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Computational mathematics by example Gauss & Ceres

In 1781, William Herschel discovered Uranus with a
telescope he had built in his back garden in Bath.

Astronomers had a theory for predicting the spacing
between the planets, the Titius–Bode law:

d(n) = 0.4 + 0.3× 2n, n = −∞, 0, 1, . . . .

William Herschel, 1738–1822
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Computational mathematics by example Gauss & Ceres

So where was the missing planet for n = 3? Astronomers around Europe
furiously searched the skies between Mars and Jupiter.

On 1 January 1801, Giuseppe Piazzi discovered Ceres,
almost exactly where the Titius–Bode law predicted!

But he could only observe it for 41 days before it was
lost behind the Sun—not long enough to compute its
orbit. How could it be found again?

Giuseppe Piazzi, 1746–1826
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Computational mathematics by example Gauss & Ceres

In Brunswick, the 24-year old Gauss had invented the
method of least squares, for estimating coefficients of
mathematical expressions from partial and noisy data.

This method works by finding the coefficients that
minimise the distance between the expression and the
data.

Gauss knew that orbits are approximately ellipses with
the sun at one focus, which left him with six parameters
to estimate from Piazzi’s 22 observations.

Gauss calculated for weeks on end; he published his
prediction for Ceres’ location in September 1801. On
December 7, astronomers found Ceres again, almost
exactly where he predicted.

Carl Friedrich Gauss, 1777–1855

P. E. Farrell (Oxford) Computational Mathematics 5 / 24



Computational mathematics by example Gauss & Ceres

In Brunswick, the 24-year old Gauss had invented the
method of least squares, for estimating coefficients of
mathematical expressions from partial and noisy data.

This method works by finding the coefficients that
minimise the distance between the expression and the
data.

Gauss knew that orbits are approximately ellipses with
the sun at one focus, which left him with six parameters
to estimate from Piazzi’s 22 observations.

Gauss calculated for weeks on end; he published his
prediction for Ceres’ location in September 1801. On
December 7, astronomers found Ceres again, almost
exactly where he predicted.

Carl Friedrich Gauss, 1777–1855

P. E. Farrell (Oxford) Computational Mathematics 5 / 24



Computational mathematics by example Gauss & Ceres

In Brunswick, the 24-year old Gauss had invented the
method of least squares, for estimating coefficients of
mathematical expressions from partial and noisy data.

This method works by finding the coefficients that
minimise the distance between the expression and the
data.

Gauss knew that orbits are approximately ellipses with
the sun at one focus, which left him with six parameters
to estimate from Piazzi’s 22 observations.

Gauss calculated for weeks on end; he published his
prediction for Ceres’ location in September 1801. On
December 7, astronomers found Ceres again, almost
exactly where he predicted.

Carl Friedrich Gauss, 1777–1855

P. E. Farrell (Oxford) Computational Mathematics 5 / 24



Computational mathematics by example Gauss & Ceres

In Brunswick, the 24-year old Gauss had invented the
method of least squares, for estimating coefficients of
mathematical expressions from partial and noisy data.

This method works by finding the coefficients that
minimise the distance between the expression and the
data.

Gauss knew that orbits are approximately ellipses with
the sun at one focus, which left him with six parameters
to estimate from Piazzi’s 22 observations.

Gauss calculated for weeks on end; he published his
prediction for Ceres’ location in September 1801. On
December 7, astronomers found Ceres again, almost
exactly where he predicted.

Carl Friedrich Gauss, 1777–1855

P. E. Farrell (Oxford) Computational Mathematics 5 / 24



Computational mathematics by example Gauss & Ceres

Annotated sketch from Gauss’ papers. Courtesy Georg-August-Universität Göttingen.
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Computational mathematics by example Euler’s Conjecture

It is possible to find two squares that sum to a square:

32 + 42 = 52,

and three cubes that sum to a cube:

33 + 43 + 53 = 63.

Leonhard Euler, 1707–1783

But Euler could not find natural solutions to

a31 + a32 = b3 or a41 + a42 + a43 = b4,

the first statement being Fermat’s Last Theorem.

So, in 1769, Euler conjectured that

∃ k > 1, n > 1, a1, . . . , an, b ∈ N+ : ak1 + ak2 + · · · akn = bk =⇒ k ≤ n.
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Computational mathematics by example Euler’s Conjecture

Euler’s Conjecture remained open for nearly 200 years.

In 1966, Leon J. Lander and Thomas R. Parkin discovered a
counterexample:
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Computational mathematics by example The Four-Colour Theorem

Computers are not just useful for finding counterexamples, though. They
can help us find proofs.

In 1852, Francis Guthrie was colouring a map of the
counties of England. He noticed he could satisfy the
constraint that counties sharing a border were coloured
differently with only four colours.

Was this true for all (reasonable) maps?

This is equivalent to colouring a graph: each region is a
vertex, and adjacent regions are connected with an
edge.

Francis Guthrie, 1831–1899
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Computational mathematics by example The Four-Colour Theorem

In 1879, Alfred Kempe published a clever proof. He
introduced an ‘unavoidable set’, a set of six
configurations that any graph must have at least one of.

He then proved that for each element of the
unavoidable set, a graph containing that fragment could
be coloured with four colours. Done!

However, in 1890, Percy Heawood showed Kempe’s
proof was wrong for the last element of his unavoidable
set.

While the proof was wrong, the basic strategy was
right.

Alfred Kempe, 1849–1922

Percy Heawood, 1861–1955
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Computational mathematics by example The Four-Colour Theorem

In 1976, Appel & Haken announced the first correct
proof of the four colour theorem.

With a computer, they found an unavoidable set with
1834 cases, and programmed it to mechanically check
that in each case the graph can be coloured with four
colours.

The proof took over 1000 hours of computer time.

Since then, many theorems have been proven with
computer-assisted proofs, among them
I Kepler’s conjecture on packing cannonballs;
I Keller’s conjecture on tiling Euclidean space;
I Feigenbaum’s conjecture in dynamical systems.

Kenneth Appel, 1932–2013

Wolfgang Haken, 1928–2022
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Computational mathematics by example Crystallography

Dorothy Hodgkin was one of Oxford’s pioneers of
computational mathematics.

In 1945, she identified the molecular structure of
penicillin. She did this by passing X-rays through the
atoms; the crystalline structure diffracts the beam in
different directions.

This allowed Hodgkin to compute the three-dimensional
electron density function of the molecule from the
two-dimensional diffraction patterns.

The calculations involved least squares, Fourier analysis,
and extensive use of group theory.

Dorothy Hodgkin, 1910–1994
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Computational mathematics by example Crystallography
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Computational mathematics by example Crystallography

Hodgkin discovered penicillin by hand calculation; to tackle larger
molecules, computers were required.

She chaired the committee overseeing Oxford’s first computer purchase in
1952, and her group was involved in founding the Oxford University
Computing Laboratory—now the Numerical Analysis Group.

In 1964 she won the Nobel Prize in Chemistry for her identification of
penicillin and vitamin B12.
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Computational mathematics by example

So what is this subject all about?

Computational mathematics
Computational mathematics is the subject that studies the use of
computation to solve mathematical problems.

These problems might be in pure mathematics (Euler’s Conjecture in
number theory, the Four-Colour Theorem in graph theory), or in applied
mathematics (Gauss’ discovery of the orbit of Ceres, Hodgkin’s work in
crystallography).

Computational mathematics is an ancient subject; it did not begin with
the invention of computers. Instead, computers were invented to speed up
computational mathematics!
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Computational mathematics by example

In 1985, Paul Halmos wrote

When you try to prove a theorem, you don’t just list
the hypotheses, and then start to reason. What you
do is trial and error, experimentation, guesswork.
You want to find out what the facts are.

Normally we present mathematics backwards from how it is
done. We state a clean, general, abstract theorem, and give
examples. But almost always the theorem was first
conjectured based on experiments and calculations.

As G. H. Hardy wrote,
The theory of numbers, more than any other branch
of mathematics, began by being an experimental
science. Its most famous theorems have all been
conjectured, sometimes a hundred years or more be-
fore they were proved; and they have been suggested
by the evidence of a mass of computations.

Paul Halmos, 1916–2006

Godfrey Hardy, 1877–1947
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Practicalities

Section 2

Practicalities
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Practicalities

In this course, we will study the practical side of computational
mathematics. Our objectives are

I to solve mathematical problems with computers;
I along the way to learn to program computers.

After this course, I hope to convince you that this subject can greatly aid
your study and practice of mathematics. It is also great fun!

On a pragmatic point, a very large fraction of Oxford mathematics
graduates will pursue careers where programming is useful, if not essential.
These include

I mathematical research;
I scientific research;
I quantitative finance;

I teaching;
I data science;
I management consulting.
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Practicalities

In this course, we will learn the Python programming
language.

Python is one of the world’s most popular programming
languages. In particular, it is the leading language in
scientific data analysis and machine learning.

Python
I has simple and elegant syntax;
I is quick and easy to learn;
I is free software.

Python was invented by Guido van Rossum in 1989.

Guido van Rossum, 1956–
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Practicalities

Unlike most of your courses, this course is studied mainly in your own
time, using the course handbook on

https://courses.maths.ox.ac.uk/course/view.php?id=4931

Weeks Chapters to read Optional chapters Problem sheet to start

1–2 MT 1–3 - -
3–4 MT 4–5 - 1
5–6 MT 7 8 2
7–8 MT 10 - 3
1–2 HT 12 to come 4

There are four two-hour demonstration sessions for this course; three this
term, and one next term. In demonstration session n you start problem
sheet n, and return it for marking in demonstration session n+ 1.

P. E. Farrell (Oxford) Computational Mathematics 21 / 24
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Practicalities

None of the work this term is formally assessed. Work collaboratively with
your friends and ask your tutors for advice.

This term’s work forms the basis for your projects in Hilary term. Three
projects will be announced; you choose two of them. The projects are
done in the same manner as the problem sheets for this term, but with
more emphasis on interweaving coding, mathematics, and discussion.

Your marks for computational mathematics form part of your marks for
the Preliminary Examinations. In particular, getting a passing grade is
necessary for passing the Preliminary Examinations.

The deadlines for these projects are
I 1st project: 12 noon on Monday of week 6 HT24
I 2nd project: 12 noon on Monday of week 9 HT24

These submissions must be your own unaided work.
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Practicalities

Your next steps:
I Download the course handbook.

I Find out your schedule for demonstration sessions!
I Install the required software before the demonstration sessions.

(Optionally) bring your laptops along to the next lecture to follow along
with installation.
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Practicalities

→ the Lander–Parkin counterexample
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How to submit problem sheets

Section 1

How to submit problem sheets
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How to submit problem sheets

→ using publish.py
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A brief tour of the course

Section 2

A brief tour of the course
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A brief tour of the course Week 3–4 MT

Week 3–4 MT teaches

I arithmetic,
I conditionals,
I iteration.

P. E. Farrell (Oxford) Computational Mathematics 6 / 17



A brief tour of the course Week 3–4 MT

Week 3–4 MT ends with a code for bisection, an algorithm for finding x?

such that f(x?) = 0.

It is based on the following theorem, a corollary of the Intermediate Value
Theorem.

Bolzano’s theorem (1817)
If f : [a, b] → R is continuous with f(a)f(b) < 0, then
there exists x? ∈ (a, b) with f(x?) = 0.

The statement f(a)f(b) < 0 is just a fancy way of
saying f(a) and f(b) have opposite signs.

Bernhard Bolzano, 1781–1848

We evaluate f at c = (a+ b)/2. We then have three possibilities:
1. f(c) = 0, so we are done!
2. f(c) has the same sign as f(a), so there exists a root in (c, b).
3. f(c) has the same sign as f(b), so there exists a root in (a, c).
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A brief tour of the course Week 3–4 MT

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1
f(c1)

a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

P. E. Farrell (Oxford) Computational Mathematics 8 / 17



A brief tour of the course Week 3–4 MT

0 x

f(x)

a0 b0

c0

f(c0)

a1 b1c1
f(c1)

a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

P. E. Farrell (Oxford) Computational Mathematics 8 / 17



A brief tour of the course Week 3–4 MT

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1
f(c1)

a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

P. E. Farrell (Oxford) Computational Mathematics 8 / 17



A brief tour of the course Week 3–4 MT

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1
f(c1)

a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

P. E. Farrell (Oxford) Computational Mathematics 8 / 17



A brief tour of the course Week 3–4 MT

0 x

f(x)

a0 b0c0

f(c0)

a1 b1

c1
f(c1)

a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

P. E. Farrell (Oxford) Computational Mathematics 8 / 17



A brief tour of the course Week 3–4 MT

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1

f(c1)
a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

P. E. Farrell (Oxford) Computational Mathematics 8 / 17



A brief tour of the course Week 3–4 MT

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1
f(c1)

a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

P. E. Farrell (Oxford) Computational Mathematics 8 / 17



A brief tour of the course Week 3–4 MT

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1
f(c1)

a2 b2

c2

f(c2)

a3 b3c3

f(c3)

a4b4

P. E. Farrell (Oxford) Computational Mathematics 8 / 17



A brief tour of the course Week 3–4 MT

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1
f(c1)

a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

P. E. Farrell (Oxford) Computational Mathematics 8 / 17



A brief tour of the course Week 3–4 MT

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1
f(c1)

a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

P. E. Farrell (Oxford) Computational Mathematics 8 / 17



A brief tour of the course Week 3–4 MT

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1
f(c1)

a2 b2c2

f(c2)

a3 b3

c3

f(c3)

a4b4

P. E. Farrell (Oxford) Computational Mathematics 8 / 17



A brief tour of the course Week 3–4 MT

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1
f(c1)

a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

P. E. Farrell (Oxford) Computational Mathematics 8 / 17



A brief tour of the course Week 3–4 MT

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1
f(c1)

a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

P. E. Farrell (Oxford) Computational Mathematics 8 / 17



A brief tour of the course Week 3–4 MT

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1
f(c1)

a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

P. E. Farrell (Oxford) Computational Mathematics 8 / 17



A brief tour of the course Week 3–4 MT

→ bisection.py

How can we use this to compute an approximation to π?
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A brief tour of the course Week 5–6 MT

Week 5–6 MT teaches

I lists, tuples
I dictionaries, sets,
I functions,
I plotting.
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A brief tour of the course Week 5–6 MT

Week 5–6 MT ends with a naïve code for primality testing, checking
whether a given integer is prime or not.

→ isprime.py

Can we make isprime(9999991111111) faster?
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A brief tour of the course Week 7–8 MT

Week 7–8 MT introduces symbolic computing, the use of computers to
automate the kind of mathematical manipulations you do on paper.

This includes expanding and simplifying expressions, differentiating and
integrating functions, calculating limits, and solving equations.

In 1843, describing Charles Babbage’s Analytical
Engine, Ada Lovelace wrote

Many persons who are not conversant with math-
ematical studies imagine that because the business
of the engine is to give its results in numerical nota-
tion, the nature of its processes must consequently
be arithmetical and numerical rather than algebraic
and analytical. This is an error. The engine can ar-
range and combine its numerical quantities exactly
as if they were letters or any other general symbols;
and in fact it might bring out its results in algebraic
notation were provisions made accordingly.

Ada Lovelace, 1815–1852
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A brief tour of the course Week 7–8 MT

Week 7–8 MT introduces symbolic computing, the use of computers to
automate the kind of mathematical manipulations you do on paper.

This includes expanding and simplifying expressions, differentiating and
integrating functions, calculating limits, and solving equations.

In 1843, describing Charles Babbage’s Analytical
Engine, Ada Lovelace wrote

Many persons who are not conversant with math-
ematical studies imagine that because the business
of the engine is to give its results in numerical nota-
tion, the nature of its processes must consequently
be arithmetical and numerical rather than algebraic
and analytical. This is an error. The engine can ar-
range and combine its numerical quantities exactly
as if they were letters or any other general symbols;
and in fact it might bring out its results in algebraic
notation were provisions made accordingly.

Ada Lovelace, 1815–1852

P. E. Farrell (Oxford) Computational Mathematics 12 / 17



A brief tour of the course Week 7–8 MT

In the associated problem sheet, we use symbolic computing to
I derive the equations for the orbit of the Earth around the Sun;

I explore the wave function of the hydrogen atom.
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A brief tour of the course Week 1–2 HT

Week 1–2 HT introduces numerical computing, a powerful expansion of
the conception of what it means to solve a mathematical problem.

We will study
I numerical linear algebra,
I numerical quadrature of integrals,
I least squares and curve-fitting,
I numerical solution of ODE initial value problems.

P. E. Farrell (Oxford) Computational Mathematics 14 / 17



A brief tour of the course Week 1–2 HT

Week 1–2 HT ends with a code for numerically simulating the solar system.
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→ solar.py
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Software installation

Section 3

Software installation
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Software installation

→ Windows
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Overview

General advice on projects

Project A: primality testing

Project B: the Kepler problem

Project C: percolation

Summary
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Overview
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Overview

Computational Mathematics is assessed by projects.

You must complete two projects out of three offered.

You can do the projects in any order.

Together, the two projects count for one third of a Prelims paper.

Passing Computational Mathematics is necessary to pass Prelims.
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Overview

The deadlines for these projects are

I 1st project: 12 noon on Monday of week 6 HT24 (19 Feb)
I 2nd project: 12 noon on Monday of week 9 HT24 (11 Mar)

Please submit online via Inspera before these deadlines.

The University imposes mark penalties for late submission.
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Overview

In weeks 1 and 2, the course continues the same as last term.
Demonstrator sessions are scheduled according to college, to support you
in completing the final problem sheet.

After that, there are drop-in demonstrator sessions, open to students of
any college:
I Weeks 3–8: Monday 3pm–4pm, and Thursday 3pm–4pm
I Week 5: Wednesday 3pm–5pm, and Friday 3pm–5pm.
I Week 8: Friday 3pm–5pm.

All drop-in sessions are in C1, except for W7 Thursday in C2, W8
Thursday in TCC.
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General advice on projects

Section 2
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General advice on projects

The projects are similar to extended problem sheets.

Write your code in Python, taking care to answer each question completely.

Use publish to generate a .html of the code and its output.

Submit both your code (.py) and the published output (.html), gathered
into exactly one .zip or .tar.gz file.

Examiners may wish to run your code to e.g. test if a function is
implemented correctly.
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General advice on projects

New in HT: you can now do

(terminal) python publish.py myscript.py

to generate myscript.html.

This is more efficient than using

(python) from publish import publish; publish()
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General advice on projects

What makes a good submission?

Projects are marked for mathematics, computing, and clarity of
presentation.

Markers are looking for:
I clear and well-written code;
I computational evidence that each function is correct;
I clear and comprehensible plots (e.g. axis labels, titles, legends);
I mathematical discussion that indicates an understanding of the

algorithms and observed results.
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General advice on projects

We strongly recommend you complete and upload them in good time.

You may have unforeseen problems with
I getting the code to work correctly;
I hardware issues, e.g. your computer failing;
I network problems, when trying to upload.

Completing the projects in good time also gives you the opportunity to
proofread and edit your work before submission.

Keep good backups of all your work.
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General advice on projects

All projects must be your own unaided work. You will be asked to
make a declaration to this effect when you submit them.

Examples of unacceptable conduct include:
I copying any part of anyone else’s program;
I using someone else’s program as a model;
I agreeing a detailed program plan with others;
I using generative AI (ChatGPT etc) to produce any part of your code;
I posting questions on the internet, such as on StackExchange;
I sharing your work with other students (actively or passively, e.g. by

uploading your work somewhere available to the public).

The University’s plagiarism policy applies in full. Potential penalties for
plagiarism range from deduction of marks to expulsion.
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Project A: primality testing

In 1801, in his magnum opus Disquisitiones
Arithmeticae, Gauss wrote

The problem of distinguishing prime numbers
from composite numbers and of resolving the
latter into their prime factors is known to be
one of the most important and useful in arith-
metic. It has engaged the industry and wisdom
of ancient and modern geometers to such an
extent that it would be superfluous to discuss
the problem at length. … Further, the dignity
of the science itself seems to require that every
possible means be explored for the solution of
a problem so elegant and so celebrated.

At Gauss’ suggestion, in this project you will explore
algorithms for primality testing.

Carl Friedrich Gauss, 1777–1855
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Project A: primality testing

The first step in the Rivest–Shamir–Adleman (RSA)
cryptosystem, and many others, is to choose two large
primes p and q (secret), and compute n = pq (public).

To choose p and q, the standard method is to keep
choosing random integers until a primality test passes.

Ron Rivest, 1947–

Adi Shamir, 1952–

Leonard Adleman, 1945–
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Project A: primality testing

In 1202, in the Liber Abaci, Leonardo of Pisa
(Fibonacci) gave the first algorithm for determining
whether a number n ∈ N is prime, trial division.

If it is even, then he recognises its composition.
However if odd, then it will be composite or
prime. … Always he goes on dividing in order by
prime numbers until he will find a prime number
by which he can divide, and thence he will come
to the square root; if he will be able to divide by
none of them, then one will judge the number
to be prime.

Can we do better than trial division?

Leonardo of Pisa, c. 1170–1250
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Project A: primality testing

Yes, we can do better than trial division.

In this project you will implement and investigate the
Fermat and primality Miller–Rabin tests for primality.

The current state of the art in primality testing is to
combine the Miller–Rabin test with another test we
won’t implement, called the Lucas probable prime test.

This combination is known as the
Baillie–Pomerance–Selfridge–Wagstaff test, and is the
algorithm used in most practical mathematical software.

No composite number is known that falsely passes this
test. The construction of such a composite number, or
a proof that no such number exists, would solve a major
open question in computational number theory.

Pierre de Fermat, 1607–1665

Gary Miller, ?–

Michael Rabin, 1931–
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Project B: the Kepler problem

The glorious triumph of Newton’s twin discoveries of
calculus and Newtonian mechanics was that it allowed
us to make physical predictions by solving differential
equations.

Newton’s second law provides an initial value problem
for a second-order differential equation that describes
the motion of a given system for all future time.

This tradition continues to this day; all of our physical
theories are encoded in differential equations:

Theory Differential equation

Classical mechanics Hamilton equations
Electromagnetism Maxwell equations
Fluid mechanics Navier–Stokes equations

Quantum mechanics Schrödinger equation
General relativity Einstein field equations

Isaac Newton, 1643–1727
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Project B: the Kepler problem

However, almost all differential equations cannot be
solved by hand!

If you want to make physical predictions, you must
either extract partial information from the equations
(e.g. conservation laws, a priori estimates, asymptotic
statements) …

… or solve the equations numerically. The numerical
solution of differential equations is one of the secret
technologies underpinning industrial civilisation; it
influences almost everything, and almost no member of
the public has heard of it.

Euler proposed the first useful scheme for the numerical
solution of initial value problems in 1768, the forward
Euler method, in Institutiones Calculi Integralis.

Leonhard Euler, 1707–1783
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Project B: the Kepler problem

In this project you will investigate algorithms for the
numerical solution of differential equations, in the
context of the Kepler problem.

The Kepler problem describes the orbit of a single
planet around its star. Here is an orbit and its forward
Euler approximations for different timesteps.

Johannes Kepler, 1571–1630
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Project B: the Kepler problem

The reason for this surprising failure is that the
equations of motion have a deep geometric structure
that the forward Euler method neglects.

This geometric structure is exposed in the Hamiltonian
formulation of classical mechanics, and has a
fundamental connection to symmetries, via Noether’s
theorem.

In this project you will study numerical methods that
honour and reflect this geometric structure.

Such methods are essential for accurate long-term
simulations of the solar system or understanding the
molecular dynamics of complex materials.

William Rowan Hamilton,
1805–1865

Emmy Noether, 1882–1935

Loup Verlet, 1931–2019
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Project B: the Kepler problem

The topic of identifying and preserving hidden algebraic,
topological, or geometric structures when solving
differential equations is a current research frontier.

For example, there remain major open questions about
the numerical solution of the Navier–Stokes equations
of fluid mechanics, or the Einstein field equations of
general relativity.

Research in this area allows us to simulate phenomena
such as the merger of two black holes.

Claude–Louis Navier,
1785–1836

George Gabriel Stokes,
1819–1903

Albert Einstein, 1879–1955
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Project C: percolation

Statistical mechanics, founded by Maxwell, Boltzmann,
and Gibbs in the 1800s, applies statistical and
probabilistic methods to large assemblies of microscopic
entities.

For example, the Newtonian approach to understanding
a gas would be to track the velocity and position of
each of the trillions of trillions of molecules in a typical
cubic metre.

Maxwell’s great insight was that this description was
excessive. To understand the macroscopic properties of
the gas like its pressure or temperature, you could
instead merely store a probability distribution recording
statistics about the molecules.

James Clerk Maxwell,
1831–1879

Ludwig Boltzmann, 1844–1906

Josiah Willard Gibbs,
1839–1903
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One of the major goals of statistical mechanics is to understand and
predict phase transitions. A phase transition is an abrupt, discontinuous
change in the properties of a system.

For example, if you cool a gas, at a critical temperature it will (usually)
turn into a liquid, with its density and volume changing discontinuously.

Phase diagram of ice, from Hansen (2021).
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Several phases of H2O.
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One route to understanding phase transitions is to
study simpler mathematical systems that exhibit them.

A prominent class of such systems is studied in
percolation theory. Percolation theory describes the
properties of a graph as nodes or edges are added.

Percolation theory was founded in a seminal 1957
article by Broadbent & Hammersley. Hammersley was
later a professor at Trinity College, Oxford.

Percolation theory is active to this day. Hugo
Duminil-Copin won a Fields Medal in 2022 for his work
in this area.

John Hammersley, 1920–2004

Hugo Duminil-Copin, 1985–
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We consider the simplest unsolved case, Bernoulli site percolation.

Each site on an n× n grid is open or closed, open with probability p.

A site is full if it is open and can be connected via a chain of open sites to
an open site in the top row (moving left, right, up, down).
The system percolates if there is a full site on the bottom row.
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Each site is open with vacancy probability p.

For a given p, what is the probability of percolation C(p)?

This exhibits a phase transition!

C(p) jumps very rapidly from 0 to 1 around a critical p = pc.

Despite a great deal of effort, no analytical formula is known for the
critical probability pc.
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To estimate C(p), we use Monte Carlo methods.

Essentially, for fixed p we will draw many sample grids,
and count the fraction that percolate.

The first thoughts and attempts I made to prac-
tice were suggested by a question which oc-
curred to me in 1946 as I was convalescing from
an illness and playing solitaires. The question
was what are the chances that a Canfield soli-
taire laid out with 52 cards will come out suc-
cessfully? After spending a lot of time trying
to estimate them by pure combinatorial calcu-
lations, I wondered whether a more practical
method than “abstract thinking” might not be
to lay it out say one hundred times and sim-
ply observe and count the number of successful
plays.

Stanisław Ulam, 1909–1984

John von Neumann, 1903–1957
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Summary

This year’s projects are
I primality testing;
I the Kepler problem;
I percolation;

I hope that you find the projects interesting, and that you have fun!
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