Mathematical models of proteopathy in Alzheimer's disease

<u>Georgia S. Brennan</u>

Alzheimer's disease

Alzheimer's disease is a neurodegenerative disease which is characterised by the accumulation of misfolded Amyloid- β (A β) and tau proteins.

How do the driving factors interact?

Why such distinct spreading patterns?

Why do neurodegenerative diseases progress so slowly?

Can we interfere in the spreading?

We do not understand the fundamental mechanisms driving the disease

AD Hypotheses

The Prion hypothesis

The Amyloid hypothesis (debated)

InFoMM

Mathematical Modelling

Industrially Focused

AD Hypotheses

Neurodegenerative diseases propagate along axonal fibre pathways.

Clinical Data

The brain as a network

Brain network models can predict the histopathological patterns of Alzheimer's disease.

Clinical observation:

Continuum model results:

Network model results:

Weickenmeier et al (2019) Fornari et al (2019)

Mathematical Models

The brain as a network

Neurodegeneration: a reaction-diffusion process on the brain network.

Network extracted from data of 418 healthy brains:

Mathematical Institute

Macroscale models

Recent work has focused on the autocatalytic nature of protein dynamics in agreement with the prion-like hypothesis and captures the spatio-temporal spreading well.

 $L_{II}c_I + \alpha c_I [1 - c_I]$

 dc_I

 $\frac{dt}{dt} =$

The Fisher–Kolmogorov model :

This model can be extended to include aggregation kinetics and clearance

Network simulations

We can investigate the full model at the organ level by direct simulation.

We also need to know more about aggregate dynamics in the brain environment and at the brains scale

- Varying toxicity
- Varying transport properties
- Important in <u>drug modelling</u>

Clinical Data

Mathematical Institute

Aggregation models Smoluchowski's theory of aggregation:

Nucleation:

*n*₁times

Aggregation models

Nucleation:

Nucleation:

Aggregation:

$$C_i + C_j \xrightarrow{\alpha_{i,j}} C_{i+j}$$

Mathematical Institute

Physiological Background

Mathematical Models

Clinical Data

Fragmentation:

Mathematical Institute

Physiological Background

Clinical Data

Smoluchowski equations :

Project goals and objectives

- 1. Brief overview of hypotheses/ experimental observations that network models of neurodegeneration are based on
- 2. Start by analysing macroscale reaction-diffusion network models like the FKPP
- 3. Simulations and analysis
 - **Computational:** Run brain scale simulations including transport across a network representative of the brain's connectome. Compute average toxic mass evolution in the Braak regions and produce biomarker curves.
 - **Network analysis:** How does the brain's architecture influence pathology? Try different graph Laplacians. Try different connectome weights.
- 4. Extend to couple important effects like <u>clearance</u> in the model and analyse.
 - **Asymptotics:** Fixed point analysis. What is the role of clearance in your model?

5. Further work: Aggregation models.

Example result:

Connectivity is a source of resilience

Contact

Thank you

