
w € (—1,1): three critical points:
[0,0]: unstable spiral eigenvalues: 1+ pi
[ 1-— /ﬂ,u]: stable node eigenvalues: —2, —/1 — 2

[— 1-— ,u2,u]: saddle eigenvalues: —2, /1 — p?



Example: infinite-period (SNIC, SNIPER) bifurcation

d.’]jl

—— =z —pxo+ (1 — z1) — 23

dt

de 3
I =pry — 2122 (14 21) + 22 — 25

Problem Sheet 0 Question 5:
w € (—1,1): three critical points:
[0,0]: unstable spiral eigenvalues: 1+ pi
[ 1-— /ﬂ,u]: stable node eigenvalues: —2, —/1 — 2

[— 1-— ,u2,u]: saddle eigenvalues: —2, /1 — p?

|| > 1: one critical point:
[0, 0]: unstable spiral eigenvalues: 1+ i

saddle-node bifurcations at 4 =1 and p = —1



Example: infinite-period (SNIC, SNIPER) bifurcation

dl’l /L—O.9
_ 2 3
dt —I‘l—uIEQ—’—(IIQ(l—ZEl)—xl 2\\\\\t\\\\t§ttf;j//5/
PNNOSNNNNNANNN VL
de 3 SSSNSNSNNNNNN Vs
. _ _ NN N RN T s g
dt —Hl'l $1m2(1+x1>+x2 1’2 1\\\\\\\\0' fi/ P
[ NG NN N TN
Problem Sheet 0 Question 5: i::i?fﬂxiv\"w ~ -
NO\\\\\;//7>‘O’ ”/L \:::\“
w € (—1,1): three critical points: S SURERININE R G 7 B N
RSN IEEEE /A N
) Lo e~ AN
[0, 0]: unstable spiral COTIIINSII SN
s [ S —“ — A Ny
2 L - 7 1 YN\
1 — p? p|: stable node [T ZZZTT 700 =27 AN
,,,,,,,,, P AV N B S\
e QUE S A A NV A B N T WY
B — ) ) - P VRV IR BRI R
[ 1 ,u,u].saddle 5 1 0 1 >

|| > 1: one critical point:
[0, 0]: unstable spiral
saddle-node bifurcations at 4 =1 and p = —1



Example: infinite-period (SNIC, SNIPER) bifurcation

dz; 201 . ) 1 =0.99

——xl—uxg—i—:L‘Q( —xl)—xl ~ NN NV VT T 7Y
dt NI NNNANNNNNN N A A S A s S
NSNS NNNNNNN NV LA
de 3 RN NNNNNNN VA A A
— _ _ NN N NN NONON Y N VAV Y A
dt —Hl'l ZL‘:[:EQ(].‘I‘J»’]_)‘I‘I'Q 1’2 1\\\\\\ .- 0 ’f///////
P NN NN Y T e
Problem Sheet 0 Question 5: NN N N
~ M~~~y A 7 ~— — ]
.. . ke ., -0 27 NS~
€ (—1,1): three critical points: 5 0\\I§§ AR - NI
: N Tt/ NN
[0, 0]: unstable spiral CTIIIINSII Iy
A —-——— L =7 N
ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ 7 VNN
[ I—MQ,M]:stablenode ,,,,,,,,,, R AN AN
,,,,,,,, e SV A B B S\
B AV A A N B S
B — ) ) _ P VAN I B B R
[ 1 ,u,u].saddle 5 1 0 1 >

T

|| > 1: one critical point:
[0, 0]: unstable spiral
saddle-node bifurcations at 4 =1 and p = —1



Example: infinite-period (SNIC, SNIPER) bifurcation

dxq p=1
_ 2 3
o - emtnlon) o NN Y7
NSNS NNNANN NV A
d{L‘Q . SSNSSNNNNNNNN N A
o _ _ NN N NN NONON N N VAV Ay A arard
5 = ko z1 72 (1 +21) + 22 — 75 TRIIIIN L Lot
NS N N NN R N e e —
Problem Sheet 0 Question 5: RN SN N AR N
~ M~~~y s - = N\ /; NS -
. . ~ ~ , o 7 NN o~
w € (—1,1): three critical points: & 0mnay AR RS AN
‘\\\\\\X\\\’)//f,t AN
[, =) NN NN
0, 0]: unstable spiral CIIIIINYY I S ey
[0,0] P 4oz TN RN
ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ 7 VNN
[ I—MQ,M]:stablenode ,,,,,,,,,, N R A NN
lllllllll - = A\
///// - —~ -~ ~ J==homoclinic orbit:
- ) ) 2 - b ——

[ 1 ,u,u].saddle D) 1 0 1 D

I

|| > 1: one critical point:
[0, 0]: unstable spiral
saddle-node bifurcations at 4 =1 and p = —1



Example: infinite-period (SNIC, SNIPER) bifurcation

b , , p =101
a - ket nlon) o NN 7
CSNSNNNNNNNNN LV
d{L‘Q . CNSSNNNNNNN N s
5 —hmmmz(tem) ez -2y (RIIIIN LTI
M S NN N\ N N e e —
Problem Sheet 0 Question 5: NN A U e
- N ' ' 7 R |
™ ::\\\ //j PR NN o~
€ (—1,1): three critical points: 8 O\\Ill L A NN
SIS E Y
. —— =~ —_— = N
[0, 0]: unstable spiral CIIIIANG SISy
. [ S - —_— = 7 N
2 L St -7 1t YA\
1 —p? p|: stablenode [ ZZZZTZ770 R A NN
lllllllll S \
///// =~~~ ~ /—limit cycle|\
_ ) . -2 - e z T T 1 \
[ 1 ,u,u].saddle 5 1 0 1 >

L1

|| > 1: one critical point:
[0, 0]: unstable spiral
saddle-node bifurcations at 4 =1 and p = —1



Example: infinite-period (SNIC, SNIPER) bifurcation

dxq p=11
2 3

— =z —pxe+z5(l — 1) — 3 2 N Y N B A g
dt NSSNNNNNNNNN LYy
NSNS NNNNNNANN LS
de (1 ) 3 SN SNNNNN NN NS S A
— =pr1—z122(l+21) + 22 — T35 TRIIIIN0 o — et
dt NN NN ‘\:i:\ ///////
Problem Sheet 0 Question 5: RN e R g
RN 2R T N
€ (—1,1): three critical points: S NN A A NN
R SRt/ A NN
0,0]: unstable spiral oINS N
[’] P T IS A A B R NN
“““““““““ 7PN

[ I—MQ,M]:stablenode ,,,,,,,,,, YRR R
lllllllll A A\

////// e~~~ sl=—limit cycle|r

_ ) . _2 L 4 / T 1 T\
[ 1 ,u,u].saddle 2 1 0 1 >

I

|| > 1: one critical point:
[0, 0]: unstable spiral
saddle-node bifurcations at 4 =1 and p = —1



Example: infinite-period (SNIC, SNIPER) bifurcation

dxy p=12
_ 2 3
ap = Sl =) = NN R RN R
SN NNNANNANN LV Vs
dx2 (1 ) 3 CSSNNNNNNN NS S s
— =pr1—x1x2 (1 + 1) + 22 — 75 TRISIN
dt NNNNA Y
N NN NI
Problem Sheet 0 Question 5: NN e D N
~ N PN AN
.. . ke — , le) A NN N~
w € (—1,1): three critical points: = 0\\I§§ ARl RN
\\\\\\\\\\\A///f1 NN N
e < gy /N BRI
0, 0]: unstable spiral RN, NN B NN
10,0] P qEIII NS Z AN
444444444 VA AR
[ I—MQ,M]:stablenode ,,,,,,,,,,, L
,,,,,,,,, o A\
////// —~ .~~~ sl—limit cycle|\
_ — 9 . ) L W I S W
[ 1 ,u,u].saddle 5 1 0 1 >

|| > 1: one critical point: 1

[0, 0]: unstable spiral
saddle-node bifurcations at 4 =1 and p = —1
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Example: infinite-period (SNIC, SNIPER) bifurcation

NNV T T 7 777
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Example: infinite-period (SNIC, SNIPER) bifurcation

dxy p=11
2 3
—=x1—purot+x5(l—x1) —x 2 N R A A A A
dt H 2( ) 1 DSSINNNNNNNN NV LSy
NSNNNSNNNNNNN N s
dCL‘Q 3 SN SNNNNN NN S S s
— _ _ NN WS NV N S L s s A
Lt z1 72 (1 +21) + 22 — 75 TRIIIIN0 L DT S
NN PN S el
NN N T N
e T vt —_—
U. . \\::t\l//,,\ [ ‘;\\K&
sing variables r(t) and 6(t), where NN (AP I AL (L NN
Lo e - TAN N ]
x1(t) = r(t) cosH(t) and NN L5/ D NN
. e — e =S/ T NN N
x2(t) = r(t)sinf(t), we obtain NN NN~/ IR NN
I [ SO = 7 F VNN Y
dr (1 2) “““““““““““ S VNN
e N D A AR B
llllllllll - A\
L et -~~~ 7—limit cycle/\
We conclude that 7(t) — 1 as t — oo for 2 . O s
any initial condition satisfying r(0) > 0. 2 -1 0 1 2

de xl
EZN—@:M—TSHI(Q)

If w > 1, then df/dt > u—1 > 0.



Example: infinite-period (SNIC, SNIPER) bifurcation

dz; 4 2(1 3 > p =101
— =z —pxe+z5(l — 1) — 3 AR I S S AT A A
dt SOENNNNNNANN NN A S S
CSNSNNNNNNNNN LV
d{L‘Q . CNSSNNNNNNN N s
_ _ _ NSNS N N NONON N vy VAV e
o5 =~ Atz (l+ o) oz -2 NN Ll
NN ~ T o e —
SN - T VYN T 1
NN Z RV NN
Using variables r(t) and 6(t), where A NN APV RN
e — G TAN NN~
x1(t) = r(t) cosH(t) and NN L SN/ I D NN
o e =S NN NN
x9(t) = r(t)siné(t), we obtain CIIIIINNYI I S rany
I - =7 1t AN
dr 9 L St PR RN
7:r(1_7«) ,,,,,,,,,,, N I B
d ' /7 D= ///#‘T‘_‘_ﬂz
/////// -~~~ s==limit cycle
We conclude that 7(t) — 1 as t — oo for 2 - v sz o
any initial condition satisfying r(0) > 0. 2 -1 0 1 2
do o

EZM—@:M—TSiH(Q)

If w > 1, then df/dt > u—1 > 0.



Example: infinite-period (SNIC, SNIPER) bifurcation

dxq p=1
2 3
— =x1—prot+ax3(l—x1)—2x 2 ~ SN AUV T T T 7Y
dt 1= HT2 a 1) 1 SSNNNNNNANNN A VS sS
CSNSNNNNNNANN N A
d{L‘Q . CNSSNNNNNNN N s
o _ _ NN NONON N N VAV Ay S
o5 =~ Atz (l+ o) oz -2 TRIIIIN L P
MNNN NN\ LT Y N e e e —
SN - TN VYN T
SISV CooNSTo
Using variables r(t) and 6(t), where SN (TR DN
x1(t) = r(t) cosH(t) and SN U SR/ I D NN
o e =S TN NN
x9(t) = r(t)siné(t), we obtain TN DI S
i - =7 1t AN
dr 9 Thooomma = PR R
7:r(1_7«) ,,,,,,,,,,, =7 P EAN
////////// Pl A\
L oot - - {—homochmc Orblt\
We conclude that 7(t) — 1 as t — oo for 2 - -
any initial condition satisfying r(0) > 0. 2 -1 0 1 2
do o

E:,u—xg:u—rsinw)

If w > 1, then df/dt > u—1 > 0.



Example:

d
= = g1 — pws + 31— @) — 2}
dt
d
% =pay — 2122 (L+21) + 22 — 23
Using variables r(t) and 6(t), where
x1(t) = r(t) cosH(t) and
x9(t) = r(t)siné(t), we obtain
d
d—z = (1 —1?)

We conclude that (t) — 1 as t — oo for
any initial condition satisfying r(0) > 0.
dé

dt
If w > 1, then df/dt > u—1 > 0.

=p—x9 = p—rsin(f)

If || <1, then df/dt =0 for r =1 and sin(6)

infinite-period (SNIC, SNIPER) bifurcation

1 =0.99
2 R N A A A
NNNN A Vs S
NNNAN ALy A
A R R A
NN NNy S s
1 ‘O.—L’///////
~+ i
\
,,,,, o PN Y —
PN o NN~ —
///I N~
/“Q,///“T\\\\\
v/ BRI WANININ
NN/ I NN
A B IR NN
[ [ — = St NN
ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ 7 VAN
,,,,,,,,,,, 77 P AN
,,,,,,,,,, VA A A B B S
/////// PPN SV AV AV A A N RN
) _ P VAN I B B R
-2 -1 0 1 2
I



Example: infinite-period (SNIC, SNIPER) bifurcation

diBl
szl—u@%—av%(l—xl)—x? 2 77
Vi
dCL‘Q s
?:um1—$1m2(1+x1)+xz—x§ 1 i
Using variables r(t) and 6(t), where a0 N~
x1(t) = r(t) cos6(t) and NINN
x2(t) = r(t)sinf(t), we obtain L
dr 9 - \a
pri r(1—r?) E E
We conclude that 7(t) — 1 as t — oo for 2 -
any initial condition satisfying r(0) > 0. 2 2
do
il = u — rsin(f)

If w > 1, then df/dt > u—1 > 0.
If || <1, then df/dt =0 for r =1 and sin(#) = p.



Example: infinite-period (SNIC, SNIPER) bifurcation

L=09 —pu=-1 —p=11
—u =099 —p =101 —p=1.2|

d
%:xl—u:cg—i—m%(l—xl)—x? 2
d 1.5
e =pay — 2122 (L+21) + 22 — 23
dt 1
Using variables r(t) and 6(t), where § 05 !
x1(t) = r(t) cos6(t) and 5
x9(t) = r(t)siné(t), we obtain

d

d—z = (1 —1?) 0.5}

We conclude that 7(t) —+ 1 ast — oo for -1 -
any initial condition satisfying r(0) > 0.

® -

If £ > 1, then df/dt > pu— 1 > 0.

= p — rsin(f)

O L

\

“\

60

80



Example: infinite-period (SNIC, SNIPER) bifurcation

diBl
szl_“x2+$g(1_’x1)_w? 2 h=09 —p=1 —p=11
do 15 —p =099 —p =101 —p =12
= =pz — w132 (1 + 1) + 22 — 73
dt 1
Using variables r(t) and 6(t), where Sm 05
x1(t) = r(t) cos6(t) and 5
x9(t) = r(t)siné(t), we obtain 0f
d
d—z = (1 —1?) 0.5}

We conclude that 7(t) —+ 1 ast — oo for -1 -

any initial condition satisfying r(0) > 0.
dé

Pl = p — rsin(f)

If > 1, then df/dt > 1 —1 > 0.



Bifurcations of limit cycles

’ bifurcation at u = p. \ amplitude \ period
supercritical Hopf bifurcation O(M) o(1)
subcritical Hopf bifurcation O(M) o)
saddle-node bifurcation of cycles 0(1) O(1)

P . 1
infinite-period (SNIC, SNIPER) 0(1) O(\/m)
homoclinic (saddle-loop) bifurcation O(1) (’)(’ log |pn — ,ucH)




Bifurcations of limit cycles

’ bifurcation at u = p. \ amplitude \ period ‘
supercritical Hopf bifurcation O(M) o(1)
subcritical Hopf bifurcation O(M) o)
saddle-node bifurcation of cycles 0(1) O(1)

P . 1
infinite-period (SNIC, SNIPER) 0(1) O(\/m)
homoclinic (saddle-loop) bifurcation O(1) (’)(’ log |pn — ,uCH)

homoclinic bifurcation: another bifurcation when limit cycle is born with infinite period
saddle-loop bifurcation

new example



Example: homoclinic (saddle-loop) bifurcation

dxq
dt
dl‘g
dt

2
=puxry + r9 — Ty — X122

= —1}1



Example

W:u:cl—i—xg—xz—xlmg
d:l?z
T

two critical points: x.; = [0,0] and x.2 = [0, 1]

— X2 1—2%‘2—1‘1)

Jacobian matrix is Df (x) = <N_1 0



Example

WZMM-FCCQ—&CQ—&UN?Q
dZEQ
T

two critical points: x.; = [0,0] and x.2 = [0, 1]

Jacobian matrix is Df(x) = (“ —x2 1-=2m3—x

-1 0
ViZ—4
Df (x¢1) = <—M1 é) eigenvalues A4 = g + M2

—> X is stable for ;. < 0 and unstable for > 0

1 - ~1  JEZ—2u+5
Df (xc2) = <,u 1 1>, eigenvalues A4 = a 4+ VH Pt

=1l 0 2 2
= X2 is an (unstable) saddle for all x € R



Example

dry 9 » w=-1
E—um—i-xg—xg—mmg — ‘
d$2 15 L e = — |
W:_‘Tl — - = e
1~ - e
©<0: 5 05 L~ —~ o o
fixed point x.; = [0,0] is a stable spiral R G P
L7 7 7 s
/ 2_4 0
eigenvalues AL = R N VARV, P
2 2 '05\ \ o
1 NN S ‘ = = = -
-1 0 1



Example

day + x2 1T
i nxy 2 2 12
dZEQ
i
dt !

©<0:

fixed point x.; = [0,0] is a stable spiral =

PV —4

eigenvalues AL = ) 5

VAN,

L~ 7 7 —
7 —
[.7 7 Ve
ST = Ve
o yeva
s S /S A
(. /Y
NN\ PV YIe
S e S
-1 0 1



Example

dxq 9 w=-0.1
E:uscl—i—xg—%—xlxg 2//‘\\<\(dé/£/ —
dxo 157 7/ <
ar A S —
VW 7 e
u<0: - VI 4
fixed point x.; = [0,0] is a stable spiral 0517 + 7 J o
—— ol It b
eigenvalues Ay = Yo v -4 VNN (.
2 2 05 N /
as u increases from negative to positive ~ N~ — =
values, eigenvalues cross the -1 1 0 1

imaginary axis from left to right T



Example: supercritical Hopf bifurcation

—_— = X Xro — Ty — 1 X
dt M1 2 2 142
dZEQ

=t _p

dt !
©<0:

fixed point x.; = [0,0] is a stable spiral = 0

Y O A -4
2 2
as u increases from negative to positive
values, eigenvalues cross the
imaginary axis from left to right

eigenvalues AL

= 0: fixed point x.; = [0,0] is a still stable spiral, though a very weak one
supercritical Hopf bifurcation at u =0

the limit cycle exists in interval p € (0,0.135454802155. . .)



Example: homoclinic (saddle-loop) bifurcation

dxq

E:uscl—i—mg—x%—xlmg 2
dxo 15+
il R
dt !
> 0: xc1 = [0,0] is an unstable spiral
& 057
the limit cycle exists in interval
1 € (0,0.135454802155 ... ) 0
-0.5

/
/
e
/
/
/
!
\
AN
~

RN/ NN N VNN



Example: homoclinic (saddle-loop) bifurcation

dx

—1=ux1+m2—x%—x1m2 2

dt

dxo 1.5

=

dt ’
> 0: x.,1 = [0,0] is an unstable spiral

& 05¢

the limit cycle exists in interval

1 € (0,0.135454802155 ... ) 0

-0.5

‘/4\\\‘\‘\\

—_
oL
—_



Example: homoclinic (saddle-loop) bifurcation

dz

—1=ux1+m2—x%—x1m2 2
dt

dxo 15+
74— oy

dt !

> 0: x.1 = [0,0] is an unstable spiral
& 057

the limit cycle exists in interval
1 € (0,0.135454802155 . .. ) 0

///»\\\\\\




Example: homoclinic (saddle-loop) bifurcation

dx

—1=ux1+x2—x%—x1m2 2
dt

dxo 1.5
B

dt ! A

> 0: x.,1 = [0,0] is an unstable spiral
g2 057

the limit cycle exists in interval
w € (0,0.135454802155.. . .)

VAN N




Example: homoclinic (saddle-loop) bifurcation

dz; 5 © =0.135454802155387
E:uscl—i—xg—%—xlmg 27 ‘ \
dxo 1.5¢
il R
dt ! 7’
1
> 0: xc1 = [0,0] is an unstable spiral /
g 057 p
the limit cycle exists in interval \
1 € (0,0.135454802155 ... ) O .
= 0.135454802155...: limit cycle 0.5~
-

collides with the saddle at x. = [0, 1]
and it becomes a homoclinic orbit

1

homoclinic (saddle-loop) bifurcation



Example: homoclinic (saddle-loop) bifurcation

dxq

E:uscl—i—xg—x%—xlmg 2 ?‘
dxo 1.5+ /
Fr /
W s
> 0: xc1 = [0,0] is an unstable spiral /
g 057 /
the limit cycle exists in interval
1 € (0,0.135454802155 . . . ) O i
1= 0.135454802155...: limit cycle 0.5 ™~
collides with the saddle at x. = [0, 1] p ~ ‘
and it becomes a homoclinic orbit -1 0 1
L1

homoclinic (saddle-loop) bifurcation

w > 0.135454802155 . . .: no limit cycle



Example: homoclinic bifurcation and supercritical Hopf bifurcation

— =pux Ty — Xy — T1 X
o = e 2 2 122
dl‘g 1
—2_ _
dt !
0.5
bifurcation diagram 0.
[show 3D animation]
051




Example: homoclinic bifurcation

Ezule + o — 5 — X122
dl‘g
FrR

bifurcation diagram

[show 3D animation]

and supercritical Hopf bifurcation

)




Example: homoclinic bifurcation and supercritical Hopf bifurcation

1.5 —u=-1 —pu=-01 p=001 p=01 —p=0.135454802155
—u=—05 —u=0 pn=005 —p=013 —p=0.2
1k
L 05F m m [
8
/\ Va

0 10 50 60
t1me t
| bifurcation at 1 = pu. | amplitude | period |
supercritical Hopf bifurcation O/ — pe) o(1)

homoclinic (saddle-loop) bifurcation O(1) O(|log | — pel|)




Summary: bifurcations of limit cycles

’ bifurcation at u = p. ‘ amplitude ‘ period ‘
supercritical Hopf bifurcation O(M) 0(1)
subcritical Hopf bifurcation O(M) 0(1)
saddle-node bifurcation of cycles O(1) O(1)

e . 1
infinite-period (SNIC, SNIPER) O(1) (’)(\/m>
homoclinic (saddle-loop) bifurcation O(1) O(|log | — pel])

Additional examples: Questions 1, 4 and 5 on Problem Sheet 3.
They are formulated in a way that the questions do not specify
what bifurcations of limit cycles are there.

There are also Questions 2 and 6 on Problem Sheet 3
which ask you to look for a Hopf bifurcation.



Summary of Lecture 12

. . d?z dz
weekly nonlinear-oscillators: proaiat + egla, 5 where 0 < e < 1

we have applied the Poincaré-Lindstedt method to examples of both conservative
and non-conservative systems

conservative systems:
2

d I . .
® we have analysed d—tf = —x + e2® (derivation on whiteboard, no slides)
- d*z 9 . . .
® additional example P + ex” is analyzed in Question 3 on Problem Sheet 3

(solutions are available on the course website)

non-conservative systems: we considered the van der Pol oscillator

d’z dz

hellbad 1 — 22) =
42 o plll =)

which can be analyzed using the Poincaré-Lindstedt method for p =¢ < 1



Summary of Lecture 12: van der Pol oscillator

d?x 9y dz



Summary of Lecture 12: van der Pol oscillator

d%z dx

P 1— 2\ U

gz ~ Tt al-ag
d

Denoting 41 = x and ys = d—f , we can rewrite the van der Pol equation as
dyi  _
dt Y2

dy2

= _ 1 — 42
qt y1 + Y1) Yo



Summary of Lecture 12: van der Pol oscillator

d%z dx

P 1— 2\ U

gz ~ Tt al-ag
d

Denoting 41 = x and ys = d—f , we can rewrite the van der Pol equation as

dyi  _
dt Y2
dys
& = ~untel-u)n

® The origin 0 = [0, 0] is the only critical point.



Summary of Lecture 12: van der Pol oscillator

d%z dx

P 1— 2\ U

gz ~ Tt al-ag
d

Denoting 41 = x and ys = d—f , we can rewrite the van der Pol equation as

dyi  _
dt Y2
dys
& = ~untel-u)n

® The origin 0 = [0, 0] is the only critical point.

V2 —4
® The Jacobian matrix Df(0) = <_01 i) has eigenvalues Ay = g + NT



Summary of Lecture 12: van der Pol oscillator

d?x 9y dz

gz - e red-m) g
d

Denoting y1 = x and yp = d—f , we can rewrite the van der Pol equation as

dyi  _
dt Y2
dys
& = ~untel-u)n

® The origin 0 = [0, 0] is the only critical point.

V2 —4
® The Jacobian matrix Df(0) = <_01 i) has eigenvalues Ay = g L VA T2

2
® The origin 0 = [0,0] is an unstable spiral for 0 < p = ¢ < 1.



Summary of Lecture 12: van der Pol oscillator

d? d
w?(e) ﬁ =—z + ew(e)(1 —z?) ﬁ
d
Denoting y1 = x and yp = d—f , we can rewrite the van der Pol equation as
dyi  _
dt Y2
dys
& = ~untel-u)n

The origin 0 = [0, 0] is the only critical point.

0
-1
The origin 0 = [0, 0] is an unstable spiral for 0 < p = ¢ < 1.

by Ve =4
. .

The Jacobian matrix Df(0) = < 5

1 :
M) has eigenvalues A1 =

To apply the Poincaré-Lindstedt method for i = ¢, we transformed the time
variable as 7 = w(e) t where 27 /w(e) is the period of the periodic solution.



Summary of Lecture 12: van der Pol oscillator

d*z dx

2 2

i 1— il

w(g) 02 z+ew(E)(l-—=z )dv-

Substituting

z(r;€) = 2o(7) + ex1(7) + €222(7) + ... and w(e) =wp + cwy + 2wy + ...

and equating coefficients of £” and !, we have obtained wy = 1, 2¢(7) = A cos(7) and

dzl‘l dQIL‘O
— L — e ——
1 w1 dr2

dz A3 A3
29T 4 . A7
) +(1—=p) 2w A cos(T) + <4 ) sin(7) + 1 sin(37)

dr



Summary of Lecture 12: van der Pol oscillator

d*z dx

2 2

i 1— il

w(g) 02 z+ew(E)(l-—=z )dv-

Substituting

z(r;€) = 2o(7) + ex1(7) + €222(7) + ... and w(e) =wp + cwy + 2wy + ...

and equating coefficients of £” and !, we have obtained wy = 1, 2¢(7) = A cos(7) and

dzl‘l dQIL‘O
— L — e ——
1 w1 dr2

dz A3 A3
29T 4 . A7
) +(1—=p) 2w A cos(T) + <4 ) sin(7) + 1 sin(37)

dr

Eliminating the secular terms gives w; =0 and A = 2.



Summary of Lecture 12: van der Pol oscillator

d*z dx

2 2

i 1— il

w(g) 02 z+ew(E)(l-—=z )dv-

Substituting

z(r;€) = 2o(7) + ex1(7) + €222(7) + ... and w(e) =wp + cwy + 2wy + ...

and equating coefficients of £” and !, we have obtained wy = 1, 2¢(7) = A cos(7) and

d? d? d A3 A3
Fg;l—m:l = —2w %—k(l—x%) ﬁ = 2w A cos(T) +<4 — ) sin(7) + T sin(37)
Eliminating the secular terms gives w; =0 and A = 2.

We have z(7;¢) = 2 cos(wt) + e sin®(wt) +... with w=1-¢?/16+...

= the limit cycle is approximately circular with radius 2 for y = e < 1



van der Pol oscillator

dz
dt

d%z
d2
analysis for p < 1:

Poincaré-Lindstedt method implies that
the limit cycle is approximately circular

2
with radius 2 and period %

=-—z+ p(l-2%



van der Pol oscillator

d?z dz
Dl 1— 22) =
gz ~ T el-)g

analysis for p < 1:

Poincaré-Lindstedt method implies that

the limit cycle is approximately circular
2

1—¢2/16+...
intermediate values of y: we can
computationally investigate limit cycles

with radius 2 and period

analysis for ;1 > 1: the limit cycles
has period 1(3 — 3log(2)) as u — oo



van der Pol oscillator

d?z dz

- 1— 22) =

rroA A Rl

analysis for p < 1:

Poincaré-Lindstedt method implies that

the limit cycle is approximately circular
2

1—-¢2/16+...
intermediate values of y: we can
computationally investigate limit cycles

with radius 2 and period

T2

analysis for ;1 > 1: the limit cycles
has period 1(3 — 3log(2)) as u — oo




van der Pol oscillator

d?z B
de?
analysis for p < 1:

Poincaré-Lindstedt method implies that

the limit cycle is approximately circular
2

dx

dt

z + p(l—a?)

with radius 2 and period
intermediate values of y: we can
computationally investigate limit cycles

analysis for ;1 > 1: the limit cycles
has period 1(3 — 3log(2)) as u — oo

1—-¢2/16+...

Z2
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van der Pol oscillator
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van der Pol oscillator

d?z
de2?
analysis for p < 1:

Poincaré-Lindstedt method implies that

the limit cycle is approximately circular
2

dx

:—$+M(1—I2)a

with radius 2 and period
intermediate values of y: we can
computationally investigate limit cycles

analysis for ;1 > 1: the limit cycles
has period 1(3 — 3log(2)) as u — oo
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van der Pol oscillator

dx

d’x

dt

—z + p(l—a?)

dt?

analysis for p < 1:

Poincaré-Lindstedt method implies that

the limit cycle is approximately circular

2
1—-¢2/16+...

with radius 2 and period
intermediate values of y: we can

computationally investigate limit cycles

analysis for ;1 > 1: the limit cycles

has period 1(3 — 3log(2)) as u — oo



van der Pol oscillator
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dx

van der Pol oscillator
d*z
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van der Pol oscillator

2
analysis for j < 1: o 1’”
Poincaré-Lindstedt method implies that > 0’“"“
the limit cycle is approximately circular ' 'lii‘i‘“wv{
with radius 2 and period v =0 (i i&§%§$
1—-€2/16+...% ~ < w&%@}}

intermediate values of y: we can

Mw‘
computationally investigate limit cycles 5. =

analysis for p > 1: the limit cycles 5 e

has period (3 — 31log(2)) as pu — 0o 50



van der Pol oscillator

d?z dz
e = 1— 22) =
dt? # ol I)dt — =001 —p=02
analysis for p < 1:

Poincaré-Lindstedt method implies that

the limit cycle is approximately circular
2

1—-¢2/16+...
intermediate values of y: we can
computationally investigate limit cycles

with radius 2 and period

analysis for ;1 > 1: the limit cycles
has period 1(3 — 3log(2)) as u — oo




van der Pol oscillator

d?z
de2?
analysis for p < 1:

Poincaré-Lindstedt method implies that

the limit cycle is approximately circular
2

1—-¢2/16+...
intermediate values of y: we can
computationally investigate limit cycles

:_$+M(1_$2)%

with radius 2 and period

analysis for ;1 > 1: the limit cycles
has period 1(3 — 3log(2)) as u — oo

time ¢

the van der Pol equation is a special case of the Liénard equation

d’z dz

ol —g(z) — f(x) pm for g(z) =2 and f(z)=p(x>—1)



Another Liénard equation

d?z dx

van der Pol equation: h(z) =1 — 22



Another Liénard equation
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Another Liénard equation

d?z dx _
:—:c—i—,uh(w)— A p =0.002
dt dt I ]—stable limit cycle «==-unstable limit cycle
van der Pol equation: h(z) =1 — 22 -
. 20 L0
6-th order polynomial: b
_ 2 4 6 Vo
h(z) =72 — 3922° + 224z — 252° #
three limit cycles: two limit cycles are ~ d? ;
stable and one limit cycle is unstable t
20t
t
t
t
4 ‘
-4 -2 0 2 4



Another Liénard equation

d?z dx
o hiz) &8 1 =0.002
dt ® = phie) o 4

—stable limit cycle --::unstable limit cycle

van der Pol equation: h(z) =1 — 22

6-th order polynomial:
h(z) =72 — 3922 + 224x* — 255

P

three limit cycles: two limit cycles are ~ d?
stable and one limit cycle is unstable

Question 7 on Problem Sheet 3

\
\
\
\
\
\

P Ny e

synthetic biology, DNA computing, -4

engineering artificial networks -4 -2 0 2 4

Lecture 7 of course B5.1 on YouTube:
https://people.maths.ox.ac.uk/erban/cupbook/



Lorenz equations: Part 2

diL‘l ( )

—_— = €T —

dt H2 (T2 1

dxo

— = Tl — To — T1X
dt H1T1 2 173
dl‘3

— = X1 X9 — g5
dt 122 H3 T3



Lorenz

dz1
dt

dzs
dt
dl‘3

dt

equations: summary of Part 1
= p2 (2 — 1)
= H1T1 — T2 — X1X3

= T1T2 — M3T3

Lecture 8: we started with a 3D
demonstration viewing trajectories in
the phase space for different values of
parameters u1, p2, pg and illustrating
the convergence to fixed points, limit
cycles, chaos, strange attractor

and transient chaos



Lorenz equations: summary of Part 1

dl‘l

e 10 (zg — 1) p1 =0.5, py =10, pi3 = 8/3
da 400
— =T — X — T1X
dt M1 2 123 po0 <,,,_\
dxs 8 x3 ‘ C/—\\
=5 gy — 2
dt 3 2200
Lecture 8: we started with a 3D 100.-
demonstration viewing trajectories in .
the phase space for different values of 0\ ]
parameters pi1, 2, p3 and illustrating 10 010 e
the convergence to fixed points, limit 20 s o 0
) x

cycles, chaos, strange attractor
and transient chaos

we varied p1, while we fixed the values of parameters o and ps:

8
p2 =10 and p3 = 3 (Lorenz used p; = 28 to get chaos)




Lorenz equations: summary of Part 1

dl‘l

&, e p1 =15, pp =10, p3 = 8/3
3 400 ——— P
doy

e o 2 - 300

dl’3 8x3 |

dey _ - 8z

} N ’ & 200

Lecture 8: we started with a 3D o

demonstration viewing trajectories in
the phase space for different values of
parameters u1, p2, pg and illustrating
the convergence to fixed points, limit
cycles, chaos, strange attractor

and transient chaos

we varied p1, while we fixed the values of parameters o and ps:

8
p2 =10 and p3 = 3 (Lorenz used p; = 28 to get chaos)




Lorenz

pr =21, pp =10, p3 = 8/3

equations: summary of Part 1
d
% = 10($2 — iEl)
dxo
_— = r1T — T2 — 1 X
dt M1 21 2 1723
dl‘3 8.233
ars _ g, — 2F8
dt '3

Lecture 8: we started with a 3D
demonstration viewing trajectories in
the phase space for different values of
parameters u1, p2, pg and illustrating
the convergence to fixed points, limit
cycles, chaos, strange attractor

and transient chaos

we varied p1, while we fixed the values of parameters o and ps:

8
ugzloand,ugzg

(Lorenz used p; = 28 to get chaos)




Lorenz equations: summary of Part 1

diL‘l

= 10(ze — x =28, up =10, uz = 8/3
g ~ 0@ —o) so M TH 10 =88
dxo

— = T1 — Ty — X1 X

dt H1T1 2 173

dl‘3 8.233

0 e O

dt 1927 73

Lecture 8: we started with a 3D
demonstration viewing trajectories in
the phase space for different values of
parameters u1, p2, pg and illustrating
the convergence to fixed points, limit
cycles, chaos, strange attractor

and transient chaos

we varied p1, while we fixed the values of parameters o and ps:

8
p2 =10 and p3 = 3 (Lorenz used p; = 28 to get chaos)



Lorenz equations: summary of Part 1

dl‘l

- = 10 (xg — 1) i =330, 12 =10, pig = 8/3
¥:M1$1—x2—x1m3
dxs 8 x3 500. —
dat - T T3

B ,
Lecture 8: we started with a 3D ol—"
demonstration viewing trajectories in -50 o g
the phase space for different values of /’/’/_,..\100
parameters (1, p2, 13 and illustrating 0 . \ 0
the convergence to fixed points, limit . 50\,, 100 §

cycles, chaos, strange attractor
and transient chaos

we varied p1, while we fixed the values of parameters o and ps:

8
p2 =10 and p3 = 3 (Lorenz used p; = 28 to get chaos)



Lorenz equations: summary of Part 1

dzy ( ) 28, 1y =10 8/3
—_— €T — = s == s —

dt H2 12 ! 50 T AT AT Y
dxo

- = 1 — T3 — 01T

dt H1T1 2 173

dl‘3

— = X1%2 — T

dt 122 H3 T3

Lecture 8: we used the Lorenz system
to further practice some techniques
on Problem Sheets 1 and 2




Lorenz equations: summary of Part 1

diL‘l
o M (x2 — 1) pn =0.5, piz =10, pz = 8/3
dzy 400
;. T M1%1 — X2 — X173
¢ 300
dl‘3
— = T1T2 — U373
dt a 2200
Lecture 8: we used the Lorenz system 100 -
to further practice some techniques L
on Problem Sheets 1 and 2 including: 0
10 -~ sl
¢ finding the Lyapunov function OlozoﬂﬂO
to prove the global stability of - i -5
T

the fixed point at the origin
0=10,0,0] for uy <1




Lorenz equations: summary of Part 1

dl‘l

o M (vy — 1) pn =1.5, py =10, pi3 = 8/3
dzo 400
- T M1%1 — T2 — T123

dt 300-

dl‘3

— = T1%2 — K373

dt a 2200

Lecture 8: we used the Lorenz system 100.-

to further practice some techniques

on Problem Sheets 1 and 2 including: 0

¢ finding the Lyapunov function
to prove the global stability of
the fixed point at the origin
0=10,0,0] for uy <1

® using the extended center manifold theory to analyze the supercritical pitchfork
bifurcation at u; = 1, calculating the center manifold and the dynamics on it




Lorenz equations: Question 6 on Problem Sheet 3

d

3 = 3w - o)

dxo

— = T1 — Ty — X1 X
dt H1T1 2 173
dl‘3

— = 19 — X

ar 122 3

e fixed points x. =0 =[0,0,0]
X2 = [Vp1 — 1, v/p1 — L, — 1]
Xe3 = [~V — 1, —v/p1 — 1, 1 — 1]
Xc2 and X.o only exist for p; > 1

e =3, u3=1

——supercritical pitchfork at g =1

—subcritical Hopf at p; = 21

-
-
-

-
-<o
~
-~
~

P

~0 5 10

15
M1

20



Lorenz equations: Question 6 on Problem Sheet 3

d

3 = 3w - o)

dxo

— = T1 — Ty — X1 X
dt H1T1 2 173
dl‘3

— = 19 — X

ar 122 3

e fixed points x. =0 =[0,0,0]
X2 = [Vp1 — 1, v/p1 — L, — 1]
Xe3 = [~V — 1, —v/p1 — 1, 1 — 1]
Xc2 and X.o only exist for p; > 1

® supercritical pitchfork bifurcation

e =3, u3=1

supercritical pitchfork at p; = 1]
—subcritical Hopf at p; = 21

-
——
-
-
-

-
-<o
~
-~
~

~0 5 10 15 20

M1

at up =1 (% = 0 is stable for u; < 1 and unstable for p; > 1)



Lorenz equations: Question 6 on Problem Sheet 3

diL‘l
7:3(332—;1;1) p2 =3, u3 =1
dt 6 supercritical pitchfork at p; = 1] _
de —subcritical Hopfat yy =21 | |_ . ==""
_— = 11 — T2 — 1T 4+
dt 2 3
dl‘3 2+
—0 = T1T2 — 23
dt
] R e
fixed points x.; = 0 = [0,0,0]
2+
Xep = [Vp1 — 1, v/pr — 1, 1 — 1]
Xe3 = [_\/lul_lv_\/lul_laul_l] Ar ~a
X2 and X only exist for pq > 1 % ‘ ‘ ‘ ‘ LT
0 5 10 15 20 25
supercritical pitchfork bifurcation 1

at up =1 (% = 0 is stable for u; < 1 and unstable for p; > 1)

subcritical Hopf bifurcation at p; = 21
Xc2 and X.o are stable for u; < 21 and unstable for pq > 21



Lorenz equations

dl‘l
— = pg (z2 — x1) p2 =10, pz = 8/3
dt 10 supercritical pitchfork at p; =1
de —subcritical Hopf at pu; = 24.73684 ... | - -=
;. T M1%1 — X2 — X173
dt
dl‘3
— = T1X2 — U373
dt

e fixed points x. =0 =[0,0,0]
Xe2 = {\//13(#1—1), \/us(m—l),ul—l]

Xc3={—\/Ms(ﬂl—l),—\/M3(M1—1),M1—1] -~

X2 and X, only exist for p; > 1 o 5 10 15 20 25 30
M1

® supercritical pitchfork bifurcation
at up =1  (xc = 0 is stable for u; < 1 and unstable for p; > 1)

e subcritical Hopf bifurcation at 1 = pe = po(p2 + ps +3) /(e — ug — 1)
Xc2 and x.o are stable for u; < p. and unstable for p1 > p.



Lorenz equations: trapping region

dn ( )

— = Tg — T

dt H2 (T2 1

dxo

— = T — To — 1T
dt H1T1 2 123
dl‘3

— = X122 — T

dt 122 H3 T3

Questions 6 on Problem Sheet 4:
All trajectories eventually enter and
remain inside a large sphere of the form

x? 4+ 23 + (23 — p1 — 3)? = C(p1)

where constant C'(u1) is sufficiently large. -

po =10, u3 = 8/3

supercritical pitchfork at p; =1

—subcritical Hopf at pu; = 24.73684. . )

10 ' : : ; :
0 5 10 15 20 25
M1



Lorenz equations: trapping region and volume contraction

diL‘l
— = pg (z2 — x1) pe =10, 3 = 8/3
dt 10 supercritical pitchfork at p; =1
de —subcritical Hopf at pu; = 24.73684 ... | - -=
;. T M1%1 — X2 — X173
dt
dl‘3
— = T1X2 — U373
dt

Questions 6 on Problem Sheet 4:

All trajectories eventually enter and
remain inside a large sphere of the form
af + 23 + (23 — pn — 3)* = C(mn1) -~

; ot -1 :
where constant C'(u;) is sufficiently large. 0 5 10 15 20 25 30
M1

Let U = U(0) C R? be a compact connected subset of initial conditions.
Let U(t) = ¢+(U) and v(t) = |U(t)| = |¢+(U)| be the volume of U(t). Then
lim v(t) =0

t—o0




Lorenz equations: Lorenz map

dzy ( ) 98, 1y =10, i3 = 8/3
—_— €T — = s = s e

ae T 5o M TEH IR TR
dxo

—_— = 1 — T3 — 01T

dt M1 21 2 123

dl‘3

— = X122 — T

dt 12 M3 T3

Lorenz map: we investigate chaos
using a discrete-time dynamical system




Lorenz equations: Lorenz map

dl‘l ( )

— = Tg — T

dt H2 (T2 1

d(L’Q

— = T — To — 1T
dt H1T1 2 123
dl‘3

— = X1 T2 — a5

dt 122 H3 T3

Lorenz map: we investigate chaos
using a discrete-time dynamical system

w1 =28, g =10, pu3 = 8/3
45 : : : / :

40

35

30




Lorenz equations: Lorenz map

dl‘l

dt 45 ‘ ‘ ¢ ‘
dxo 40 1 e 9 o !
ar H1T1 — T2 — X173
35|

dl‘3
T = T1T2 — p3x3 80
dt a _

=25
Lorenz map: we investigate chaos 00|
using a discrete-time dynamical system s
Consider local maxima z,, n =1,2, ... 10V
of x3(t) and define Lorenz map by: 5 ‘ ‘ ‘ ‘

0 2 4 6 8 10

Zn+1 = F(zn)
Then a closed orbit corresponds to an N-cycle {29, 21, 22, ...,2n_1} of the Lorenz map.

time ¢



Lorenz equations: Lorenz map

dl‘l
T = U2 (1;2 — 1'1) w1 =28, py =10, pu3 = 8/3
¢ 46
dzo ;
— = M1T1 — T2 — T12X3 a4 t
dt A\
das 42 /A
— = X1T9 — U3 g
dt 122 — H3 T3 a0l
. . Il'38 -
Lorenz map: we investigate chaos T
. . . . 36 - \
using a discrete-time dynamical system AN
34+ 7
Consider local maxima z,, n=1,2,... anl z
of x3(t) and define Lorenz map by: w0 2
30 35 40 45

Zn+1 = F(zn)
Then a closed orbit corresponds to an N-cycle {29, 21, 22, ...,2n_1} of the Lorenz map.
Lecture 5: N-cycle is unstable if |F'(z9) F'(z1) ... F'(2n-1)| > 1

: . . 3
There are no stable fixed points or limit cycles for: > p. = Ha(iz + py +1 )
M2 — U3 —

Zn




Lorenz equations: Lorenz map

dx
Tl = po (z2 — 21) 1 =28, i =10, 3 = 8/3
¢ 46 - )
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— = M1T1 — T2 — T12X3 a4 t
dt A\
das 42t /A
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=
. . 38 |
Lorenz map: we investigate chaos T
. . . . 36 \
using a discrete-time dynamical system AN
34+ s ~
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Zn

Poincaré map: we investigate ODEs using a discrete-time dynamical system



Poincaré map : saddle-node bifurcation of cycles example

saddle-node bifurcation of cycles at u = —1/4: a half-stable cycle appears, it splits
into a pair of limit cycles for 1 > —1/4, one stable, one unstable

d
d—::ur+7"3—r5
do

=1

dt



Poincaré map : saddle-node bifurcation of cycles example

saddle-node bifurcation of cycles at 4 = —1/4: a half-stable cycle appears, it splits

into a pair of limit cycles for u > —1/4,

dr
dt
do
dt

,ur+7"3—r

5

one stable, one unstable
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Poincaré map : saddle-node bifurcation of cycles example

saddle-node bifurcation of cycles at 4 = —1/4: a half-stable cycle appears, it splits
into a pair of limit cycles for 1 > —1/4, one stable, one unstable

p= —025—¢
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Poincaré map : saddle-node bifurcation of cycles example

saddle-node bifurcation of cycles at 4 = —1/4: a half-stable cycle appears, it splits
into a pair of limit cycles for 1 > —1/4, one stable, one unstable
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Poincaré map : saddle-node bifurcation of cycles example

saddle-node bifurcation of cycles at 4 = —1/4: a half-stable cycle appears, it splits
into a pair of limit cycles for 1 > —1/4, one stable, one unstable
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Poincaré map : saddle-node bifurcation of cycles example

saddle-node bifurcation of cycles at u = —1/4: a half-stable cycle appears, it splits
into a pair of limit cycles for 1 > —1/4, one stable, one unstable

pw=-0.1
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Poincaré map : saddle-node bifurcation of cycles example

saddle-node bifurcation of cycles at u = —1/4: a half-stable cycle appears, it splits
into a pair of limit cycles for 1 > —1/4, one stable, one unstable

w=-0.26
dr 4,3 5 1 : ‘
— =ur +7r° —r
a
o= 1 =
206"
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Y= 0] € R? 0 ~04+
{[.I’l, ] S |331 > } 3
Poincaré map: P, : ¥ — X, where Qj‘o ol

P,(x1) = P(x1; p) is defined such
that the positive semi-orbit of [z1, 0] : ‘ ‘ ‘
intersects X for the first time 0 0.2 0.4 0.6 0.8 1
at [P,(x1),0]. T




Poincaré map : saddle-node bifurcation of cycles example

saddle-node bifurcation of cycles at u = —1/4: a half-stable cycle appears, it splits
into a pair of limit cycles for 1 > —1/4, one stable, one unstable

w=-0.25
dr 4,3 5 1 : ‘
— =ur +7r° —r
a
o= 1 =
206"
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Poincaré section I
Y= 0] € R? 0 ~04+
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Poincaré map: P, : ¥ — X, where Qj‘o ol

P,(x1) = P(x1; p) is defined such
that the positive semi-orbit of [z1, 0] ‘ ‘ ‘ ‘
intersects X for the first time 0 0.2 0.4 0.6 0.8 1
at [P,(x1),0]. T




Poincaré map : saddle-node bifurcation of cycles example

saddle-node bifurcation of cycles at u = —1/4: a half-stable cycle appears, it splits
into a pair of limit cycles for 1 > —1/4, one stable, one unstable

uw=-0.24
dr 4,3 5 1 : :
— =ur +7r° —r
a
o= 1 =
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Y= 0] € R? 0 ~04+
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Poincaré map: P, : ¥ — X, where Qj‘o ol

P,(x1) = P(x1; p) is defined such
that the positive semi-orbit of [z1, 0] : ‘ ‘ ‘
intersects X for the first time 0 0.2 0.4 0.6 0.8 1
at [P,(x1),0]. T




Poincaré map : saddle-node bifurcation of cycles example

saddle-node bifurcation of cycles at u = —1/4: a half-stable cycle appears, it splits
into a pair of limit cycles for 1 > —1/4, one stable, one unstable

uw=-0.24
dr 4,3 5 1 : :
—=ur+r’—-r
a
F :
206!
. , . Q
Poincaré section I
Y= R? 0 ~04+
{[l’l,()] (S |331 > } 5/
Poincaré map: P, : ¥ — X, where Qj‘o ol
P,(x1) = P(x1; p) is defined such '
that the positive semi-orbit of [z, 0] 0 : ‘ ‘ ‘
intersects X for the first time 0 0.2 0.4 0.6 0.8 1
at [P, (1), 0] o

Another example: Question 1 on Problem Sheet 4



Lecture 15: summary
® we discussed chaos, symbolic dynamics and the Bernoulli shift map
(whiteboard lecture, no slides)

® we studied dynamical systems associated with function F': Ml — M, where M is a
metric space, i.e. a set with metric (distance) d : M x M — [0, 00)



Lecture 15: summary — general theory

® we discussed chaos, symbolic dynamics and the Bernoulli shift map
(whiteboard lecture, no slides)

® we studied dynamical systems associated with function F': Ml — M, where M is a
metric space, i.e. a set with metric (distance) d : M x M — [0, 00)
e F: M — M is called transitive if there exists xg € M such that orbit
O(zo) = {zo, F (o), F®(z0), F®(z),... } is a dense subset of M
(a transitive point of F'is a point g € M which has a dense orbit O(z() under F')
o [': M — M has sensitive dependence on initial conditions if there exists § > 0
such that for all z € M and any open set U C M satisfying « € U, there is a
point y € U and j € N with d(FY)(z), FW(y)) > §



Lecture 15: summary — general theory

® we discussed chaos, symbolic dynamics and the Bernoulli shift map
(whiteboard lecture, no slides)

we studied dynamical systems associated with function F': Ml — M, where M is a
metric space, i.e. a set with metric (distance) d : M x M — [0, 00)

F : M — M is called transitive if there exists xg € M such that orbit
O(zo) = {zo, F (o), F®(z0), F®(z),... } is a dense subset of M
(a transitive point of F'is a point g € M which has a dense orbit O(z() under F')

F : M — M has sensitive dependence on initial conditions if there exists § > 0
such that for all x € M and any open set U C M satisfying z € U, there is a
point y € U and j € N with d(F(j)(m),F(j)(y)) )
e [': M — M is said to be chaotic if:

(i) the set of all periodic points is dense in M

(ii) F is transitive
(iii) F' has sensitive dependence on initial conditions



Lecture 15: summary — general theory

® we discussed chaos, symbolic dynamics and the Bernoulli shift map
(whiteboard lecture, no slides)
® we studied dynamical systems associated with function F': Ml — M, where M is a
metric space, i.e. a set with metric (distance) d : M x M — [0, 00)
e F: M — M is called transitive if there exists xg € M such that orbit
O(zo) = {zo, F (o), F®(z0), F®(z),... } is a dense subset of M
(a transitive point of F'is a point g € M which has a dense orbit O(z() under F')
o [': M — M has sensitive dependence on initial conditions if there exists § > 0
such that for all z € M and any open set U C M satisfying « € U, there is a
point y € U and j € N with d(FY)(z), FW(y)) > §
e F:M — M is said to be chaotic if:
(i) the set of all periodic points is dense in M
(ii) F is transitive
(iii) F' has sensitive dependence on initial conditions
e if F: M — M is continuous and M is not a finite set, then (i) and (ii) imply (iii)



Lecture 15: summary — Bernoulli shift map
My, = {(al,ag,ag,a4,...)} such that a; =0 or a; =1 for j = 1,2,3,4,...}

Mp; is a metric space with metric defined by
oo

G — (b
d(l‘,y) = Z|J2]j| for x = ((ll,(lg,ag,a4,..-) and Y= (b17b27b37b47"')
j=1
Bernoulli shift map: o : Mg — My where o((a1,az,as3,a4,...)) = (az,as3,a4,0as...)
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My, = {(al,ag,ag,a4,...)} such that a; =0 or a; =1 for j = 1,2,3,4,...}

Mp; is a metric space with metric defined by
oo

G — (b
d(:I"vy) = Z |‘72]j| fOI’ T = ((11,(12,(13,&4, oo ) and Y= (b17b27b37b47 .. )
j=1
Bernoulli shift map: o : Mg — My where o((a1,az,as3,a4,...)) = (az,as3,a4,0as...)
we stated and proved some of properties of the shift map, namely:
e fixed points are (0,0,0,0,...) and (1,1,1,1,...)
2-cycle is {(0,1,0,1,0,1,0,1,...),(1,0,1,0,1,0,1,0,...)}
® shift map o : My; — My, is continuous and chaotic (we proved several lemmas
showing the continuity and properties (i), (ii) and (iii) in our definition of chaos)



Lecture 15: summary — Bernoulli shift map
My, = {(al,ag,ag,a4,...)} such that a; =0 or a; =1 for j = 1,2,3,4,...}

Mp; is a metric space with metric defined by
oo

d(z,y) = ZM for x = (a1, a2,a3,a4,...) and y = (b1, b2, b3, b4,...)
j=1
Bernoulli shift map: o : Mg — My where o((a1,az,as3,a4,...)) = (az,as3,a4,0as...)
we stated and proved some of properties of the shift map, namely:
e fixed points are (0,0,0,0,...) and (1,1,1,1,...)
2-cycle is {(0,1,0,1,0,1,0,1,...),(1,0,1,0,1,0,1,0,...)}
® shift map o : My; — My, is continuous and chaotic (we proved several lemmas
showing the continuity and properties (i), (ii) and (iii) in our definition of chaos)
we also discussed that we could obtain the same properties if we worked with the
metric space of bi-infinite sequences of 0's and 1's, i.e. where
B = (...,a,j,...,a,g,a,l|a0,a1,a2,...,aj,...) and g — b
: 31 :

Yy = (...,b_j,...,b_g,b_l‘bo,bl,bg,...,bj,...) have distance d((L‘,y):Z T
j=—00



Question 3 on Problem Sheet 4
Let zp € [0,1) and F': [0,1) — [0,1). Define sequence z; € [0,1), K =0,1,2,...,
iteratively by xx+1 = F(z), where

Flz) = 2z for z €0,1/2)
T 2w -1 for ze[1/2,1)
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Question 3 on Problem Sheet 4
Let zp € [0,1) and F': [0,1) — [0,1). Define sequence z; € [0,1), K =0,1,2,...,
iteratively by xx+1 = F(z), where

Flz) = 2z for z €0,1/2)
T 2w -1 for ze[1/2,1)

1 ‘ O \ 0

M = [0, 1) with d(z,y) = |z — y| =
&2
If 2o € [0,1/2) has a binary expansion
zg = 0.0a2a3a4 - -- = Z %

j=2
where a; € {0,1} for j =2,3,4,...,
then 2xy = 0.asa3a4as5 . . .




Question 3 on Problem Sheet 4
Let zp € [0,1) and F': [0,1) — [0,1). Define sequence z; € [0,1), K =0,1,2,...,
iteratively by xx+1 = F(z), where

Flz) = 2z for z €0,1/2)
T 2w -1 for ze[1/2,1)

1 ‘ O \ 0

M = [0, 1) with d(z,y) = |z — y| =
&2
If 2o € [0,1/2) has a binary expansion
zg = 0.0a2a3a4 - -- = Z %

j=2
where a; € {0,1} for j =2,3,4,...,
then 2xy = 0.asa3a4as5 . . .

0 1 1/2 3 1
T

Q3(a): if 2o € [0,1) is not a dyadic rational, then F*) () = 0.aj 1105120k 30k44 - - .



Question 5 on Problem Sheet 4

Let ¢y € [0,1] and p € [0, 1]. Define sequence x € [0,1], Kk =0,1,2,..., iteratively
by z+1 = F(zk), where
F, :[0,1] — [0, 1] is defined by

min{y, 22} for x € [0,1/2]
F.(z) = .
min{y,2 — 2z} forxz € [1/2,1]



Question 5 on Problem Sheet 4

Let ¢y € [0,1] and p € [0, 1]. Define sequence x € [0,1], Kk =0,1,2,..., iteratively
by z+1 = F(zk), where p=1/2
F, :[0,1] — [0,1] is defined by ! | |
min{y, 22} for x € [0,1/2] 5
Fu(x = . il
min{y,2 — 2z} forxz € [1/2,1]
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Question 5 on Problem Sheet 4

Let ¢y € [0,1] and p € [0, 1]. Define sequence x € [0,1], Kk =0,1,2,..., iteratively
by z+1 = F(zk), where ©w=2/3
F, :[0,1] — [0,1] is defined by ! | |
min{y, 22} for x € [0,1/2] s
Fu(x = . il
min{y,2 — 2z} forxz € [1/2,1]
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Question 5 on Problem Sheet 4

Let ¢y € [0,1] and p € [0, 1]. Define sequence x € [0,1], Kk =0,1,2,..., iteratively
by z+1 = F(zk), where p=4/5
F, :[0,1] — [0,1] is defined by ! | |
min{y, 22} for x € [0,1/2] s
Fu(x = . il
min{y,2 — 2z} forxz € [1/2,1]
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Question 5 on Problem Sheet 4

Let ¢y € [0,1] and p € [0, 1]. Define sequence x € [0,1], Kk =0,1,2,..., iteratively
by z+1 = F(zk), where =1
F, : [0,1] — [0,1] is defined by ! |
min{y, 22} for x € [0,1/2] s
Fu(x = . il
min{y,2 — 2z} forxz € [1/2,1]
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Question 5 on Problem Sheet 4
Let ¢y € [0,1] and p € [0, 1]. Define sequence x € [0,1], Kk =0,1,2,..., iteratively
by z+1 = F(zk), where =1
F, : [0,1] — [0,1] is defined by ! |

min{y, 22} for x € [0,1/2] s
F.(z) = . i
min{y,2 — 2z} forxz € [1/2,1]
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Question 5 on Problem Sheet 4

Let ¢y € [0,1] and p € [0, 1]. Define sequence x € [0,1], Kk =0,1,2,..., iteratively
by zpi1 = F,u(xk) , where w1 =28, e =10, uz = 8/3
F, :[0,1] — [0, 1] is defined by 46| ‘ ‘
F(z) = min{u, 2z} forz € [0,1/2] ’\
U \min{p, 2 - 22} forz e [1/2,1] 42| / \
40
If 2o € [0,1) has a binary expansion |
o | 38
a; I .
To = O.a1a2a3a4 e = Z 2—? W 36 1 \\
Jj=1 34+ y7
where a; € {0,1} for j =1,2,3..., ol P
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some maps look ‘similar’ to the tent map: Lorenz map



Question 5 on Problem Sheet 4

Let ¢y € [0,1] and p € [0, 1]. Define sequence x, € [0,1], k =0,1,2,..., iteratively
by g1 = F,u(xk) , Where logistic map
F, :[0,1] — [0,1] is defined by ! |
Fu(z) = m?n{u, 2z} for x € [0,1/2] 53
min{y,2 — 2z} forz e [1/2,1] |
If zo € [0,1) has a binary expansion s
© . I
a
x0:0.a1a2a3a4---222—§ 317
j=1 S
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some maps look ‘similar’ to the tent map: logistic map F/(z) = 4z (1 —x)



Question 5 on Problem Sheet 4
Let ¢y € [0,1] and p € [0, 1]. Define sequence x, € [0,1], k =0,1,2,..., iteratively
by zpy1 = F,u(xk) , where tent map
F, :[0,1] — [0,1] is defined by ! |

Fu(x) = {min{u, 2x} for z € [0,1/2] s

min{y,2 — 2z} forz € [1/2,1]

i)

If 2o € [0,1) has a binary expansion
o
a
Ty = 0.a1a2a3a4 000 = Z ;g
j=1
where a; € {0,1} for j =1,2,3...,
then odf
; — 0
Fl(k)(l’) _ 0.0k4+10k+20k+3 ... 1fag =0

FNTEYS
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0.a;,1a, .00 3 -- ifa, =1

wherea;.:1ifaj:O,andagzoifaj:I

some maps look ‘similar’ to the tent map and tent map F(x) is chaotic



Homeomorphism

Definition: Let M; and M be two metric spaces. A function h : My — M is a
homeomorphism if: (i) h is continuous;

(ii) h is one-to-one, i.e. if h(x) = h(y), then z = y;

(iii) h is onto, i.e. Yy € My there exists x € M such that h(z) = y;

(iv) the inverse mapping h~! : My — M) is continuous.



Conjugate maps

Definition: Let M; and M be two metric spaces. A function h : My — M is a
homeomorphism if: (i) h is continuous;

(ii) h is one-to-one, i.e. if h(x) = h(y), then z = y;

(iii) h is onto, i.e. Yy € My there exists x € M such that h(z) = y;

(iv) the inverse mapping h~! : My — M) is continuous.

Definition: Let F; : Ml; — M and F5 : My — My, be maps of metric spaces M; and
My, respectively. Then F} and F; are said to be conjugate if there is a
homeomorphism h : M; — My such that h o F} = F5 o h.



Conjugate maps
Definition: Let M; and M be two metric spaces. A function h : My — M is a
homeomorphism if: (i) h is continuous;
(ii) h is one-to-one, i.e. if h(x) = h(y), then z = y;
(iii) h is onto, i.e. Yy € My there exists x € M such that h(z) = y;
(iv) the inverse mapping h~! : My — M) is continuous.

Definition: Let F; : Ml; — M and F5 : My — My, be maps of metric spaces M; and
My, respectively. Then F} and F; are said to be conjugate if there is a
homeomorphism h : M; — My such that h o F} = F5 o h.

Theorem: Let F; : M; — Mj and Fy : My, — My be continuous maps of metric
spaces Ml; and My, respectively, and assume that there is a conjugacy h : M} — My
with h o Fy = F5 o h. Then Fj is chaotic if and only if Fy is chaotic.



Conjugate maps

Definition: Let M; and M be two metric spaces. A function h : My — M is a
homeomorphism if: (i) h is continuous;

(ii) h is one-to-one, i.e. if h(x) = h(y), then z = y;

(iii) h is onto, i.e. Yy € My there exists x € M such that h(z) = y;

(iv) the inverse mapping h~! : My — M} is continuous.
Definition: Let F; : Ml; — M and F5 : My — My, be maps of metric spaces M; and
My, respectively. Then F} and F; are said to be conjugate if there is a
homeomorphism h : M; — My such that h o F} = F5 o h.

Theorem: Let F; : M; — Mj and Fy : My, — My be continuous maps of metric
spaces Ml; and My, respectively, and assume that there is a conjugacy h : M} — My
with h o Fy = F5 o h. Then Fj is chaotic if and only if Fy is chaotic.

2x for z € [0,1/2

2—-2x forzell/2,1

Fy(z) = 42 (1 — x) with conjugacy h : [0,1] — [0, 1] given as h(x) = sin?(7z/2)
= logistic map Fy(z) = 4z (1 — z) is chaotic

Example: tent map Fi(z) = { } is conjugate to the logistic map



Further reading and exam preparation

There are 6 books in the Reading List which include a lot of additinal examples:

A : NONLINEAR
p— Nonlinear oo DYNAMICS ] —

B L || Equations and

o Systems AND CHAOS |EIES
Applied Nonlinear Bifurcation
Dynamical Systems Theory
and Chaos Third Edition

| CHAOTIC

| DYNAMICS | :

e ——— @ s

P.G.DRAZIN

Past papers are available here:
www.maths.ox.ac.uk/members/students/undergraduate-courses/examinations-assessments/past-papers

Please note that this course was called B5.6 Nonlinear Systems in previous years. It was renamed to
B5.6 Nonlinear Dynamics, Bifurcations and Chaos to give a clearer sense of what the course covers.


https://www.maths.ox.ac.uk/members/students/undergraduate-courses/examinations-assessments/past-papers

