Chapter 2 The prime spectrum

Before: affine varieties^o ce reduced fin.gen. algebras over k=te over k=te Now: affine schemes^o ce rings (assoc. comm. with 1)

det. R ring. Its spectrum is Spec R: = ip | pCR is a prime ideal]. This way, x ESpec R ws px ER (motivation) NB: in general, we cannot think about tER as functions with values in a fixed field k. However, there's a more general notion.

def. Let $x \in \text{Spec } R$ correspond to $p \in R$. The residue field of x (or p) is B(z) = K(p) = Rp/p - maximal idealunrelated to any particular k localization at p Every element PER has a value $f(x): = f \mod p_x \in K(\infty)$ $\forall x \in Spec R_g$ and the colomain depends on the choice of x. By definition, f(x) = 0 iff $f \in p_x$. Moral: Spec R will be the space on which R is the ring of functions: the affine scheme corresponding to R def.-Prop. The Zarishi topology on Spec R is given by the closed subsets $Z(a) := \{x \in Spee R \mid f(x) = 0 \forall f \in a\}$ ={pespec R|p]a], a CR any ideal. Prop. Let a, 6 CR be ideals. Then 1) Z (a) E Z (b) iff Ja Z JE. In particular, $\mathcal{Z}(\alpha) = \mathcal{Z}(\sqrt{\alpha})$. 2) $\mathcal{Z}(\alpha) = \emptyset$ iff $\alpha = A$ 3) 2(a) = Speck iff a = Nilk 4) 2(a) v2(b)=2(anb), J2(a) = 2(2a)

Proof uses the Main Fact:
$$\sqrt{a} = Ap$$
.
In particular, $p \ge a$ iff $p \ge \sqrt{a}$, so
 $\ge(a) = \ge(\sqrt{a})$.
 $p \ge (a) \le \ge(\sqrt{a})$.
 $p \ge (a) \le \ge(\sqrt{a})$.
 $p \ge \sqrt{a} \ge \sqrt{a} \ge \sqrt{a}$ implies $p \ge \sqrt{a} \ge \sqrt{a} \ge \sqrt{a}$.
 $p \ge \sqrt{a} \ge \sqrt{a} \ge 4$ implies $p \ge 2\sqrt{a} \ge \sqrt{a} \ge \sqrt{a} \ge 4$ implies $p \ge 2\sqrt{a} \ge \sqrt{a} \ge \sqrt{a} \ge 4$ implies $p \ge 2\sqrt{a} \ge \sqrt{a} \ge \sqrt{a} \ge 4$ implies $p \ge 2\sqrt{a} \ge \sqrt{a} \ge \sqrt{a} \ge 4$ implies $p \ge 2\sqrt{a} \ge \sqrt{a} \ge \sqrt{a} \ge 4$ implies $p \ge 2\sqrt{a} \ge \sqrt{a} \ge \sqrt{a} \ge 4$ implies $p \ge 2\sqrt{a} \ge \sqrt{a} \ge \sqrt{a} \ge 4$ implies $p \ge 2\sqrt{a} \ge \sqrt{a} \ge \sqrt{a} \ge 4$ implies $p \ge 2\sqrt{a} \ge 2\sqrt{a} \ge 4$ implies $p \ge 2\sqrt{a} \ge 2\sqrt{a} \ge 4$ implies $p \ge 2\sqrt{a} \ge 2\sqrt$

SGeneric points
def. X top. space,
$$Z \subseteq X$$
 closed subset.
A generic point of Z (if exists) is
a point $\eta \in Z$ s.t. $(\eta) = Z$. a dense point.

In our context:

$$\forall p \text{ is a generic point of } 2(p) \subseteq \text{Speck.}$$

Main Ex.: R integral domain =>
 $p = (0)$ is the generic point of Spec R,
because $\{q \ge (0) \mid q \text{ prime}\} = \text{Spec R.}$

3) R Artinian ring
Spec R is a finite set;
R local Artinian => Spec R is a point
4) R dVr, e.g.
$$R = \overline{F}_{P}$$

Spec $R = fx, hz$ with $x \notin h$ and $\chi \notin h(0)$.
Since ∞ is a closed point,
the generic point $\chi = R - \{x\}$ is an open point!
 $f(x) = R$
Spec R
5) $R = \overline{Z}$
Spec $R^{3}(0)$
 (p) \forall prime number p
 $p = F(p)$ is closed $\forall p$,
and $\kappa(p) = \overline{T}_{(p)}/p \cdot \overline{T}_{dp} = \overline{F}_{p}$
 $\cdot Z(0) = \overline{T} => \{(0)\}$ is the generic pt of Spec \overline{T}_{s}
and $\kappa(0) = \overline{Z}_{(0)} = Q$

$$f = 17 \in \mathcal{H} \longrightarrow f((0)) = 17 \in \mathbb{R}$$

$$f((2)) = \overline{1} \in \mathbb{R}$$

$$f((3)) = \overline{2} \in \mathbb{R}$$

$$f((s)) = \overline{2} \in \mathbb{R}$$

$$f((s)) = \overline{2} \in \mathbb{R}$$
Spec \mathbb{F}

$$(0)$$

Comments

· Points of Spec R have various residue fields, and this allows us to study simultaneously solutions of equations over different fields (or rings), e.g. If and Q

def. The affine respace is
A^h: = Spec Z(t₁,..,t_n].
The affine respace over R is
A^h: = Spec R(t₁,..,t_n].
If k=Tk, then
A^h_k
$$\neq$$
 A^h(k) = k^h
points are prime ideals points are maximal ideals
in k(t₁,..,t_n) in k(t₁,..,t_k),
and Euriski topology on A^h(k) is incluced
by Euriski topology on A^h(k) is incluced
by Euriski topology on A^h_k, but
A^h_k beg more points, e.g. (0).