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Option pricing: binomial
model




Overview

@ Arbitrage pricing
@ Binomial trees

@ Risk-neutral valuation
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Financial Options

Definition
A European call (put) option gives the right to the holder of the option to

purchase (sell) the underlying, for example a stock S, at a pre-specified time,

called the expiration date T, for a pre-specified amount known as the strike price
K.

Definition
An American call/put option is like a European option with the difference that

it can be exercised (i.e., buy or sell the underlying) at any time up until, and
including, expiration T.
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Pricing

Simple example of binomial tree setup to price a call option

@ Assume that there are two possible states.
e A stock is trading at 100 and tomorrow it will either

@ go up to 101 or
@ go down to 99.

@ What is the value of a European call option with strike price K = 1007
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|
Pricing

Simple example of binomial tree setup to price a call option

@ Assume that there are two possible states.
e A stock is trading at 100 and tomorrow it will either

@ go up to 101 or
@ go down to 99.

@ What is the value of a European call option with strike price K = 1007

@ What happens if the probability of landing in the down state is
qg=4{.25,0.5,0.95}7
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Simple world

@ Two states of nature that occur with probability p and g =1 — p, and two
traded assets

@ Asset 1 (A1) pays 1 in state 1 and 1 in state 2, i.e., pays (1,1)
@ Asset 2 (Ay) pays 0 in state 1 and 3 in state 2, i.e., pays (0, 3)
@ Price of A; is p; and of As is po

Now, assume that there is a third asset in this simple economy paying (2,3).
What is its initial price p3?
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Pricing asset A3

@ Set up a portfolio MN(t = 0) consisting of a units of A; and b units of A,.
Find a and b such that M(t = 1) = As(1).
MN(l)=ax1+bx0

and
Mg(l)=ax1+bx3.

o We require that M,(1) =2 and My(1) = 3, i.e., we replicate Asz's payoff.
@ Therefore, a=2 and b=1/3 and at time t =0,

1
P3:2P1+§P2~
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Pricing a Call option in a Binomial model

Two states of the world, up and down, with probabilities p and g =1 — p,
respectively.

Starting value of stock is S.

In the ‘up’ state, with probability p, asset becomes uS where u is a constant.
In the ‘down’ state asset becomes d S where d is a constant.

There is a risk-free bond that pays a constant interest rate r.

In the up state the payoff of the call is

CE =max(u$S - K,0).
In the down state the payoff of the call is

CS = max(dS — K,0).
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Pricing the call at t =0

@ As above, set up a portfolio with B cash in a bond and A amount of the
stock to replicate the payoff of option:

No)=B+AS.

@ Choose A such that
AuS+RB=CE,

and
AdS+RB=CF,

where the gross risk free rateis R=1+4r.

A. Cartea (Ml & OMI) B8.3 10/36



In matrix form, we solve the system of equations

s RllE]-lE]

therefore
A 1 R -R CL‘,E
B| R(uS-dS)| —dS uS cE |
50 E E E E
:Cu—Cd and B:—dCu+qu
uS—dSs R(u—d)
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Hence, the value of the portfolio at time t = 0 is, by no arbitrage, the same
value as that of the call, i.e., M(0) = CE(S,t =0; K, 1).

CE(S,t=0;K,1)

A. Cartea (Ml & OMI)

= AS+B

_ CE-CE g —dCErucy

- uS-dS R(u—d)

_ 1[R-d e, u-R
Rlu—d “  u—d“
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Risk-neutral valuation

The value of the call can be seen as the discounted weighted average of the payoff
at expiry, with weights
, R-d ., U—R
u—d’

p = and g =
and write the price of the call as the expectation (under the new measure) as

1
CE(S,t=0;K,1) = 7 [p*CE+q°Ch].

Can we, in this risk-neutral world, calculate the discounted expected value of the
stock price R~ E*[$]?
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@ First, note that
CE(S,t=0;K=0,1)=S.

@ Then
CE(S,t=0;K=0,1) = %[p*Cf+q*Cc’f]
S = %[p*uS—Fq*dS]
- %[p*u5+(1—p*)d5]
_ %[p*us—k(l—l?*)ds]
= B
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Model independent properties

Call prices satisfy the following inequalities

Q
CAS,t: K, T) > CE(S,t; K, T),

Q

CA(S,t; K1, T) < CA(S,t; Ko, T) if Ki > Ko,
Q

CAS,t;K, T1) > CA(S, K, To), ifTh>Ts,
Q

CA(57 t; K7 T) S 57

(5

CA0,t; K, T)=CE(0,t;K, T) = 0.
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Early Exercise

Proposition

Let S be an underlying security that pays no dividends. Then an American call
written on S is never exercised early.

First we establish the inequality
CAS, K, T)>S —Ke r(T71,

Consider the portfolio CA(S,t; K, T) — S + K e~"(T=%)_If the American call is
exercised early we obtain

S—K-S4+Ke T =K T-9_1)<0.

If we wait until T we exercise if S > K and obtain 0 profit; if S < K we do not
exercise the option and obtain K — S > 0.
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Therefore we are better off waiting until T, hence we have shown
CAS, 6K, T)>S—Ke "(T71),

To show that an American call written on a stock that pays no dividend is never
exercised we observe that a call yields S — K if exercised but

S—K<S—Ke"T9 < CAS, K, T).

QED

Proposition

Put-call-parity for European options:

CE(S,t;K, T)—PE(S,t; K, T) =S —Ke "(T71)
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Brownian Motion, Stochastic
Integrals, Ito’'s Lemma




Overview

Brownian Motion, Wiener Process
Stochastic Integrals

I1td's Lemma

Modelling returns
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Wiener process, Brownian motion

Definition
A stochastic process W is called a Wiener process or Brownian motion if the
following conditions hold.

Q@ W, =0.

@ The process W has independent increments, i.e., if r < s <t < u then

W, — W; and W, — W, are independent stochastic variables.
@ For s < t the distribution of the stochastic variable W, — W; is N(0, t — s).
@ W has continuous trajectories (almost surely, i.e., with probability one).

v

Note: It is not immediately obvious that we can rigorously construct a process W
which satisfies these four properties, but it can be done.
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Elementary properties of Brownian motion

Proposition
Let W; be a Brownian motion and let u > 0, then

W, ~ N(0, u) (1)
and therefore

EW,] =0 and  Var(W,)=u.

Proof.
The result in (1) is a consequence of the third property for t = v and s =0
together with the property that Wy = 0. O
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Figure: Five paths of Brownian motion and its density at various points in time.
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Proposition

Let W; be a Brownian motion. Given that W; ~ N(0,t) we have

P(W; > x) = ¢ (%) and  P(W,<x)=o (\2) (@

v

Proof.
We have that

]P’(Wt>x):IP’(W:[;0>X\;EO>:IP<Z>\/XE>:¢C<\/XE> (3)

where ®¢(x) = [~ e~ 7 dz, and we are using that Z = (W; —0)/y/tisa

V27
standard Normal random variable. The second equality follows from the identity
P(A) =1 —P(A°). O

o
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Proposition

Let W; be a Brownian motion, then

E[W,; W] = min(s, t). (4)

Proof.
Let 0 <s<t. Then

EW,W,] = E[Ws(Ws+ W, —-W,)] = E[W = Var(W,) = s
because
E[Ws (W, — Ws)] = E[(Ws — Wo) (W;: — Wi)] = E[W,; — Wo] E[W, — W] =0,
(last step is because of independent increments). This means that in general, for

s5;t>0

R(s,t) = E[W,W, = min(s,t). (5)

This is known as the covariance function of Brownian motion. O

v
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Proposition
Let W; be a Brownian motion, and let 0 < s < t, then
X —
P(Wt<x|Ws—y):¢<\/%> . (6)
Proof.
P(W:; <x|W;=y)=P (W, — W, + W, < x|W; =y) @)
:P(Wt_Ws+YSX|Ws—Y) (8)
=P(W: — Ws < x—y|W; =y) 9)
=P(W; - Ws<x-y), (10)
because W; — W; is independent from W;. Lastly,
W, — W X—y
P(W:<x|W;=y)=P 11
( t _X| y) ( m \/ﬁ) ( )
- ( ) > . (12)
t—s
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Corollary

Let W; be a Brownian motion, and let 0 < s < t, then

E[W | Ws=y]=y. (13)

Corollary

Let W; be a Brownian motion, and let 0 < s < t, then

1 _x=y?

W=y (X) = ———=e 2. (14)

27(t —s)

Corollary

Let (W;)¢>o be a standard Brownian motion then (—W;)¢>¢ is also a standard
Brownian motion.
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Quadratic Variation




|
Partitions and QV

A partition of the time interval [0, t] is a set of the form
M=t =0<t; <..<t,=t. The size of the partition is

i = nglT‘gf_l(tiﬂ—ti),

i.e., equal to the largest interval of the partition. The quadratic variation (QV)
of a random process X over a fixed time interval [0, t] is

n—1

X, X = li X — X:)?
[ ) ]t lmh”l)g;( tis1 t,)

if this limit exists and does not depend on the choice of the sequence of partitions
nll

1] follow closely the material in “Stochastic Calculus for Finance. 1l Continuous-time
models”, by S. Shreve
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QV of deterministic function

Let f(t) be a continuous function defined on 0 <t < T. The QV of f upto T is

[faf]ql': lim Z[f I+1 77[ )] (15)

-

where the partition M is {tp, t1, -+, ty}, 0=tg <ty < --- < t,= T, and
n = n(M) denotes the number of partition points in .

Next, we show that the QV of the function f is zero.
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QV of deterministic function

S ()~ FF = 3P (61— 02 <IN Y0P )P (b2 )

i=0

= lm ||Z|f’ 2 (b1 — 1)

lim [N lim Z|f (tiy1 — t7)

nf—o Inj—o <

o
lim |1 lim / |f'(t)|? dt = 0.
Inj—o Inl—=o Jo

In last step fOT |f'(t)|? dt is finite because f is continuous.
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Sampled QV of Brownian motion

Let W denote a standard Brownian motion. We define

n—1

(W, Wz = 3" (W, — W) (16)

to be the sampled quadratic variation for a single partition 1.
Proposition
The following holds true
E[[W, W[l =
Var([W, W]) = E[(W,W]] —¢t)’] — o0,

as n — oo.
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proof We first note that

n—1
E[[W; W]?] = E Z(Wti+l Wf)2‘|
i=0
n—1
= Y E[(W,, - W)
-
= Z(ti+1_ti)
i=0
= t,

because W;,,, — Wy, ~ N(0, tiz1 — t;). Thus the expected sampled quadratic
variation is independent of the partition, and trivially lim,_,. E[[W, W]}] = t,
because the expectation here does not depend on n. Next,
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Var([W, W]7)
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n—1

2
E[(w, Wl - ] =E <Z(Wt,-+1 — W) - t)

i=0

n—1 2
E <z (Wi, — Wy)® = (tiy1 — fi)])
i=0

(all cross products when squaring the above have expectation zero)
n—1 )

E [((Wt,-ﬂ — We)? — (tit1 — t;)) ]
i=0
n—1
D OE[(Weyy = We)* = 2(tisa — ) (Weyy — We)? + (61 — 6)?]
i=0

n—1

D 3t — t)? =2 (i1 — 6)* + (11 — 1)

i=0

(use Wy — We; ~ \Jtigq — & Z and E[Z%] = 3 where Z ~ N(0, 1))
n—1 n—1

2> (tipn— ) <20 (ti1 — 1)

i=0 i=0
2Ny ¢ which tends to zero if ||| — 0.
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QV of Brownian motion

We have proved the following theorem.

Theorem

Let W denote a Brownian motion. Then [W W]t =T for all T > 0 almost
surely.

@ We proved convergence in mean square, also called L? convergence.

@ In general the quadratic variation [X, X]; of a process X is a random process,
but for Brownian motion W, [W, W]; = t almost surely (a.s.).

o Almost surely means that there are some paths of the Brownian motion for
which [W, W], = t is not true.

e The probability of the set of paths for which [W, W]; = t is not true is zero.

A. Cartea (Ml & OMI) B8.3 34/36



To bear in mind

Above we used
E[(Wy11 — W) =tiza—t; and  Var[(Wi1 — We)2] = tipr — ¢
Intuitively, one would like to claim that
(W1 — W )* ~ i1 — 8,

which makes sense because for a small time increment both sides are very small.
However, best to think about this as the square of a Normal r.v.
Wt;+1 - Wt;

Y'+1 ==
' tiy1 — t

: (17)

the distribution of both sides is the same regardless of the time interval.
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Now, take time interval t;;1 — t; = T/n and write

2

T Yin

n = (Wti+1 - Wti)z' (18)

o By the LLN
ZY,ZH—HE[ 20=1 as n—oo.

@ Thus,
Z(Wt,+1 W) —T. (19)
@ Each term of the sum above can be different from its mean
tivn—ti=T/n,
but when we sum many of them the differences average out to zero.
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