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Option pricing: binomial
model

Á. Cartea (MI & OMI) B8.3 2 / 36



Overview

Arbitrage pricing

Binomial trees

Risk-neutral valuation
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Financial Options

Definition

A European call (put) option gives the right to the holder of the option to
purchase (sell) the underlying, for example a stock S , at a pre-specified time,
called the expiration date T , for a pre-specified amount known as the strike price
K .

Definition

An American call/put option is like a European option with the difference that
it can be exercised (i.e., buy or sell the underlying) at any time up until, and
including, expiration T .
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Pricing

Simple example of binomial tree setup to price a call option

Assume that there are two possible states.
A stock is trading at 100 and tomorrow it will either

go up to 101 or
go down to 99.

What is the value of a European call option with strike price K = 100?
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Pricing

Simple example of binomial tree setup to price a call option

Assume that there are two possible states.
A stock is trading at 100 and tomorrow it will either

go up to 101 or
go down to 99.

What is the value of a European call option with strike price K = 100?

What happens if the probability of landing in the down state is
q = {.25 , 0.5 , 0.95}?
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Simple world

Two states of nature that occur with probability p and q = 1− p, and two
traded assets

Asset 1 (A1) pays 1 in state 1 and 1 in state 2, i.e., pays (1, 1)

Asset 2 (A2) pays 0 in state 1 and 3 in state 2, i.e., pays (0, 3)

Price of A1 is p1 and of A2 is p2

Now, assume that there is a third asset in this simple economy paying (2,3).
What is its initial price p3?
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Pricing asset A3

Set up a portfolio Π(t = 0) consisting of a units of A1 and b units of A2.
Find a and b such that Π(t = 1) = A3(1).

Πu(1) = a× 1 + b × 0

and
Πd(1) = a× 1 + b × 3 .

We require that Πu(1) = 2 and Πd(1) = 3, i.e., we replicate A3’s payoff.

Therefore, a = 2 and b = 1/3 and at time t = 0,

p3 = 2 p1 +
1

3
p2 .

Á. Cartea (MI & OMI) B8.3 8 / 36



Pricing a Call option in a Binomial model

Two states of the world, up and down, with probabilities p and q = 1− p,
respectively.

Starting value of stock is S .

In the ‘up’ state, with probability p, asset becomes u S where u is a constant.

In the ‘down’ state asset becomes d S where d is a constant.

There is a risk-free bond that pays a constant interest rate r .

In the up state the payoff of the call is

CE
u = max(u S − K , 0) .

In the down state the payoff of the call is

CE
d = max(d S − K , 0) .
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Pricing the call at t = 0

As above, set up a portfolio with B cash in a bond and ∆ amount of the
stock to replicate the payoff of option:

Π(0) = B +∆ S .

Choose ∆ such that
∆ u S + R B = CE

u ,

and
∆ d S + R B = CE

d ,

where the gross risk free rate is R = 1 + r .
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In matrix form, we solve the system of equations[
u S R
d S R

] [
∆
B

]
=

[
CE
u

CE
d

]
,

therefore [
∆
B

]
=

1

R (u S − d S)

[
R −R

−d S u S

] [
CE
u

CE
d

]
,

so

∆ =
CE
u − CE

d

u S − d S
and B =

−d CE
u + u CE

d

R (u − d)
.
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Hence, the value of the portfolio at time t = 0 is, by no arbitrage, the same
value as that of the call, i.e., Π(0) = CE (S , t = 0;K , 1).

CE (S , t = 0;K , 1) = ∆S + B

=
CE
u − CE

d

u S − d S
S +

−d CE
u + u CE

d

R (u − d)

=
1

R

[
R − d

u − d
CE
u +

u − R

u − d
CE
d

]
.
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Risk-neutral valuation

The value of the call can be seen as the discounted weighted average of the payoff
at expiry, with weights

p⋆ =
R − d

u − d
and q⋆ =

u − R

u − d
,

and write the price of the call as the expectation (under the new measure) as

CE (S , t = 0;K , 1) =
1

R

[
p⋆CE

u + q⋆CE
d

]
.

Can we, in this risk-neutral world, calculate the discounted expected value of the
stock price R−1 E⋆[S1]?
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First, note that
CE (S , t = 0;K = 0, 1) = S .

Then

CE (S , t = 0;K = 0, 1) =
1

R

[
p⋆ CE

u + q⋆ CE
d

]
S =

1

R
[p⋆ u S + q⋆ d S ]

=
1

R
[p⋆ u S + (1− p⋆) d S ]

=
1

R
[p⋆ u S + (1− p⋆) d S ]

=
1

R
E⋆[S1] .
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Model independent properties

Call prices satisfy the following inequalities

1

CA(S , t;K ,T ) ≥ CE (S , t;K ,T ) ,

2

CA(S , t;K1,T ) ≤ CA(S , t;K2,T ) , if K1 ≥ K2 ,

3

CA(S , t;K ,T1) ≥ CA(S , t;K ,T2) , if T1 ≥ T2 ,

4

CA(S , t;K ,T ) ≤ S ,

5

CA(0, t;K ,T ) = CE (0, t;K ,T ) = 0 .
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Early Exercise

Proposition

Let S be an underlying security that pays no dividends. Then an American call
written on S is never exercised early.

First we establish the inequality

CA(S , t;K ,T ) ≥ S − K e−r (T−t) .

Consider the portfolio CA(S , t;K ,T )− S + K e−r (T−t). If the American call is
exercised early we obtain

S − K − S + K e−r (T−t) = K (e−r (T−t) − 1) < 0 .

If we wait until T we exercise if S ≥ K and obtain 0 profit; if S < K we do not
exercise the option and obtain K − S > 0.
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Therefore we are better off waiting until T , hence we have shown

CA(S , t;K ,T ) ≥ S − K e−r (T−t) .

To show that an American call written on a stock that pays no dividend is never
exercised we observe that a call yields S − K if exercised but

S − K ≤ S − K e−r (T−t) ≤ CA(S , t;K ,T ) .

QED

Proposition

Put-call-parity for European options:

CE (S , t;K ,T )− PE (S , t;K ,T ) = S − K e−r (T−t) .
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Brownian Motion, Stochastic
Integrals, Ito’s Lemma
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Overview

Brownian Motion, Wiener Process

Stochastic Integrals

Itô’s Lemma

Modelling returns
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Wiener process, Brownian motion

Definition

A stochastic process W is called a Wiener process or Brownian motion if the
following conditions hold.

1 W0 = 0.

2 The process W has independent increments, i.e., if r < s ≤ t < u then
Wu −Wt and Ws −Wr are independent stochastic variables.

3 For s < t the distribution of the stochastic variable Wt −Ws is N(0, t − s).

4 W has continuous trajectories (almost surely, i.e., with probability one).

Note: It is not immediately obvious that we can rigorously construct a process W
which satisfies these four properties, but it can be done.
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Elementary properties of Brownian motion

Proposition

Let Wt be a Brownian motion and let u > 0, then

Wu ∼ N(0, u) (1)

and therefore
E[Wu] = 0 and Var(Wu) = u .

Proof.

The result in (1) is a consequence of the third property for t = u and s = 0
together with the property that W0 = 0.
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Figure: Five paths of Brownian motion and its density at various points in time.
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Proposition

Let Wt be a Brownian motion. Given that Wt ∼ N(0, t) we have

P(Wt > x) = Φc

(
x√
t

)
and P(Wt ≤ x) = Φ

(
x√
t

)
. (2)

Proof.

We have that

P(Wt > x) = P
(
Wt − 0√

t
>

x − 0√
t

)
= P

(
Z >

x√
t

)
= Φc

(
x√
t

)
(3)

where Φc(x) =
∫∞
x

1√
2π

e− z2 dz , and we are using that Z = (Wt − 0)/
√
t is a

standard Normal random variable. The second equality follows from the identity
P(A) = 1− P(Ac).
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Proposition

Let Wt be a Brownian motion, then

E[Ws Wt ] = min(s, t) . (4)

Proof.

Let 0 ≤ s ≤ t. Then

E[WsWt ] = E[Ws(Ws +Wt −Ws)] = E[W 2
s ] = Var(Ws) = s

because
E[Ws (Wt −Ws)] = E[(Ws −W0) (Wt −Ws)] = E[Ws −W0]E[Wt −Ws ] = 0,
(last step is because of independent increments). This means that in general, for
s, t ≥ 0

R(s, t) := E[Ws Wt ] = min(s, t) . (5)

This is known as the covariance function of Brownian motion.

Á. Cartea (MI & OMI) B8.3 24 / 36



Proposition

Let Wt be a Brownian motion, and let 0 < s < t, then

P (Wt ≤ x |Ws = y) = Φ

(
x − y√
t − s

)
. (6)

Proof.

P (Wt ≤ x |Ws = y) = P (Wt −Ws +Ws ≤ x |Ws = y) (7)

= P (Wt −Ws + y ≤ x |Ws = y) (8)

= P (Wt −Ws ≤ x − y |Ws = y) (9)

= P (Wt −Ws ≤ x − y) , (10)

because Wt −Ws is independent from Ws . Lastly,

P (Wt ≤ x |Ws = y) = P
(
Wt −Ws√

t − s
≤ x − y√

t − s

)
(11)

= Φ

(
x − y√
t − s

)
. (12)
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Corollary

Let Wt be a Brownian motion, and let 0 < s < t, then

E [Wt |Ws = y ] = y . (13)

Corollary

Let Wt be a Brownian motion, and let 0 < s < t, then

fWt |Ws=y (x) =
1√

2π(t − s)
e−

(x−y)2

2 (t−s) . (14)

Corollary

Let (Wt)t≥0 be a standard Brownian motion then (−Wt)t≥0 is also a standard
Brownian motion.
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Quadratic Variation
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Partitions and QV

A partition of the time interval [0, t] is a set of the form
Π = t0 = 0 < t1 < ... < tn = t. The size of the partition is

∥Π∥ = max
0≤i≤n−1

(ti+1 − ti ) ,

i.e., equal to the largest interval of the partition. The quadratic variation (QV)
of a random process X over a fixed time interval [0, t] is

[X ,X ]t = lim
∥Π∥→0

n−1∑
i=0

(Xti+1 − Xti )
2

if this limit exists and does not depend on the choice of the sequence of partitions
Π.1

1I follow closely the material in “Stochastic Calculus for Finance. II Continuous-time
models”, by S. Shreve
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QV of deterministic function

Let f (t) be a continuous function defined on 0 ≤ t ≤ T . The QV of f up to T is

[f , f ]nT = lim
∥Π∥→0

n−1∑
i=0

[f (ti+1)− f (ti )]
2 , (15)

where the partition Π is {t0, t1, · · · , tn}, 0 = t0 < t1 < · · · < tn = T , and
n = n(Π) denotes the number of partition points in Π.

Next, we show that the QV of the function f is zero.
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QV of deterministic function

n−1∑
i=0

[f (ti+1)− f (ti )]
2 =

n−1∑
i=0

f ′(t∗i )
2 (ti+1 − ti )

2 ≤ ∥Π∥
n−1∑
i=0

|f ′(t∗i )|2 (ti+1 − ti )

= lim
∥Π∥→0

∥Π∥
n−1∑
i=0

|f ′(t∗i )|2 (ti+1 − ti )

= lim
∥Π∥→0

∥Π∥ lim
∥Π∥→0

n−1∑
i=0

|f ′(t∗i )|2 (ti+1 − ti )

= lim
∥Π∥→0

∥Π∥ lim
∥Π∥→0

∫ T

0

|f ′(t)|2 dt = 0 .

In last step
∫ T

0
|f ′(t)|2 dt is finite because f is continuous.
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Sampled QV of Brownian motion

Let W denote a standard Brownian motion. We define

[W ,W ]nt =
n−1∑
i=0

(Wti+1 −Wti )
2 (16)

to be the sampled quadratic variation for a single partition Π.

Proposition

The following holds true

E[[W ,W ]nt ] = t ,

Var([W ,W ]nt ) = E[([W ,W ]nt − t)2] → 0 ,

as n → ∞.
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proof We first note that

E [[W ,W ]nt ] = E

[
n−1∑
i=0

(Wti+1 −Wti )
2

]

=
n−1∑
i=0

E[(Wti+1 −Wti )
2]

=
n−1∑
i=0

(ti+1 − ti )

= t ,

because Wti+1 −Wti ∼ N(0, ti+1 − ti ). Thus the expected sampled quadratic
variation is independent of the partition, and trivially limn→∞ E[[W ,W ]nt ] = t,
because the expectation here does not depend on n. Next,

Á. Cartea (MI & OMI) B8.3 32 / 36



Var([W ,W ]nt ) = E
[
([W ,W ]nt − t)2

]
= E

(n−1∑
i=0

(Wti+1 −Wti )
2 − t

)2


= E

(n−1∑
i=0

[
(Wti+1 −Wti )

2 − (ti+1 − ti )
])2


(all cross products when squaring the above have expectation zero)

=

n−1∑
i=0

E
[(
(Wti+1 −Wti )

2 − (ti+1 − ti )
)2]

=

n−1∑
i=0

E
[
(Wti+1 −Wti )

4 − 2 (ti+1 − ti ) (Wti+1 −Wti )
2 + (ti+1 − ti )

2
]

=

n−1∑
i=0

3 (ti+1 − ti )
2 − 2 (ti+1 − ti )

2 + (ti+1 − ti )
2

(use Wti+1
− Wti

∼
√

ti+1 − ti Z and E[Z4] = 3 where Z ∼ N(0, 1))

= 2

n−1∑
i=0

(ti+1 − ti )
2 ≤ 2 ∥Π∥

n−1∑
i=0

(ti+1 − ti )

= 2 ∥Π∥ t which tends to zero if ∥Π∥ → 0.
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QV of Brownian motion

We have proved the following theorem.

Theorem

Let W denote a Brownian motion. Then [W ,W ]T = T for all T ≥ 0 almost
surely.

We proved convergence in mean square, also called L2 convergence.

In general the quadratic variation [X ,X ]t of a process X is a random process,
but for Brownian motion W , [W ,W ]t = t almost surely (a.s.).

Almost surely means that there are some paths of the Brownian motion for
which [W ,W ]t = t is not true.

The probability of the set of paths for which [W ,W ]t = t is not true is zero.
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To bear in mind

Above we used

E[(Wti+1 −Wti )
2] = ti+1 − ti and Var[(Wti+1 −Wti )2] = ti+1 − ti .

Intuitively, one would like to claim that

(Wti+1 −Wti )
2 ∼ ti+1 − ti ,

which makes sense because for a small time increment both sides are very small.
However, best to think about this as the square of a Normal r.v.

Yi+1 =
Wti+1 −Wti√

ti+1 − ti
; (17)

the distribution of both sides is the same regardless of the time interval.
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Now, take time interval ti+1 − ti = T/n and write

T
Y 2
i+1

n
= (Wti+1 −Wti )

2 . (18)

By the LLN

1

n

n−1∑
i=0

Y 2
i+1 → E[Y 2

i+1] = 1 as n → ∞ .

Thus,
n−1∑
i=0

(Wti+1 −Wti )
2 → T . (19)

Each term of the sum above can be different from its mean

ti+1 − ti = T/n ,

but when we sum many of them the differences average out to zero.
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