B8.3: MATHEMATICAL MODELLING OF FINANCIAL DERIVATIVES —EXERCISES—

Álvaro Cartea

UNIVERSITY OF OXFORD

Exercise Sheet 1

The exercises in all sheets draw from previous years (Sam Cohen) and from "The Mathematics of Financial Derivatives —A Student Introduction", by Paul Wilmott, Sam Howison and Jeff Dewynne.

Part A

- 1. If $dS_t = \mu S_t dt + \sigma S_t dW_t$, where S_t denotes the time t price of the stock, dW_t denotes the increments of a standard Wiener process, and μ , σ , A and n are constants, find the stochastic equations satisfied by
 - (a) f(S) = AS,
 - (b) $f(S) = S^n$,
 - (c) Show that $\mathbb{E}[S_T] = S_t e^{\mu (T-t)}$.

Part B

1. An Ornstein–Uhlenbeck process X satisfies the stochastic differential equation

$$dX_t = \kappa(\theta - X_t)dt + \sigma dW_t$$

where $\kappa > 0$ and $\theta \in \mathbb{R}$.

(a) By using Itô's lemma applied to $e^{\kappa t}X_t$, show that for a given initial value X_0 , the value of X_t is given by

$$X_t = \theta + \left((X_0 - \theta) + \sigma \int_0^t e^{\kappa s} dW_s \right) e^{\kappa t}$$

- (b) Show that this implies that, for any deterministic initial value X_0 , X_t has a Gaussian distribution, with mean and variance you should determine.
- (c) Calculate $f(x,t) = \mathbb{E}[X_T^2|X_t = x]$, and check explicitly that this is a solution to the corresponding PDE:

$$\frac{\partial f}{\partial t} + \kappa (\theta - x) \frac{\partial f}{\partial x} + \frac{\sigma^2}{2} \frac{\partial^2 f}{\partial x^2} = 0.$$

2. Let the price S_t of an asset satisfy

$$dS_t = \alpha \,\left(\mu - \ln S_t\right) \, S_t \, dt + \sigma \, S_t \, dW_t \,, \tag{1}$$

where α and σ are non-negative constants, μ is a constant, and W a standard Brownian motion.

(a) Show that

$$x_T = x_t e^{-b(T-t)} + \frac{a}{b} \left(1 - e^{-b(T-t)}\right) + \sigma e^{-bT} \int_t^T e^{bs} dW_u$$

where $x_t = \ln S_t$, $a = \alpha \hat{\mu}$ (for a choice of $\hat{\mu}$, and $b = \alpha$.

- (b) Use the above to calculate $\mathbb{E}_t[S_T]$.
- 3. In the following $(W_t)_{t\geq 0}$ denotes a standard Brownian motion and $t\geq 0$ denotes time. A partition Π of the interval [0,t] is a sequence of points $0 = t_0 < t_1 < t_2 < \cdots < t_n = t$ and $|\Pi| = \max_k(t_{k+1} - t_k)$. On a given partition $W_k \equiv W_{t_k}$, $\delta W_k \equiv W_{k+1} - W_k$, $\delta t_k \equiv t_{k+1} - t_k$ and if f is a function on [0,t], $f_k \equiv f(t_k)$ and $\delta f_k \equiv f_{k+1} - f_k$.
 - (a) Show that if $t, s \ge 0$ then $\mathbb{E}[W_s W_t] = \min(s, t)$.
 - (b) Assuming that both the integral and its variance exist, show that

$$\operatorname{Var}\left[\int_0^t f(W_s, s) \, dW_s\right] = \int_0^t \mathbb{E} f(W_s, s)^2 \, ds \, .$$

Is it generally the case that $\int_0^t f(W_s, s) dW_s$ has a Gaussian distribution?

[Note: if the integral and its variance exist then it is legitimate to interchange the order of expectation and dt-integration.]

4. Use the differential version of Itô's lemma to show that

(a)
$$\int_0^t W_s \, ds = t \, W_t - \int_0^t s \, dW_s = \int_0^t (t-s) \, dW_s,$$

(b) $\int_0^t W_s^2 \, dW_s = \frac{1}{3} W_t^3 - \int_0^t W_s \, ds,$

Part C

1. Define X_t to be the 'area under a Brownian motion', $X_0 = 0$ and $X_t = \int_0^t W_u du$ for t > 0. Show that X_t is normally distributed with

$$\mathbb{E}[X_t] = 0, \quad \mathbb{E}[X_t^2] = \frac{1}{3}t^3.$$

Now define Y_t as the 'average area under a Brownian motion',

$$Y_t = \begin{cases} 0 & \text{if } t = 0, \\ X_t/t & \text{if } t > 0. \end{cases}$$

Show that Y_t has $\mathbb{E}[Y_t] = 0$, $\mathbb{E}[Y_t^2] = t/3$ and that Y_t is continuous for all $t \ge 0$. Is $\sqrt{3} Y_t$ a Brownian motion? Give reasons for your answer. 2. Consider the general stochastic differential equation

$$dG = A(G, t) dt + B(G, t) dW_t,$$

where G and B are functions and W is Brownian motion. Use Itô's Lemma to show that it is theoretically possible to find a function f(G, t) which itself follows a random walk with zero drift.