
B4.3 Distribution Theory

Sheet 4 — MT23/HT24 Week 1

Localization and convolution of distributions. Hypoelliptic

differential operators and elliptic regularity

Only work on the questions from Section B should be handed in.

Section A

1. Let Ω be a non-empty open subset of Rn and p ∈ [1,∞].

(a) What does it mean to say that a distribution on Ω

(i) has order k ∈ N0 on the open subset ω of Ω?

(ii) is a regular distribution on the open subset ω of Ω?

(iii) is Lp on the open subset ω of Ω?

Assume that u ∈ D ′(Ω) is a regular distribution on the open subset ω ⊂ Ω. Show

that u must have order 0 on ω. Next, let (ϕj) be a sequence in D(Ω) such that

for some compact set K ⊂ ω and constant c ≥ 0 we have supp(ϕj) ⊆ K and

supx∈Ω |ϕj(x)| ≤ c for all j ∈ N. Prove that if ϕj(x) → 0 pointwise in almost all

x ∈ Ω as j → ∞, then 〈u, ϕj〉 → 0 as j → ∞.

(b) Let δx0 denote Dirac’s delta function concentrated at the point x0 ∈ Ω. Prove that

δx0 is a distribution on Ω of order 0 that is a regular distribution on Ω \ {x0}, but
not on Ω.

(c) Let µ be a locally finite Borel measure on Ω and assume there exists a compact

set N ⊂ Ω with L n(N) = 0 and µ(N) > 0 (the measure µ is then said to have a

singular part with respect to L n). Consider the corresponding distribution

〈µ, ϕ〉 def
=

∫
Ω

ϕ dµ, ϕ ∈ D(Ω).

Show it has order 0 and that it is not a regular distribution on Ω.

(d) Identifying z ∈ C with (x, y) ∈ R2 in the usual way and denoting by B1(0) the

open unit disc in R2, show that

u =
1

πz
1B1(0)

is a regular distribution on R2 and calculate its distributional Wirtinger derivative

∂u/∂z̄. Is it a regular distribution on R2? Find the supports and the singular

supports of u and ∂u/∂z̄.
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Solution: (a): (i) means that the restriction u|ω is a distribution on ω of order k. The

restriction u|ω was defined in lectures by the rule 〈u|ω, ϕ〉 = 〈u, ϕe〉, ϕ ∈ D(ω), where ϕe

denotes

ϕe(x)
def
=

{
ϕ(x) if x ∈ ω,

0 if x ∈ Ω \ ω.

It is clear that ϕ 7→ ϕe is a linear and D-continuous map of D(ω) into D(Ω), so that

the above definition makes sense. Note that strictly speaking the restriction u|ω is

nothing but u|D(ω)e , but we prefer the former notation as it emphasizes that we think

of distributions as generalized functions defined on Ω. (ii) means that there exists

f ∈ L1
loc(ω) such that 〈u, ϕ〉 =

∫
ω
fϕ dx for ϕ ∈ D(Ω) with support in ω. This is often

written simply as u|ω ∈ L1
loc(ω). (iii) means that the f in (ii) belongs to Lp(ω) (and we

then often write u|ω ∈ Lp(ω)).

Assume u|ω ∈ L1
loc(ω). Let L ⊂ ω be compact. Then denoting u|ω = f we have that

f is integrable over L and so for ϕ ∈ D(ω) with support contained in L it follows that

fϕ ∈ L1(ω) and ∣∣〈u|ω, ϕ〉∣∣ = ∣∣∣∣∫
ω

fϕ dx

∣∣∣∣ ≤ cL sup
ω

|ϕ|,

where cL =
∫
L
|f | dx. Therefore u|ω has order 0.

The continuity property of the regular distribution u|ω = f follows by use of Lebesgue’s

DCT: Under the stated assumptions we get |fϕj| ≤ c|f |1K a.e. on ω for all j ∈ N, and
c|f |1K is integrable over ω. The pointwise convergence a.e. implies that also fϕj → 0

a.e. on ω, hence 〈u|ω, ϕj〉 =
∫
K
fϕj dx→ 0, as required.

(b): It is clear that δx0 is a distribution of order 0 on Ω. In fact, for any ϕ ∈ D(Ω)

we have that
∣∣〈δx0 , ϕ〉

∣∣ = |ϕ(x0)| ≤ supΩ |ϕ| (note that we do not even need to restrict

the test functions to have support contained in compact subsets K ⊂ Ω here as the

constants cK can all be taken as 1). Because supp(δx0) = {x0} we have u|Ω\{x0} = 0,

which in particular is a regular distribution on Ω \ {x0}. To see that δx0 is not a regular

distribution on Ω we can show that it does not have the continuity property established

for regular distributions in (a) above. We use this approach in (c) below. Instead we

proceed here by contradiction: assume that we could find f ∈ L1
loc(Ω) such that

ϕ(x0) =

∫
Ω

fϕ dx for all ϕ ∈ D(Ω).

If we consider only ϕ that are supported in Ω \ {x0}, then we get from the fundamental

lemma of the calculus of variations that f = 0 a.e. in Ω \ {x0}. But as {x0} is a null set

we can strengthen this to f = 0 a.e. in Ω. But δx0 6= 0 so this is a contradiction proving

that δx0 cannot be a regular distribution on Ω.
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(c): To see that µ has order 0 we fix a compact set K ⊂ Ω. Then for ϕ ∈ D(Ω) with

support in K we have ∣∣〈µ, ϕ〉∣∣ ≤ ∫
K

|ϕ| dµ ≤ µ(K) sup
Ω

|ϕ|,

and because µ is locally finite we have µ(K) < +∞, so the order is 0, as required.

Next, we show that µ cannot be a regular distribution on Ω by showing that it does not

have the necessary continuity property established in (a) above. Put ϕε = ρε ∗1Bε(N) for

ε ∈ (0, dist(N, ∂Ω)/3). Then ϕε ∈ D(Ω) is supported in the compact subsetK = B2d(N)

of Ω when d = dist(N, ∂Ω)/3. We also record that 0 ≤ ϕε(x) ≤ 1 for all x ∈ Ω, ε ∈ (0, d)

and that ϕε(x) → 0 pointwise in x ∈ Ω \N as ε↘ 0. However since ϕε = 1 on N ,∣∣〈µ, ϕε〉
∣∣ = ∫

K

ϕε dµ ≥ µ(N) > 0 for all ε ∈ (0, d),

it follows that 〈µ, ϕε〉 does not converge to 0 as ε↘ 0, and so that µ cannot be a regular

distribution on Ω.

(d): u is a regular distribution since (integrating in polar coordinates)∫
R2

∣∣∣∣ 1πz1B1(0)

∣∣∣∣ d(x, y) = 2 < +∞,

so that we even have u ∈ L1(R2). In order to calculate the Wirtinger derivative we use

that u locally is the product of a C∞ function and a distribution so that we can employ

the Leibniz rule:

∂u

∂z̄
= δ01B1(0) +

1

πz

∂

∂z̄

(
1B1(0)

)
= δ0 +

1

πz

∂

∂z̄

(
1B1(0)

)
,

where we used a result from Problem Sheet 3. In order to calculate the last term we let

ϕ ∈ D(R2) and use the divergence theorem:〈
∂

∂z̄

(
1B1(0)

)
, ϕ

〉
= −

∫
B1(0)

∂ϕ

∂z̄
d(x, y)

=

∫
∂B1(0)

1

2

(
x+ iy

)
ϕ dS(x,y)

=

∫ 2π

0

eiθ

2
ϕ
(
cos θ, sin θ

)
dθ,

where in the last line we wrote out the curve integral. The Wirtinger derivative is

therefore
∂u

∂z̄
= δ0 +

1

πz

z

2
dS = δ0 +

1

2π
dS,

where dS denotes integration over the unit circle ∂B1(0) in R2. With the normalization,
1
2π
dS, is a probability measure µ on R2: if A is a Borel subset of R2, then

µ(A) =
1

2π

∫
{θ∈[0,2π]: eiθ∈A}

dS.
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Using (c) above we see that the Wirtinger derivative of u therefore is a distribution of

order 0 that is not a regular distribution on R2.

Finally, we see by inspection that supp(u) = B1(0), supp(∂u/∂z̄) = {0} ∪ ∂B1(0) and

sing.supp(u) = {0} ∪ ∂B1(0), sing.supp(∂u/∂z̄) = {0} ∪ ∂B1(0). As a check we note

that sing.supp(u) = sing.supp(∂u/∂z̄), as it should be according to the elliptic regularity

theorem since the Wirtinger differential operator ∂/∂z̄ is hypoelliptic.

2. (a) Let θ ∈ D(Rn) and denote as usual its L1 dilation by factor ε > 0 as

θε(x)
def
=

1

εn
θ
(x
ε

)
, x ∈ Rn.

(i) Prove that θε has a limit in D ′(Rn) as ε↘ 0.

(ii) Prove that for each ϕ ∈ D(Rn) we have θε ∗ ϕ→
∫
Rnθ dxϕ in D(Rn) as ε↘ 0.

(iii) Prove that for each ψ ∈ C(Rn) we have θε ∗ ψ →
∫
Rnθ dxψ locally uniformly

on Rn as ε↘ 0. What can you say about the partial derivatives ∂α
(
θε ∗ ψ

)
as

ε↘ 0?

(b) Let f : R → C be locally integrable and T -periodic (that is, f(x + T ) = f(x) for

all x ∈ R). For a non-empty open interval (a, b) ⊆ R and natural numbers j ∈ N
define fj(x) = f(jx), x ∈ (a, b). Prove that

fj →
1

T

∫ T

0

f dx in D ′(a, b) as j → ∞.

[This result is sometimes called the generalized Riemann-Lebesgue lemma.]
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Solution: (a)(i): If ϕ ∈ D(Rn), then by the distributional definition of the L1 dilation

(so by change of variables) and continuity of ϕ at 0 we have as ε↘ 0:

〈θε, ϕ〉 =
∫
Rn

θ(x)ϕ(εx) dx→
∫
Rn

θ(x) dxϕ(0).

Consequently, θε →
∫
Rnθ dx δ0 in D ′(Rn) as ε↘ 0.

(ii): Let ϕ ∈ D(Rn). Then by the support rule supp(θε ∗ ϕ) ⊆ supp(θε) + supp(ϕ) =

εsupp(θ) + supp(ϕ). Take r > 0 such that supp(θ) ⊂ Br(0) and note that for ε ∈ (0, 1)

we have supp(θε∗ϕ) ⊆ Br(0)+supp(ϕ) ⊂ K, where K = Br(supp(ϕ)) is a fixed compact

set. By the differentiation rule we have for α ∈ Nn
0 that ∂α

(
θε ∗ ϕ) = θε ∗ (∂αϕ) and

since ∂αϕ is uniformly continuous employing the argument of (i) above this converges

uniformly to
∫
Rnθ dx ∂

αϕ on Rn as ε↘ 0. But this is what we were required to prove.

(iii): Because ψ is continuous, and hence is uniformly continuous on compact sets, we

have as ε↘ 0, (
θε ∗ ψ

)
(x) =

∫
Rn

θ(y)ψ(x− εy) dy →
∫
Rn

θ dy ψ(x)

locally uniformly in x ∈ Rn. The derivatives ∂αψ must be understood as distributions

here and so it follows from the differentiation rule and (i) above that, as ε↘ 0,

∂α
(
θε ∗ ψ

)
= θε ∗ ∂αψ →

∫
Rn

θ dx ∂αψ in D ′(Rn).

(b): Put A = 1
T

∫ T

0
f(t) dt and F (x) =

∫ x

0

(
f(t) − A

)
dt, x ∈ R. Then by results

from lectures F is locally absolutely continuous with F ′ = f − A in D ′(R). Since

F (x + T ) − F (x) =
∫ x+T

x

(
f(t) − A

)
dt = 0 for all x ∈ R, where the last equality

follows because f is T -periodic, also F is T -periodic. In particular, F is then a bounded

function on R. Define Fj(x) = F (jx), x ∈ (a, b). Then Fj is absolutely continuous and

by inspection, F ′
j = j(fj − A) in D ′(a, b). Now for ϕ ∈ D(a, b) we get

〈fj − A, ϕ〉 =
〈
1

j
F ′
j , ϕ

〉
= −1

j

〈
Fj, ϕ

′〉 = −1

j

∫ b

a

F (jx)ϕ′(x) dx,

and since

1

j

∣∣∣∣∫ b

a

F (jx)ϕ′(x) dx

∣∣∣∣ ≤ supt∈R |F (t)|
j

∫ b

a

|ϕ′(x)| dx→ 0 as j → ∞,

we are done.
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Section B

3. Distributions defined by finite parts.

On Problem Sheet 2 it was shown that the distributional derivative of log |x| is the

distribution pv
(
1
x

)
defined by the principal value integral〈

pv
(
1
x

)
, ϕ
〉 def
= lim

ε↘0

(∫ −ε

−∞
+

∫ ∞

ε

)
ϕ(x)

x
dx , ϕ ∈ D(R).

In order to represent the higher order derivatives one can use finite parts: Let n ∈ N
with n > 1. We then define fp

(
1
xn

)
for each ϕ ∈ D(R) by the finite part integral

〈
fp
(

1
xn

)
, ϕ
〉 def
=

∫ ∞

−∞

ϕ(x)−
∑n−2

j=0
ϕ(j)(0)

j!
xj − ϕ(n−1)(0)

(n−1)!
xn−11(−1,1)(x)

xn
dx.

(a) Check that hereby fp
(

1
xn

)
is a well-defined distribution on R. Show that

d

dx
pv
(
1
x

)
= −fp

(
1
x2

)
and

d

dx
fp
(

1
xn

)
= −nfp

(
1

xn+1

)
for all n > 1. Is fp

(
1
xn

)
homogeneous? (See Problem Sheet 2 for the definition

of homogeneity.) Determine the order, the support and the singular support of

fp
(

1
xn

)
.

(b) Show that for n > 1 we have xnfp
(

1
xn

)
= 1 and find the general solution to

the equation xnu = 1 in D ′(R). What is the general solution to the equation

(x− a)nv = 1 in D ′(R) when a ∈ R \ {0}?

(c) Let p(x) ∈ C[x] \ {0} be a polynomial. Describe the general solution w ∈ D ′(R) to
the equation

p(x)w = 1 in D ′(R).

Solution: (a): Fix ϕ ∈ D(R). To see that the definition yields a distribution note first

that the function
ϕ(x)−

∑n−2
j=0

ϕ(j)(0)
j!

xj

xn

is continuous for |x| ≥ 1 and that it is O(x−2) as |x| → +∞. It is therefore integrable

over R \ (−1, 1), and we record the bound∣∣∣∣∣∣
∫
R\(−1,1)

ϕ(x)−
∑n−2

j=0
ϕ(j)(0)

j!
xj

xn
dx

∣∣∣∣∣∣ ≤ c1max
{
|ϕ(j)(t)| : t ∈ R, 0 ≤ j ≤ n

}
, (1)

where (for instance) c1 = 10 will do. Next, for |x| < 1 we have by Taylor’s formula with

Lagrange remainder term that for some ξ = ξx between 0 and x that

ϕ(x)−
∑n−1

j=0
ϕ(j)(0)

j!
xj

xn
=
ϕ(n)(ξ)

n!
.
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Therefore the function on the left-hand side is uniformly continuous on (−1, 0) ∪ (0, 1),

and so integrable over (−1, 1). We record a corresponding bound:∣∣∣∣∣∣
∫
(−1,1)

ϕ(x)−
∑n−1

j=0
ϕ(j)(0)

j!
xj

xn
dx

∣∣∣∣∣∣ ≤ max |ϕ(n)|. (2)

Consequently, by linearity of the integral, fp
(

1
xn

)
: D(R) → C is a well-defined linear

functional. Combining (1) and (2) we get the bound∣∣∣∣〈fp( 1

xn
)
, ϕ

〉∣∣∣∣ ≤ cmax
{
|ϕ(j)(t)| : t ∈ R, 0 ≤ j ≤ n

}
(3)

valid for all ϕ ∈ D(R), where (for instance) c = 1+c1 will do. Note that (3) in particular

implies the D-continuity of fp
(

1
xn

)
proving that it is a distribution on R.

Before we calculate the distributional derivative it is convenient to denote the k-th

Taylor polynomial for ϕ ∈ D(R) about 0 as

T k
ϕ (x) ≡

k∑
j=0

ϕ(j)(0)

j!
xj

and note that because 1/x is an odd function,〈
fp

(
1

xn

)
, ϕ

〉
= lim

r↘0

(∫ −r

− 1
r

+

∫ 1
r

r

)(
ϕ(x)− T n−1

ϕ (x)
) dx
xn
.

This also holds for n = 1 and so unifies the notation (so for n = 1 we have pv = fp).

Observe ϕ′(x)− T n−1
ϕ′ (x) =

(
ϕ(x)− T n

ϕ (x)
)′
, so〈

d

dx
fp

(
1

xn

)
, ϕ

〉
= −

〈
fp

(
1

xn

)
, ϕ′
〉

= − lim
r↘0

(∫ −r

− 1
r

+

∫ 1
r

r

)(
ϕ(x)− T n

ϕ (x)
)′ dx
xn
.

Now for r > 0 so small that ϕ is supported in (−1/r, 1/r) we have by partial integration(∫ −r

− 1
r

+

∫ 1
r

r

)(
ϕ(x)− T n

ϕ (x)
)′ dx
xn

=
ϕ(−r)− T n

ϕ (−r)
(−r)n

+ T n
ϕ (−1

r
)(−r)n − T n

ϕ (
1
r
)rn

−
ϕ(r)− T n

ϕ (r)

rn

+n

(∫ −r

− 1
r

+

∫ 1
r

r

)(
ϕ(x)− T n

ϕ (x)
) dx

xn+1
,

and therefore 〈
d

dx
fp

(
1

xn

)
, ϕ

〉
= −n

〈
fp

(
1

xn+1

)
, ϕ

〉
,
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as required.

The distribution fp
(

1
xn

)
is homogeneous of degree −n: This follows for instance by direct

verification (showing and exploiting that T n−1
ϕr

= (T n−1
ϕ )r) or by use of results established

on Problem Sheet 2: it was shown there that pv
(
1
x

)
is homogeneous of degree −1 and

that the derivative of a β-homogeneous distribution is (β− 1)-homogeneous. The result

then follows from the above identification of derivatives.

Note that 1/xn is a regular distribution on R\{0} and that fp
(

1
xn

)
|R\{0} = 1

xn . Therefore

the support of fp
(

1
xn

)
is R (closure of R\{0}) and its singular support must be contained

in {0}. The singular support must be {0} because if it was not, it would be empty and

the distribution would then have a C∞ function as representative on R. This function

would have to equal 1/xn on R \ {0}, preventing it from being a C∞ function on R.

The bound (3) implies that fp
(

1
xn

)
has order at most n. To see that the order is

n we recall from Problem Sheet 2 that pv
(
1
x

)
has order 1, and so using the identity

fp
(

1
xn

)
= cn

dn

dxnpv
(
1
x

)
, where cn = (−1)n−1

(n−1)!
, we infer that the order is n. (It is acceptable

if the students assert this as I have mentioned it, though not proved it, in lectures.)

Lemma: If u ∈ D ′(R) has order k ∈ N, then u′ has order k + 1. (Note this is false if

k = 0.)

Proof. It is easy to see that u′ has order at most k + 1. To see that the order is k + 1

assume for a contradiction that the order is at most k. Then for any R > 0 we find a

constant c = cR ≥ 0 such that

∣∣〈u′, ϕ〉∣∣ ≤ c

k∑
j=0

max |ϕ(j)| (4)

holds for all ϕ ∈ D(R) with support in (−R,R). Take χ ∈ D(−R,R) with
∫
Rχ dx = 1.

For ϕ ∈ D(−R,R) put φ = ϕ−cχ with c =
∫
Rϕ dx. Then φ ∈ D(−R,R) and

∫
Rφ dx = 0

and so ψ(x) =
∫ x

−R
φ(t) dt, x ∈ R, belongs to D(−R,R). Plugging it into (4) yields,

after rearranging terms, the bound

∣∣〈u, ϕ〉∣∣ ≤ C

k−1∑
j=0

max |ϕ(j)|

for some constant C = CR. But this is contradicting the assumption that u has order

k.
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(b): For ϕ ∈ D(R) we calculate〈
xnfp

(
1

xn

)
, ϕ

〉
=

〈
fp

(
1

xn

)
, xnϕ

〉
= lim

r↘0

(∫ −r

− 1
r

+

∫ 1
r

r

)(
xnϕ(x)− T n−1

xnϕ (x)
) dx
xn

= lim
r↘0

(∫ −r

− 1
r

+

∫ 1
r

r

)
ϕ(x) dx =

∫
R
ϕ(x) dx,

as required. This also yields a particular solution to the equation xnu = 1. To find the

general solution to the homogeneous equation xnu = 0 we note that any such u must be

supported in {0}, and so, by a result from lectures, be a linear combination of δ0 and

its derivatives: u =
∑J

j=0 cjδ
(j)
0 for some J ∈ N0 and cj ∈ C. Plugging in this u we see

that when J = n − 1, then we are free to choose the coefficients cj ∈ C. To see that

these are all the solutions we use special test functions. Indeed if it is a solution then

we get for any ϕ ∈ D(R) that for J ≥ n:

0 =
J∑

j=0

cj〈δ(j)0 , xnϕ〉 =
J∑

j=0

cj

j∑
k=0

(
j

k

)
dk

dxk
|x=0

(
xn
)
ϕ(j−k)(0) =

J∑
j=n

cj

(
j

n

)
n!ϕ(j−n)(0).

For s ∈ {0, . . . , J − n} we select ϕ ∈ D(R) with ϕ(j)(0) = δj,s for all j ∈ N0 (see

Problem Sheet 1 for a possible construction of such ϕ). We now have that the terms in

the above sum are 0 unless j − n = s and so we get 0 = cn+s

(
n+s
n

)
n!, that is, cj = 0

for all j ≥ n. Therefore GS is u = fp
(

1
xn

)
+
∑n−1

j=0 cjδ
(j)
0 , where c1, . . . , cn−1 ∈ C. By

inspection we see that GS to the equation (x−a)nv = 1 is v = fp
(

1
(x−a)n

)
+
∑n−1

j=0 cjδ
(j)
a ,

where c1, . . . , cn−1 ∈ C.

(c): We find the GS as wH + wPS, where wH is a general solution to the homogeneous

equation and wPS is any solution to the inhomogeneous equation. Suppose a1, . . . , an ∈
R are all the distinct real roots of p(x) and let mj ∈ N be the multiplicity of aj. Then

p(x) = q(x)
∏n

j=1(x−aj)mj , where q(x) is a polynomial without real roots. We first find

wH and note that since 1/q(x) ∈ C∞(R) this is GS to
(∏n

j=1(x − aj)
mj
)
w = 0. Using

localization and a result from (b) we find

wH =
n∑

k=1

mk−1∑
j=0

ck,jδ
(j)
ak
,

where ck,j ∈ C are arbitrary. To find wPS we expand in partial fractions:

1

p(x)
=

1

q(x)

n∑
k=1

mk∑
j=1

bk,j
(x− ak)j

,

and so using localization and a result from (b) we get

wPS =
1

q(x)

n∑
k=1

mk∑
j=1

fp

(
bk,j

(x− ak)j

)
.
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4. (a) Let n ∈ N. Calculate the limits(
x+ i0

)−n def
= lim

ε↘0

(
x+ iε

)−n
and

(
x− i0

)−n def
= lim

ε↘0

(
x− iε

)−n

in D ′(R). Prove the Plemelj-Sokhotsky jump relations :

(x+ i0)−n − (x− i0)−n = 2πi
(−1)n

(n− 1)!
δ
(n−1)
0 ,

where δ0 is Dirac’s delta-function on R concentrated at 0.

(b) Show that for ϕ ∈ D(R) with ϕ(j)(0) = 0 for each j ∈ {0, . . . , n} we have

〈(
x± i0

)−n
, ϕ
〉
=

∫ ∞

−∞

ϕ(x)

xn
dx.

(c) Show that

x
(
x± i0

)−1
= 1 in D ′(R).

Deduce that (
x± i0

)−1(
xδ0
)
= 0 6= δ0 =

((
x± i0

)−1
x

)
δ0.

Next, show that (
x± i0

)−n
xn = 1 in D ′(R)

holds for each n ∈ N

(d) Find distributions u+, u− ∈ D ′(R) such that their n-th distributional derivatives

satisfy

u
(n)
+ =

(
x+ i0

)−n
and u

(n)
− =

(
x− i0

)−n
.

Solution: (a): First note that
(
x ± iε

)−n ∈ L1
loc(R), so for ϕ ∈ D(R) we calculate by

n− 1 successive integrations by parts:〈(
x± iε

)−n
, ϕ
〉
=

1

(n− 1)!

∫
R
ϕ(n−1)(x)

dx

x± iε
.

Now a primitive for 1/(x ± iε) is the principal logarithm Log(x ± iε), and we record

that, as ε↘ 0,

Log(x± iε) = log(x2 + ε2)
1
2 + iArg(x± iε) → log |x| ± πiH(−x)

pointwise in x ∈ R \ {0}. Here H denotes Heaviside’s function. Therefore another

integration by parts and then Lebesgue’s DCT yields as ε↘ 0 that〈(
x± iε

)−n
, ϕ
〉
→ −1

(n− 1)!

∫
R
ϕ(n)(x)

(
log |x| ± πiH(−x)

)
dx.
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It is clear that the right-hand sides define distributions on R. Their difference is〈(
x+ iε

)−n −
(
x− iε

)−n
, ϕ

〉
= − 2πi

(n− 1)!

∫ 0

−∞
ϕ(n)(x) dx = − 2πi

(n− 1)!
ϕ(n−1)(0),

and since ϕ(n−1)(0) = (−1)n−1〈δ(n−1)
0 , ϕ〉 this is the required jump relation.

(b): If ϕ(j)(0) = 0 for 0 ≤ j ≤ n, then x−nϕ(x) → 0 as x → 0, and so x−nϕ(x) is

integrable on R. Because
∣∣(x ± iε

)−n
ϕ(x)

∣∣ ≤ |x−nϕ(x)| for all x ∈ R \ {0} we get by

Lebesgue’s DCT that 〈(
x± i0

)−n
, ϕ
〉
=

∫
R
x−nϕ(x) dx.

(c): First we note that if ϕ ∈ D(R), then xϕ(x) is a test function that vanishes at 0 and

so by (b) we get 〈x
(
x ± i0

)−1
, ϕ〉 = 〈

(
x ± i0

)−1
, xϕ〉 =

∫
Rϕ dx, thus x

(
x ± i0

)−1
= 1.

The deduction is then clear.

For n ∈ N and ϕ ∈ D(R) the function xnϕ is a test function that vanishes to order n at

0, and so we may use (b) as above to see that xn
(
x± i0

)−n
= 1.

(d): This calculation was essentially done in our solution of (a) above:

u± =
(−1)n−1

(n− 1)!

(
log |x| ± πiH(−x)

)
is the limit in D ′(R) of (−1)n−1

(n−1)!
Log(x ± iε) as ε ↘ 0. The latter is the n-th primitive

of
(
x ± iε

)−n
. By continuity of differentiation in D ′(R) we therefore see that u

(n)
± =(

x± i0
)−n

.

5. A real-valued distribution u on R2 is called subharmonic provided ∆u ≥ 0 in D ′(R2).

In the following we identify z ∈ C in the usual way with (x, y) ∈ R2 and we assume

f : C → C is an entire function that is not identically zero. Define

〈u, ϕ〉 def
=

∫
R2

ϕ(x, y) log |f(z)| d(x, y), ϕ ∈ D(R2).

Show that u is a well-defined and subharmonic distribution on R2.

What happens above if f : C → C ∪ {∞} is allowed to be meromorphic?

Solution: First we note that the zero set for f , Z =
{
z ∈ C : f(z) = 0

}
, cannot have

limit points in C since otherwise f ≡ 0 by the identity theorem. The set Z is therefore

locally finite (so for each z0 ∈ C and r > 0 the intersection Br(z0)∩Z is a finite set). It

is then in particular at most countable and so can be enumerated, say Z =
{
zj : j ∈ J

}
,

where J is at most countable. We also record that for each w ∈ C we can select r > 0
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such that B2r(w) contains at most one zero for f . When B2r(w) ∩ Z = ∅ the function

log |f(z)| is C∞ on B2r(w), and so is in particular integrable on Br(w). If w = zj ∈ Z

choose r > 0 such that Z ∩B2r(zj) = {zj} and by applying Taylor’s theorem to f about

zj we get f(z) =
∑∞

s=mj

f (s)(zj)

j!
(z−zj)s on C. Defining g(z) =

∑∞
s=mj

f (s)(zj)

j!
(z−zj)s−mj

we have that g : C → C is an entire function that has no zeroes on B2r(zj) and f(z) =

(z− zj)
mjg(z) on C. Thus log |f(z)| = mj log |z− zj|+ log |g(z)| and the second term is

integrable on Br(zj). The first term is also seen to be integrable on Br(zj) (for instance

we may check this by integrating in polar coordinates about zj). Thus log |f(z)| is
locally integrable, and so defines a regular distribution u on C. By the above we see

that the restriction of u to the open set C\Z can be represented by a C∞ function, and

so we may calculate on C \ Z:

∆u = 4
∂

∂z̄

(
∂

∂z
log |f(z)|

)
= 2

∂

∂z̄

(
1

|f(z)|2
(∂f(z)
∂z

f(z) + f(z)
∂f(z)

∂z

))
= 2

∂

∂z̄

(
f ′(z)

f(z)
+ 0

)
= 0,

where we applied the Cauchy-Riemann equations twice. If w = zj ∈ Z we select r > 0

as above such that B2r(zj) ∩ Z = {zj} and u = mj log | · −zj|+ log |g| on Br(zj). Using

results from Problem Sheet 3 and lectures we then calculate in the sense of distributions

on Br(zj):

∆u = mj∆ log |z − zj| = 2mj
∂

∂z̄

(
1

z − zj

)
= 2πmjδzj .

It follows by localization that

∆u =
∑
j∈J

2πmjδzj in D ′(C),

and since each mj ∈ N, ∆u ≥ 0, so that u is subharmonic. By localization we in-

tend: given ϕ ∈ D(C) we cover supp(ϕ) by a finite number of balls as above, say

supp(ϕ) ⊂
⋃K

k=1Brk(wk), and then we select a smooth partition of unity ηk, k ∈ K, that

is subordinated the open cover
{
Brk(wk)

}
k∈K . We now have 〈∆u, ϕ〉 =

∑K
k=1〈∆u, ηkϕ〉.

Here each term in the sum is covered by the above calculation, namely 〈∆u, ηkϕ〉 = 0

when B2rk(wk)∩Z = ∅ and 〈∆u, ηkϕ〉 = 2πmj(ηkϕ)(zj) when B2rk(wk)∩Z = {zj}. The
result then follows as asserted.

When f : C → C∪{∞} is meromorphic we allow a set P of isolated poles for f to exist.

The set P will then be locally finite, so in particular at most countable and so can be

enumerated, say P =
{
pk : k ∈ K

}
. Denote the order of the pole pk by nk ∈ N. Clearly

Z ∩ P = ∅. As before we have if w ∈ C \ (Z ∪ P ) that u is C∞ near w and if w ∈ Z
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we take r > 0 such that B2r(w) ∩ (Z ∪ P ) = {w} so u is again integrable on Br(w).

If w = pk ∈ P we take r > 0 such that B2r(pk) ∩ (P ∪ Z) = {pk} and have then by

Laurent’s theorem f(z) =
∑∞

s=−nk
cs(z − pk)

s for suitable cs ∈ C and c−nk
6= 0. Write

g(z) =
∑∞

s=0 cs−nk
(z− pk)

s and note that g : Brk(pk) → C is nonvanishing, holomorphic

and f(z) = (z − pk)
−nkg(z). We have therefore on Brk(pk) that

u = −nk log |z − pk|+ log |g(z)|,

which shows that u is integrable on Brk(pk). Thus u is again a regular distribution on

C and calculating as above we find that

∆u =
∑
j∈J

2πmjδzj −
∑
k∈K

2πnkδpk .

This is clearly not a positive distribution, so u is not subharmonic in this case.

6. (a) Let A : R2 → R2 be a bijective linear map and define for ϕ ∈ D(R2) the function

Aϕ : R2 → C by (Aϕ)(x, y)
def
= ϕ

(
A(x, y)

)
, (x, y) ∈ R2.

Prove that A : D(R2) → D(R2) is a well-defined, linear and D-continuous map.

How should we define Au for a distribution u ∈ D ′(R2)? Find a formula for

A−1∆Au, where ∆ denotes the Laplacian on R2.

(b) Let p(∂) be a differential operator on R2 with real coefficients and that is homoge-

neous of order 2:

p(∂) = α∂2x + β∂x∂y + γ∂2y ,

where α, β, γ ∈ R are not all zero. Prove that p(∂) is elliptic if and only if β2 < 4αγ.

Next, show that if p(∂) is elliptic, then it is also hypoelliptic.

(c) Let Ω be an open non-empty subset of R2 and assume that u ∈ D ′(Ω) satisfies

∂2xu+ ∂x∂yu+ ∂2yu = f in D ′(Ω),

where f ∈ D ′(Ω). Prove that if f is C∞ on Br(x0, y0) ⊂ Ω, then so is u.

Optional : What can you say about u if f is L2
loc on Br(x0, y0) ⊂ Ω?

Solution: (a): Put A(x, y) = (ax+ by, cx+ dy), where a, b, c, d ∈ R and ad− bc 6= 0.

Then by iterative use of the chain rule it follows that for ϕ ∈ D(R2) the function

Aϕ(x, y) = ϕ(ax + by, cx + dy) is in C∞(R2) and since supp(Aϕ) = A−1supp(ϕ) is

compact, we have Aϕ ∈ D(R2). It is then clear that A : D(R2) → D(R2) is a well-

defined linear map. To show that it is D-continuous it suffices by linearity to consider

a null sequence. Let ϕj ∈ D(R2) and suppose that ϕj → 0 in D(R2). That is, for some
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compact set K ⊂ R2 we have supp(ϕj) ⊆ K for all j, and ∂αϕj → 0 uniformly on R2 for

each multi-index α. Then supp(Aϕj) ⊆ A−1K for all j, where again A−1K is compact.

For the uniform convergence of partial derivatives we use induction on the lenght of the

multi-index α. First, we clearly have Aϕj → 0 uniformly, and for the induction step we

use the formulas

∂xAψ = aA(∂xψ) + cA(∂yψ) and ∂yAψ = bA(∂xψ) + dA(∂yψ) (5)

that are valid for any ψ ∈ C1(R2). Assume we have established the uniform convergence

to 0 for all partial derivatives of order less than n ∈ N. Then for α ∈ N2
0 of lenght n we

put β = α − (1, 0) if α1 > 0 (and α − (0, 1) if α1 = 0). Assuming the former we then

have ∂αAϕj = ∂β
(
aA(∂xϕj) + cA(∂yϕj)

)
→ 0 uniformly by the induction hypothesis.

The D-continuity of A follows.

In order to extend the definition of A to distributions we use the adjoint identity scheme,

and for that purpose we derive an adjoint identity. For ϕ, ψ ∈ D(R2) we calculate by

the change-of-variables formula:∫
R2

Aϕψ d(x, y) =

∫
R2

ϕA−1ψ| detA| d(x, y).

Here we note that the map D(R2) 3 ψ 7→ A−1ψ| detA| ∈ D(R2) is linear and D-

continuous. We must therefore for u ∈ D ′(R2) define Au by the rule〈
Au, ϕ

〉 def
=
〈
u,A−1ϕ| detA|

〉
, ϕ ∈ D(R2).

The adjoint identity scheme then ensures that hereby A : D ′(R2) → D ′(R2) is a well-

defined, linear and D ′-continuous map.

By successive use of the formulas (5) we next calculate for u ∈ D ′(R2) (first assume

u ∈ C∞(R2) and then transfer the formula to general u by mollification):(
A−1∆A

)
u = (a2 + b2)∂2xu+ 2(ac+ bd)∂x∂yu+ (c2 + d2)∂2yu.

(b): p(∂) is elliptic iff p(x, y) = αx2 + βxy+ γy2 6= 0 for (x, y) ∈ R2 \ {(0, 0)}. Consider
the equation αx2 + βxy + γy2 = 0 and assume first that α 6= 0. If there is a solution

(x, y) with y = 0, then it can only be (0, 0). If (x, y) is a solution with y 6= 0, then

we must have α
(

x
y

)2
+ β x

y
+ γ = 0. The solutions are real iff β2 − 4αγ ≥ 0. It thus

follows that when α 6= 0, p(∂) is elliptic iff β2 < 4αγ holds. When α = 0 we have that

p(x, 0) = 0 for all x ∈ R and so in this case p(∂) is never elliptic, concluding the proof

that we have ellipticity iff β2 < 4αγ holds.

Assume that p(∂) is elliptic. To prove it is hypoelliptic, so that it admits a fundamental

solution with singular support {(0, 0)} we aim to find an automorphism A of R2 such

that p(∂) = A−1∆A and use that G(z) = log |z|/2π is a fundamental solution for ∆.
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By above we must have β2 < 4αγ, and so in particular that α, γ have the same sign.

Because also −p(∂) is elliptic we can without loss in generality assume that α > 0,

γ > 0. For the following calculation it is convenient to introduce v⃗ =
√
α(cos θ1, sin θ1)

and w⃗ =
√
γ(cos θ2, sin θ2) for some angles θ1, θ2 ∈ (−π, π] still to be determined. Note

that v⃗ · w⃗ =
√
αγ cos(θ1− θ2) and if A denotes the square matrix whose first and second

row is v⃗ and w⃗, respectively, then detA =
√
αγ sin(θ1 − θ2). Thus A is regular iff

θ1 − θ2 /∈ πZ, and so in this case the corresponding linear map A is an automorphism

of R2. We may then write A−1∆A = α∂2x + 2
√
αγ cos(θ1 − θ2)∂x∂y + γ∂2y . Because

β2 < 4αγ, that is, |β| < 2
√
αγ, we can solve cos(θ1 − θ2) = β/2

√
αγ ∈ (−1, 1) for

θ1 − θ2 ∈ R \ πZ. Take (for instance) θ2 = 0 and θ1 ∈ (−π, 0) ∪ (0, π) solving the

equation and let A denote the corresponding automorphism. Then p(∂) = A−1∆A, or

∆ = Ap(∂)A−1, hence we have δ0 = ∆G = Ap(∂)A−1G and so p(∂)A−1G = A−1δ0.

Using the definition we see that A−1δ0 = δ0| detA| and thus if we define

E(x, y) =
1

2π| detA|
log |A−1(x, y)|,

then E is a regular distribution on R2 with singular support {(0, 0)} and by construction

p(∂)E = δ0, as required.

(c): This follows easily from (b) and the elliptic regularity theorem from lectures. Indeed

the differential operator ∂2x + ∂x∂y + ∂2y is elliptic because α = β = γ = 1, so evidently

β2 = 1 < 4 = 4αγ. It is then also hypoelliptic and so if the right-hand side f is C∞ on

the ball B ⊂ Ω, then so is the solution u.

Optional part: Assume that f |Br(x0,y0) ∈ L2
loc(Br(x0, y0)). Fix a ball B ⋐ Br(x0, y0) and

denote

fB =

{
f in B,

0 in R2 \B.
Then fB ∈ L2(R2) has compact support and we may define v = E ∗ fB. By the

differentiation rule for convolutions, p(∂)v =
(
p(∂)E

)
∗ fB = fB, and so p(∂)(u− v) = 0

on B, so that by hypoellipticity, u− v is C∞ on B, and so u is locally as regular as v is

on B. Because the coefficients are real we may assume that f is real-valued as otherwise

we can consider separately the PDEs with the real and imaginary parts of f on the

right-hand side. First, we check that v ∈ L2
loc(R2): for R > 0 and writing BR = BR(0),

z = x+ iy and w = w1 + iw2 we have∫
BR

v2 d(x, y)
Cauchy−Schwarz

≤
∫
BR

∫
B

E(z − w)2 d(w1, w2)‖fB‖22 d(x, y)

≤ πR2

∫
BR−B

E(w)2 d(w1, w2) ‖fB‖22 < +∞

For the higher order regularity it is convenient to transform the equation back to the

Laplacian (though it is not necessary). We have fB = p(∂)v = A−1∆Av on R2, and so
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g = ∆w on R2, where g = AfB, w = Av. Clearly the regularity of w and v are the

same on corresponding sets and g ∈ L2(R2). We have established that w ∈ L2
loc(R2). We

assert that w ∈ W2,2
loc(R2), and consequently that u is W2,2

loc on Br(x0, y0). We of course

have the formula w = G ∗ g, but it seems easier to use w ∈ L2
loc(R2) and ∆w = g.

Put wε = ρε ∗ w, gε = ρε ∗ g and note that ∆wε = gε. For ϕ ∈ D(R2) we have∫
R2gεϕ =

∫
R2∆wεϕ = −

∫
R2∇wε · ∇ϕ. Fix two concentric balls B′ ⋐ B′′ and take a

cut-off function η ∈ D(R2) satisfying 1B′ ≤ η ≤ 1B′′ . Test ∆W = G with ϕ = η2W ,

where W = wε1 − wε2 and G = gε1 − gε2 to get∫
R2

Gη2W = −
∫
R2

∇W · ∇(η2W ) = −
∫
R2

(
η2|∇W |2 + 2ηW∇W · ∇η

)
,

and hence (using 2st ≤ s2/2 + 2t2 and 2st ≤ s2 + t2)∫
R2

η2|∇W |2 =

∫
R2

(
2ηW∇W · ∇η − η2WG

)
≤

∫
R2

(1
2
η2|∇W |2 + 2W 2|∇η|2 + 1

2
η2W 2 +

1

2
η2G2

)
,

and thus ∫
B′
|∇W |2 ≤ c

∫
B′′

(
W 2 +G2

)
,

where c = 1 + 4max |∇η|2 will do. Thus we have shown∫
B′
|∇wε1 −∇wε2|2 ≤ c

∫
B′′

(
|wε1 − wε2|2 + |gε1 − gε2|2

)
and since w, g ∈ L2

loc(R2) it follows that the sequence of restrictions, ((∇wε)|B′) is

Cauchy in L2(B′,R2) as ε ↘ 0, and so by completeness we find χ ∈ L2(B′,R2) such

that (∇wε)|B′ → χ in L2(B′,R2). (Note: L2
loc(B

′,R2) denotes the space of R2-valued

L2
loc functions on B′ normed by using the usual norm on R2.) But we also have that

∇wε → ∇w in D ′(R2,R2) and so we conclude that (∇w)|B′ = χ ∈ L2(B′,R2). Because

B′ was an arbitrary ball we conclude that ∇w ∈ L2
loc(R2,R2). Finally, for the second

order derivatives we retain the above notation and calculate∫
R2

|∇2(ηW )|2 =

∫
R2

(
∆(ηW )2 + 2

(
(ηW )2xy − (ηW )xx(ηW )yy

))
=

∫
R2

(
η∆W + 2∇η · ∇W +W∆η

)2
+2

∫
R2

((
(ηW )x(ηW )xy

)
y
−
(
(ηW )x(ηW )yy

)
x

)
.

Here the last integral is 0 and so as ∆W = G we get after routine estimations (as above)

that ∫
B′
|∇2W |2 ≤ c

∫
B′′

(
G2 + |∇W |2 +W 2

)
,
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where c = 3(1+max |∇η|2+max(∆η)2) will do. Thus we can conclude exactly as above

that also the Hessian matrix∇2w is locally square integrable on R2 and so w ∈ W2,2
loc(R2),

as asserted.
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Section C

7. Let p(x) ∈ C[x] be a complex polynomial of degree d ∈ N in n indeterminates and let

p(∂) =
∑
|α|≤d

cα∂
α

be the corresponding differential operator. Prove that

sing.supp
(
p(∂)u

)
⊆ sing.supp(u)

holds for all distributions u on an open non-empty subset Ω of Rn. Give an example

where the inclusion is strict. Does such an example exist when the dimension n = 1?

Solution: Recall that

Ω \ sing.supp(u) = Ω \
{
x ∈ Ω : u|Ω∩Br(x) ∈ C∞(Ω ∩Br(x)) for some r > 0

}
.

Fix x in this set. We may then find r ∈ (0, dist(x, ∂Ω)) such that u is C∞ on Br(x).

But then also p(∂)u is C∞ on Br(x), and therefore x ∈ Ω \ sing.supp
(
p(∂)u

)
so that we

have proved the required inclusion. An example with strict inclusion can for instance

be obtained using the wave differential operator ∂2t − k2∂2x on R2 and the solutions

mentioned in Question 2 on Problem Sheet 2. However, more dramatic examples can

also be constructed: For instance consider the differential operator p(∂) = ∂y on R2.

Let {qn}n∈N be an enumeration of the rational numbers Q and define

u(x, y)
def
=

∞∑
n=1

2−n1(−∞,qn)(x), (x, y) ∈ R2.

Then u : R2 → R is a well-defined function that is independent of y and is increasing

and right-continuous in x ∈ R. It is therefore in particular locally integrable on R2 and

so defines a regular distribution on R2. Since u is discontinuous at each point of the set

Q×R, which is dense in R2, it follows that sing.supp(u) = R2. However, since ∂yu = 0

in D ′(R2) we have sing.supp(∂yu) = ∅.

No such example can exist when n = 1. We skip the details here and merely indicate

a possible proof of the following result: if f ∈ C∞(a, b) and u ∈ D ′(a, b) satisfies

p
(

d
dx

)
u =

∑n
j=0 cju

(j) = f in D ′(a, b), then u ∈ C∞(a, b) too. In order to show this, one

can use the factorization of the polynomial p(x) to factorize the differential operator

p
(

d
dx

)
, then use the fundamental theorem and the constancy theorem iteratively as was

done in an example with a second order operator on Problem Sheet 3.
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8. A function f : R → C is Lipschitz continuous if there exists a constant L ≥ 0 such that∣∣f(x)− f(y)
∣∣ ≤ L|x− y| holds for all x, y ∈ R.

Prove that u ∈ D ′(R) has a Lipschitz continuous representative if and only if u′ ∈ L∞(R).
What does this mean for elements of the Sobolev space W1,∞(R)?

Solution: If u′ ∈ L∞(R), then by results from lectures f(x) = c+
∫ x

x0
u′(t) dt, x ∈ R, is

for suitable c ∈ C and x0 ∈ R, an absolutely continuous representative of u. Because

∣∣f(x)− f(y)
∣∣ = ∣∣∣∣∫ x

y

u′(t) dt

∣∣∣∣ ≤ ‖u′‖∞|x− y|

for all x, y ∈ R, f is also Lipschitz continuous. Conversely, assume that u has a

Lipschitz continuous representative and denote it by u again, so that u : R → C satisfies

|u(x)−u(y)| ≤ L|x− y| for all x, y ∈ R, where L ≥ 0 is a constant. In an example from

lectures we saw that the difference quotients of a distribution converge in the sense of

distributions to its distributional derivative, so

∆hu

h
=
τhu− u

h
→ u′ in D ′(R) as h→ 0.

Here it follows from the Lipschitz condition that ‖∆hu/h‖∞ ≤ L for all real h 6= 0. It

follows then by general results of Functional Analysis that u′ ∈ L∞(R) (more precisely

one can use that L∞(R) is the dual space of the separable space L1(R)), but as we have
not developed that here we use a mollification argument instead. Put uε = ρε ∗u. Then
uε ∈ C∞(R) and by inspection |uε(x) − uε(y)| ≤ L|x − y| holds for all x, y ∈ R and

ε > 0. We start by showing that u′ is a regular distribution on R and to that end fix

a > 0. Now for ε1, ε2 > 0 we estimate

∥∥u′ε1 − u′ε2
∥∥
L1(−a,a)

=

∫ a

−a

∣∣∣∣∫ 1

−1

ρ′(y)
(
u(x− ε1y)− u(x− ε2y)

)
dy

∣∣∣∣ dx
≤

∫ a

−a

∫ 1

−1

‖ρ′‖∞L|ε1 − ε2||y| dy dx

≤ 4a‖ρ′‖∞L|ε1 − ε2|,

showing that (u′ε|(−a,a)) is Cauchy in L1(−a, a) as ε↘ 0. By completeness of L1(−a, a)
we find va ∈ L1(−a, a) such that u′ε|(−a,a) → va in L1(−a, a) as ε ↘ 0. Consequently,

〈u′, ϕ〉 =
∫ a

−a
vaϕ dx for all ϕ ∈ D(R) supported in (−a, a), and since a > 0 was arbitrary

here we infer that u′ is a regular distribution on R. To conclude we fix a > 0 again, take

a null sequence εj ↘ 0 such that u′εj(x) → u′(x) pointwise in a.e. x ∈ (−a, a). Using

that the uεj satisfy an L-Lipschitz condition we get |u′εj(x)| ≤ L for all x ∈ R, hence
|u′(x)| = limj→∞ |u′εj(x)| ≤ L holds for a.e. x ∈ (−a, a), and since a > 0 is arbitrary we

are done.
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Recall that we defined W1,∞(R) to consist of all u ∈ D ′(R) for which u, u′ ∈ L∞(R).
It therefore follows that W1,∞(R) consists of those distributions on R that admit a

bounded Lipschitz function as representative.
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