B4.3 Distribution Theory Sheet 4 — MT23/HT24 Week 1 Localization and convolution of distributions. Hypoelliptic differential operators and elliptic regularity

Only work on the questions from Section B should be handed in.

Section A

- 1. Let Ω be a non-empty open subset of \mathbb{R}^n and $p \in [1, \infty]$.
 - (a) What does it mean to say that a distribution on Ω
 - (i) has order $k \in \mathbb{N}_0$ on the open subset ω of Ω ?
 - (ii) is a regular distribution on the open subset ω of Ω ?
 - (iii) is L^p on the open subset ω of Ω ?

Assume that $u \in \mathscr{D}'(\Omega)$ is a regular distribution on the open subset $\omega \subset \Omega$. Show that u must have order 0 on ω . Next, let (ϕ_j) be a sequence in $\mathscr{D}(\Omega)$ such that for some compact set $K \subset \omega$ and constant $c \geq 0$ we have $\operatorname{sup}(\phi_j) \subseteq K$ and $\operatorname{sup}_{x\in\Omega} |\phi_j(x)| \leq c$ for all $j \in \mathbb{N}$. Prove that if $\phi_j(x) \to 0$ pointwise in almost all $x \in \Omega$ as $j \to \infty$, then $\langle u, \phi_j \rangle \to 0$ as $j \to \infty$.

- (b) Let δ_{x_0} denote Dirac's delta function concentrated at the point $x_0 \in \Omega$. Prove that δ_{x_0} is a distribution on Ω of order 0 that is a regular distribution on $\Omega \setminus \{x_0\}$, but not on Ω .
- (c) Let μ be a locally finite Borel measure on Ω and assume there exists a compact set $N \subset \Omega$ with $\mathscr{L}^n(N) = 0$ and $\mu(N) > 0$ (the measure μ is then said to have a singular part with respect to \mathscr{L}^n). Consider the corresponding distribution

$$\langle \mu, \phi \rangle \stackrel{\text{def}}{=} \int_{\Omega} \phi \, \mathrm{d}\mu, \quad \phi \in \mathscr{D}(\Omega).$$

Show it has order 0 and that it is not a regular distribution on Ω .

(d) Identifying $z \in \mathbb{C}$ with $(x, y) \in \mathbb{R}^2$ in the usual way and denoting by $B_1(0)$ the open unit disc in \mathbb{R}^2 , show that

$$u = \frac{1}{\pi z} \mathbf{1}_{B_1(0)}$$

is a regular distribution on \mathbb{R}^2 and calculate its distributional Wirtinger derivative $\partial u/\partial \bar{z}$. Is it a regular distribution on \mathbb{R}^2 ? Find the supports and the singular supports of u and $\partial u/\partial \bar{z}$.

Solution: (a): (i) means that the restriction $u|_{\omega}$ is a distribution on ω of order k. The restriction $u|_{\omega}$ was defined in lectures by the rule $\langle u|_{\omega}, \phi \rangle = \langle u, \phi^e \rangle, \phi \in \mathscr{D}(\omega)$, where ϕ^e denotes

$$\phi^e(x) \stackrel{\text{def}}{=} \begin{cases} \phi(x) & \text{if } x \in \omega, \\ 0 & \text{if } x \in \Omega \setminus \omega. \end{cases}$$

It is clear that $\phi \mapsto \phi^e$ is a linear and \mathscr{D} -continuous map of $\mathscr{D}(\omega)$ into $\mathscr{D}(\Omega)$, so that the above definition makes sense. Note that strictly speaking the restriction $u|_{\omega}$ is nothing but $u|_{\mathscr{D}(\omega)^e}$, but we prefer the former notation as it emphasizes that we think of distributions as generalized functions defined on Ω . (ii) means that there exists $f \in \mathrm{L}^1_{\mathrm{loc}}(\omega)$ such that $\langle u, \phi \rangle = \int_{\omega} f \phi \, \mathrm{d}x$ for $\phi \in \mathscr{D}(\Omega)$ with support in ω . This is often written simply as $u|_{\omega} \in \mathrm{L}^1_{\mathrm{loc}}(\omega)$. (iii) means that the f in (ii) belongs to $\mathrm{L}^p(\omega)$ (and we then often write $u|_{\omega} \in \mathrm{L}^p(\omega)$).

Assume $u|_{\omega} \in L^1_{loc}(\omega)$. Let $L \subset \omega$ be compact. Then denoting $u|_{\omega} = f$ we have that f is integrable over L and so for $\phi \in \mathscr{D}(\omega)$ with support contained in L it follows that $f\phi \in L^1(\omega)$ and

$$|\langle u|_{\omega}, \phi \rangle| = \left| \int_{\omega} f \phi \, \mathrm{d}x \right| \le c_L \sup_{\omega} |\phi|,$$

where $c_L = \int_L |f| \, \mathrm{d}x$. Therefore $u|_{\omega}$ has order 0.

The continuity property of the regular distribution $u|_{\omega} = f$ follows by use of Lebesgue's DCT: Under the stated assumptions we get $|f\phi_j| \leq c|f|\mathbf{1}_K$ a.e. on ω for all $j \in \mathbb{N}$, and $c|f|\mathbf{1}_K$ is integrable over ω . The pointwise convergence a.e. implies that also $f\phi_j \to 0$ a.e. on ω , hence $\langle u|_{\omega}, \phi_j \rangle = \int_K f\phi_j \, dx \to 0$, as required.

(b): It is clear that δ_{x_0} is a distribution of order 0 on Ω . In fact, for any $\phi \in \mathscr{D}(\Omega)$ we have that $|\langle \delta_{x_0}, \phi \rangle| = |\phi(x_0)| \leq \sup_{\Omega} |\phi|$ (note that we do not even need to restrict the test functions to have support contained in compact subsets $K \subset \Omega$ here as the constants c_K can all be taken as 1). Because $\sup(\delta_{x_0}) = \{x_0\}$ we have $u|_{\Omega \setminus \{x_0\}} = 0$, which in particular is a regular distribution on $\Omega \setminus \{x_0\}$. To see that δ_{x_0} is not a regular distribution on Ω we can show that it does not have the continuity property established for regular distributions in (a) above. We use this approach in (c) below. Instead we proceed here by contradiction: assume that we could find $f \in L^1_{loc}(\Omega)$ such that

$$\phi(x_0) = \int_{\Omega} f \phi \, \mathrm{d}x \quad \text{ for all } \phi \in \mathscr{D}(\Omega).$$

If we consider only ϕ that are supported in $\Omega \setminus \{x_0\}$, then we get from the fundamental lemma of the calculus of variations that f = 0 a.e. in $\Omega \setminus \{x_0\}$. But as $\{x_0\}$ is a null set we can strengthen this to f = 0 a.e. in Ω . But $\delta_{x_0} \neq 0$ so this is a contradiction proving that δ_{x_0} cannot be a regular distribution on Ω .

(c): To see that μ has order 0 we fix a compact set $K \subset \Omega$. Then for $\phi \in \mathscr{D}(\Omega)$ with support in K we have

$$\left| \langle \mu, \phi \rangle \right| \leq \int_{K} \! |\phi| \, \mathrm{d} \mu \leq \mu(K) \sup_{\Omega} |\phi|,$$

and because μ is locally finite we have $\mu(K) < +\infty$, so the order is 0, as required.

Next, we show that μ cannot be a regular distribution on Ω by showing that it does not have the necessary continuity property established in (a) above. Put $\phi^{\varepsilon} = \rho_{\varepsilon} * \mathbf{1}_{B_{\varepsilon}(N)}$ for $\varepsilon \in (0, \operatorname{dist}(N, \partial \Omega)/3)$. Then $\phi^{\varepsilon} \in \mathscr{D}(\Omega)$ is supported in the compact subset $K = \overline{B_{2d}(N)}$ of Ω when $d = \operatorname{dist}(N, \partial \Omega)/3$. We also record that $0 \leq \phi^{\varepsilon}(x) \leq 1$ for all $x \in \Omega, \varepsilon \in (0, d)$ and that $\phi^{\varepsilon}(x) \to 0$ pointwise in $x \in \Omega \setminus N$ as $\varepsilon \searrow 0$. However since $\phi^{\varepsilon} = 1$ on N,

$$|\langle \mu, \phi^{\varepsilon} \rangle| = \int_{K} \phi^{\varepsilon} d\mu \ge \mu(N) > 0 \quad \text{for all } \varepsilon \in (0, d),$$

it follows that $\langle \mu, \phi^{\varepsilon} \rangle$ does not converge to 0 as $\varepsilon \searrow 0$, and so that μ cannot be a regular distribution on Ω .

(d): u is a regular distribution since (integrating in polar coordinates)

$$\int_{\mathbb{R}^2} \left| \frac{1}{\pi z} \mathbf{1}_{B_1(0)} \right| \, \mathrm{d}(x, y) = 2 < +\infty,$$

so that we even have $u \in L^1(\mathbb{R}^2)$. In order to calculate the Wirtinger derivative we use that u locally is the product of a C^{∞} function and a distribution so that we can employ the Leibniz rule:

$$\frac{\partial u}{\partial \bar{z}} = \delta_0 \mathbf{1}_{B_1(0)} + \frac{1}{\pi z} \frac{\partial}{\partial \bar{z}} \left(\mathbf{1}_{B_1(0)} \right) = \delta_0 + \frac{1}{\pi z} \frac{\partial}{\partial \bar{z}} \left(\mathbf{1}_{B_1(0)} \right),$$

where we used a result from Problem Sheet 3. In order to calculate the last term we let $\phi \in \mathscr{D}(\mathbb{R}^2)$ and use the divergence theorem:

$$\left\langle \frac{\partial}{\partial \bar{z}} \left(\mathbf{1}_{B_1(0)} \right), \phi \right\rangle = -\int_{B_1(0)} \frac{\partial \phi}{\partial \bar{z}} d(x, y)$$
$$= \int_{\partial B_1(0)} \frac{1}{2} (x + iy) \phi dS_{(x,y)}$$
$$= \int_{0}^{2\pi} \frac{e^{i\theta}}{2} \phi (\cos \theta, \sin \theta) d\theta,$$

where in the last line we wrote out the curve integral. The Wirtinger derivative is therefore

$$\frac{\partial u}{\partial \bar{z}} = \delta_0 + \frac{1}{\pi z} \frac{z}{2} \mathrm{d}S = \delta_0 + \frac{1}{2\pi} \mathrm{d}S,$$

where dS denotes integration over the unit circle $\partial B_1(0)$ in \mathbb{R}^2 . With the normalization, $\frac{1}{2\pi}$ dS, is a probability measure μ on \mathbb{R}^2 : if A is a Borel subset of \mathbb{R}^2 , then

$$\mu(A) = \frac{1}{2\pi} \int_{\{\theta \in [0,2\pi]: e^{i\theta} \in A\}} \mathrm{d}S.$$

Using (c) above we see that the Wirtinger derivative of u therefore is a distribution of order 0 that is not a regular distribution on \mathbb{R}^2 .

Finally, we see by inspection that $\operatorname{supp}(u) = \overline{B_1(0)}$, $\operatorname{supp}(\partial u/\partial \bar{z}) = \{0\} \cup \partial B_1(0)$ and sing.supp $(u) = \{0\} \cup \partial B_1(0)$, sing.supp $(\partial u/\partial \bar{z}) = \{0\} \cup \partial B_1(0)$. As a check we note that sing.supp $(u) = \operatorname{sing.supp}(\partial u/\partial \bar{z})$, as it should be according to the elliptic regularity theorem since the Wirtinger differential operator $\partial/\partial \bar{z}$ is hypoelliptic.

2. (a) Let $\theta \in \mathscr{D}(\mathbb{R}^n)$ and denote as usual its L¹ dilation by factor $\varepsilon > 0$ as

$$\theta_{\varepsilon}(x) \stackrel{\text{def}}{=} \frac{1}{\varepsilon^n} \theta\left(\frac{x}{\varepsilon}\right), \quad x \in \mathbb{R}^n.$$

- (i) Prove that θ_{ε} has a limit in $\mathscr{D}'(\mathbb{R}^n)$ as $\varepsilon \searrow 0$.
- (ii) Prove that for each $\phi \in \mathscr{D}(\mathbb{R}^n)$ we have $\theta_{\varepsilon} * \phi \to \int_{\mathbb{R}^n} \theta \, \mathrm{d}x \, \phi$ in $\mathscr{D}(\mathbb{R}^n)$ as $\varepsilon \searrow 0$.
- (iii) Prove that for each $\psi \in C(\mathbb{R}^n)$ we have $\theta_{\varepsilon} * \psi \to \int_{\mathbb{R}^n} \theta \, dx \, \psi$ locally uniformly on \mathbb{R}^n as $\varepsilon \searrow 0$. What can you say about the partial derivatives $\partial^{\alpha} (\theta_{\varepsilon} * \psi)$ as $\varepsilon \searrow 0$?
- (b) Let $f \colon \mathbb{R} \to \mathbb{C}$ be locally integrable and *T*-periodic (that is, f(x+T) = f(x) for all $x \in \mathbb{R}$). For a non-empty open interval $(a, b) \subseteq \mathbb{R}$ and natural numbers $j \in \mathbb{N}$ define $f_j(x) = f(jx), x \in (a, b)$. Prove that

$$f_j \to \frac{1}{T} \int_0^T f \, \mathrm{d}x \quad \text{ in } \mathscr{D}'(a,b) \text{ as } j \to \infty.$$

[This result is sometimes called the generalized Riemann-Lebesgue lemma.]

Solution: (a)(i): If $\phi \in \mathscr{D}(\mathbb{R}^n)$, then by the distributional definition of the L¹ dilation (so by change of variables) and continuity of ϕ at 0 we have as $\varepsilon \searrow 0$:

$$\langle \theta_{\varepsilon}, \phi \rangle = \int_{\mathbb{R}^n} \theta(x) \phi(\varepsilon x) \, \mathrm{d}x \to \int_{\mathbb{R}^n} \theta(x) \, \mathrm{d}x \, \phi(0).$$

Consequently, $\theta_{\varepsilon} \to \int_{\mathbb{R}^n} \theta \, \mathrm{d}x \, \delta_0$ in $\mathscr{D}'(\mathbb{R}^n)$ as $\varepsilon \searrow 0$.

(ii): Let $\phi \in \mathscr{D}(\mathbb{R}^n)$. Then by the support rule $\operatorname{supp}(\theta_{\varepsilon} * \phi) \subseteq \operatorname{supp}(\theta_{\varepsilon}) + \operatorname{supp}(\phi) = \varepsilon \operatorname{supp}(\theta) + \operatorname{supp}(\phi)$. Take r > 0 such that $\operatorname{supp}(\theta) \subset B_r(0)$ and note that for $\varepsilon \in (0, 1)$ we have $\operatorname{supp}(\theta_{\varepsilon} * \phi) \subseteq B_r(0) + \operatorname{supp}(\phi) \subset K$, where $K = \overline{B_r}(\operatorname{supp}(\phi))$ is a fixed compact set. By the differentiation rule we have for $\alpha \in \mathbb{N}_0^n$ that $\partial^{\alpha}(\theta_{\varepsilon} * \phi) = \theta_{\varepsilon} * (\partial^{\alpha} \phi)$ and since $\partial^{\alpha} \phi$ is uniformly continuous employing the argument of (i) above this converges uniformly to $\int_{\mathbb{R}^n} \theta \, \mathrm{d}x \, \partial^{\alpha} \phi$ on \mathbb{R}^n as $\varepsilon \searrow 0$. But this is what we were required to prove.

(iii): Because ψ is continuous, and hence is uniformly continuous on compact sets, we have as $\varepsilon \searrow 0$,

$$(\theta_{\varepsilon} * \psi)(x) = \int_{\mathbb{R}^n} \theta(y) \psi(x - \varepsilon y) \, \mathrm{d}y \to \int_{\mathbb{R}^n} \theta \, \mathrm{d}y \, \psi(x)$$

locally uniformly in $x \in \mathbb{R}^n$. The derivatives $\partial^{\alpha} \psi$ must be understood as distributions here and so it follows from the differentiation rule and (i) above that, as $\varepsilon \searrow 0$,

$$\partial^{\alpha} \big(\theta_{\varepsilon} * \psi \big) = \theta_{\varepsilon} * \partial^{\alpha} \psi \to \int_{\mathbb{R}^n} \theta \, \mathrm{d}x \, \partial^{\alpha} \psi \quad \text{ in } \mathscr{D}'(\mathbb{R}^n).$$

(b): Put $A = \frac{1}{T} \int_0^T f(t) dt$ and $F(x) = \int_0^x (f(t) - A) dt$, $x \in \mathbb{R}$. Then by results from lectures F is locally absolutely continuous with F' = f - A in $\mathscr{D}'(\mathbb{R})$. Since $F(x + T) - F(x) = \int_x^{x+T} (f(t) - A) dt = 0$ for all $x \in \mathbb{R}$, where the last equality follows because f is T-periodic, also F is T-periodic. In particular, F is then a bounded function on \mathbb{R} . Define $F_j(x) = F(jx)$, $x \in (a, b)$. Then F_j is absolutely continuous and by inspection, $F'_j = j(f_j - A)$ in $\mathscr{D}'(a, b)$. Now for $\phi \in \mathscr{D}(a, b)$ we get

$$\langle f_j - A, \phi \rangle = \left\langle \frac{1}{j} F'_j, \phi \right\rangle = -\frac{1}{j} \left\langle F_j, \phi' \right\rangle = -\frac{1}{j} \int_a^b F(jx) \phi'(x) \, \mathrm{d}x,$$

and since

$$\frac{1}{j} \left| \int_a^b F(jx) \phi'(x) \, \mathrm{d}x \right| \le \frac{\sup_{t \in \mathbb{R}} |F(t)|}{j} \int_a^b |\phi'(x)| \, \mathrm{d}x \to 0 \text{ as } j \to \infty,$$

we are done.

Section B

3. Distributions defined by finite parts.

On Problem Sheet 2 it was shown that the distributional derivative of $\log |x|$ is the distribution $pv(\frac{1}{x})$ defined by the principal value integral

$$\left\langle \operatorname{pv}\left(\frac{1}{x}\right),\phi\right\rangle \stackrel{\text{def}}{=} \lim_{\varepsilon \searrow 0} \left(\int_{-\infty}^{-\varepsilon} + \int_{\varepsilon}^{\infty}\right) \frac{\phi(x)}{x} \,\mathrm{d}x\,, \quad \phi \in \mathscr{D}(\mathbb{R})$$

In order to represent the higher order derivatives one can use finite parts: Let $n \in \mathbb{N}$ with n > 1. We then define $\operatorname{fp}\left(\frac{1}{x^n}\right)$ for each $\phi \in \mathscr{D}(\mathbb{R})$ by the *finite part integral*

$$\left\langle \operatorname{fp}\left(\frac{1}{x^{n}}\right),\phi\right\rangle \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} \frac{\phi(x) - \sum_{j=0}^{n-2} \frac{\phi^{(j)}(0)}{j!} x^{j} - \frac{\phi^{(n-1)}(0)}{(n-1)!} x^{n-1} \mathbf{1}_{(-1,1)}(x)}{x^{n}} \,\mathrm{d}x.$$

(a) Check that hereby $\operatorname{fp}\left(\frac{1}{x^n}\right)$ is a well-defined distribution on \mathbb{R} . Show that

$$\frac{\mathrm{d}}{\mathrm{d}x}\mathrm{pv}\left(\frac{1}{x}\right) = -\mathrm{fp}\left(\frac{1}{x^2}\right) \quad \text{and} \quad \frac{\mathrm{d}}{\mathrm{d}x}\mathrm{fp}\left(\frac{1}{x^n}\right) = -n\mathrm{fp}\left(\frac{1}{x^{n+1}}\right)$$

for all n > 1. Is $\operatorname{fp}\left(\frac{1}{x^n}\right)$ homogeneous? (See Problem Sheet 2 for the definition of homogeneity.) Determine the order, the support and the singular support of $\operatorname{fp}\left(\frac{1}{x^n}\right)$.

- (b) Show that for n > 1 we have $x^n \operatorname{fp}\left(\frac{1}{x^n}\right) = 1$ and find the general solution to the equation $x^n u = 1$ in $\mathscr{D}'(\mathbb{R})$. What is the general solution to the equation $(x-a)^n v = 1$ in $\mathscr{D}'(\mathbb{R})$ when $a \in \mathbb{R} \setminus \{0\}$?
- (c) Let $p(x) \in \mathbb{C}[x] \setminus \{0\}$ be a polynomial. Describe the general solution $w \in \mathscr{D}'(\mathbb{R})$ to the equation

$$p(x)w = 1$$
 in $\mathscr{D}'(\mathbb{R})$.

Solution: (a): Fix $\phi \in \mathscr{D}(\mathbb{R})$. To see that the definition yields a distribution note first that the function

$$\frac{\phi(x) - \sum_{j=0}^{n-2} \frac{\phi^{(j)}(0)}{j!} x^j}{x^n}$$

is continuous for $|x| \ge 1$ and that it is $O(x^{-2})$ as $|x| \to +\infty$. It is therefore integrable over $\mathbb{R} \setminus (-1, 1)$, and we record the bound

$$\left| \int_{\mathbb{R}\setminus(-1,1)} \frac{\phi(x) - \sum_{j=0}^{n-2} \frac{\phi^{(j)}(0)}{j!} x^j}{x^n} \, \mathrm{d}x \right| \le c_1 \max\{ |\phi^{(j)}(t)| : t \in \mathbb{R}, \ 0 \le j \le n \}, \quad (1)$$

where (for instance) $c_1 = 10$ will do. Next, for |x| < 1 we have by Taylor's formula with Lagrange remainder term that for some $\xi = \xi_x$ between 0 and x that

$$\frac{\phi(x) - \sum_{j=0}^{n-1} \frac{\phi^{(j)}(0)}{j!} x^j}{x^n} = \frac{\phi^{(n)}(\xi)}{n!}.$$

Therefore the function on the left-hand side is uniformly continuous on $(-1, 0) \cup (0, 1)$, and so integrable over (-1, 1). We record a corresponding bound:

$$\left| \int_{(-1,1)} \frac{\phi(x) - \sum_{j=0}^{n-1} \frac{\phi^{(j)}(0)}{j!} x^j}{x^n} \, \mathrm{d}x \right| \le \max |\phi^{(n)}|.$$
(2)

Consequently, by linearity of the integral, $\operatorname{fp}\left(\frac{1}{x^n}\right) \colon \mathscr{D}(\mathbb{R}) \to \mathbb{C}$ is a well-defined linear functional. Combining (1) and (2) we get the bound

$$\left|\left\langle \operatorname{fp}\left(\frac{1}{x^{n}}\right), \phi\right\rangle\right| \le c \max\left\{|\phi^{(j)}(t)| : t \in \mathbb{R}, \ 0 \le j \le n\right\}$$
(3)

valid for all $\phi \in \mathscr{D}(\mathbb{R})$, where (for instance) $c = 1 + c_1$ will do. Note that (3) in particular implies the \mathscr{D} -continuity of $\operatorname{fp}\left(\frac{1}{x^n}\right)$ proving that it is a distribution on \mathbb{R} .

Before we calculate the distributional derivative it is convenient to denote the k-th Taylor polynomial for $\phi \in \mathscr{D}(\mathbb{R})$ about 0 as

$$T^k_\phi(x) \equiv \sum_{j=0}^k \frac{\phi^{(j)}(0)}{j!} x^j$$

and note that because 1/x is an odd function,

$$\left\langle \operatorname{fp}\left(\frac{1}{x^n}\right), \phi \right\rangle = \lim_{r \searrow 0} \left(\int_{-\frac{1}{r}}^{-r} + \int_{r}^{\frac{1}{r}} \right) \left(\phi(x) - T_{\phi}^{n-1}(x) \right) \frac{\mathrm{d}x}{x^n}.$$

This also holds for n = 1 and so unifies the notation (so for n = 1 we have pv = fp). Observe $\phi'(x) - T_{\phi'}^{n-1}(x) = (\phi(x) - T_{\phi}^n(x))'$, so

$$\left\langle \frac{\mathrm{d}}{\mathrm{d}x} \mathrm{fp}\left(\frac{1}{x^n}\right), \phi \right\rangle = -\left\langle \mathrm{fp}\left(\frac{1}{x^n}\right), \phi' \right\rangle$$
$$= -\lim_{r \searrow 0} \left(\int_{-\frac{1}{r}}^{-r} + \int_{r}^{\frac{1}{r}} \right) \left(\phi(x) - T_{\phi}^n(x) \right)' \frac{\mathrm{d}x}{x^n} .$$

Now for r > 0 so small that ϕ is supported in (-1/r, 1/r) we have by partial integration

$$\left(\int_{-\frac{1}{r}}^{-r} + \int_{r}^{\frac{1}{r}} \right) \left(\phi(x) - T_{\phi}^{n}(x) \right)' \frac{\mathrm{d}x}{x^{n}} = \frac{\phi(-r) - T_{\phi}^{n}(-r)}{(-r)^{n}} + T_{\phi}^{n}(-\frac{1}{r})(-r)^{n} - T_{\phi}^{n}(\frac{1}{r})r^{n} - \frac{\phi(r) - T_{\phi}^{n}(r)}{r^{n}} + n \left(\int_{-\frac{1}{r}}^{-r} + \int_{r}^{\frac{1}{r}} \right) \left(\phi(x) - T_{\phi}^{n}(x) \right) \frac{\mathrm{d}x}{x^{n+1}},$$

and therefore

$$\left\langle \frac{\mathrm{d}}{\mathrm{d}x} \mathrm{fp}\left(\frac{1}{x^n}\right), \phi \right\rangle = -n \left\langle \mathrm{fp}\left(\frac{1}{x^{n+1}}\right), \phi \right\rangle,$$

as required.

The distribution $\operatorname{fp}\left(\frac{1}{x^n}\right)$ is homogeneous of degree -n: This follows for instance by direct verification (showing and exploiting that $T_{\phi_r}^{n-1} = (T_{\phi}^{n-1})_r$) or by use of results established on Problem Sheet 2: it was shown there that $\operatorname{pv}\left(\frac{1}{x}\right)$ is homogeneous of degree -1 and that the derivative of a β -homogeneous distribution is $(\beta - 1)$ -homogeneous. The result then follows from the above identification of derivatives.

Note that $1/x^n$ is a regular distribution on $\mathbb{R}\setminus\{0\}$ and that $\operatorname{fp}\left(\frac{1}{x^n}\right)|_{\mathbb{R}\setminus\{0\}} = \frac{1}{x^n}$. Therefore the support of $\operatorname{fp}\left(\frac{1}{x^n}\right)$ is \mathbb{R} (closure of $\mathbb{R}\setminus\{0\}$) and its singular support must be contained in $\{0\}$. The singular support must be $\{0\}$ because if it was not, it would be empty and the distribution would then have a \mathbb{C}^{∞} function as representative on \mathbb{R} . This function would have to equal $1/x^n$ on $\mathbb{R}\setminus\{0\}$, preventing it from being a \mathbb{C}^{∞} function on \mathbb{R} .

The bound (3) implies that $\operatorname{fp}\left(\frac{1}{x^n}\right)$ has order at most n. To see that the order is n we recall from Problem Sheet 2 that $\operatorname{pv}\left(\frac{1}{x}\right)$ has order 1, and so using the identity $\operatorname{fp}\left(\frac{1}{x^n}\right) = c_n \frac{\mathrm{d}^n}{\mathrm{d}x^n} \operatorname{pv}\left(\frac{1}{x}\right)$, where $c_n = \frac{(-1)^{n-1}}{(n-1)!}$, we infer that the order is n. (It is acceptable if the students assert this as I have mentioned it, though not proved it, in lectures.)

Lemma: If $u \in \mathscr{D}'(\mathbb{R})$ has order $k \in \mathbb{N}$, then u' has order k + 1. (Note this is false if k = 0.)

Proof. It is easy to see that u' has order at most k + 1. To see that the order is k + 1 assume for a contradiction that the order is at most k. Then for any R > 0 we find a constant $c = c_R \ge 0$ such that

$$\left|\langle u',\phi\rangle\right| \le c \sum_{j=0}^k \max|\phi^{(j)}| \tag{4}$$

holds for all $\phi \in \mathscr{D}(\mathbb{R})$ with support in (-R, R). Take $\chi \in \mathscr{D}(-R, R)$ with $\int_{\mathbb{R}} \chi \, dx = 1$. For $\phi \in \mathscr{D}(-R, R)$ put $\varphi = \phi - c\chi$ with $c = \int_{\mathbb{R}} \phi \, dx$. Then $\varphi \in \mathscr{D}(-R, R)$ and $\int_{\mathbb{R}} \varphi \, dx = 0$ and so $\psi(x) = \int_{-R}^{x} \varphi(t) \, dt$, $x \in \mathbb{R}$, belongs to $\mathscr{D}(-R, R)$. Plugging it into (4) yields, after rearranging terms, the bound

$$\left|\langle u, \phi \rangle\right| \le C \sum_{j=0}^{k-1} \max |\phi^{(j)}|$$

for some constant $C = C_R$. But this is contradicting the assumption that u has order k.

(b): For $\phi \in \mathscr{D}(\mathbb{R})$ we calculate

$$\left\langle x^{n} \operatorname{fp}\left(\frac{1}{x^{n}}\right), \phi \right\rangle = \left\langle \operatorname{fp}\left(\frac{1}{x^{n}}\right), x^{n} \phi \right\rangle$$
$$= \lim_{r \searrow 0} \left(\int_{-\frac{1}{r}}^{-r} + \int_{r}^{\frac{1}{r}} \right) \left(x^{n} \phi(x) - T_{x^{n} \phi}^{n-1}(x) \right) \frac{\mathrm{d}x}{x^{n}}$$
$$= \lim_{r \searrow 0} \left(\int_{-\frac{1}{r}}^{-r} + \int_{r}^{\frac{1}{r}} \right) \phi(x) \, \mathrm{d}x = \int_{\mathbb{R}} \phi(x) \, \mathrm{d}x,$$

as required. This also yields a particular solution to the equation $x^n u = 1$. To find the general solution to the homogeneous equation $x^n u = 0$ we note that any such u must be supported in $\{0\}$, and so, by a result from lectures, be a linear combination of δ_0 and its derivatives: $u = \sum_{j=0}^{J} c_j \delta_0^{(j)}$ for some $J \in \mathbb{N}_0$ and $c_j \in \mathbb{C}$. Plugging in this u we see that when J = n - 1, then we are free to choose the coefficients $c_j \in \mathbb{C}$. To see that these are all the solutions we use special test functions. Indeed if it is a solution then we get for any $\phi \in \mathscr{D}(\mathbb{R})$ that for $J \ge n$:

$$0 = \sum_{j=0}^{J} c_j \langle \delta_0^{(j)}, x^n \phi \rangle = \sum_{j=0}^{J} c_j \sum_{k=0}^{j} {j \choose k} \frac{\mathrm{d}^k}{\mathrm{d}x^k} |_{x=0} (x^n) \phi^{(j-k)}(0) = \sum_{j=n}^{J} c_j {j \choose n} n! \phi^{(j-n)}(0).$$

For $s \in \{0, \ldots, J-n\}$ we select $\phi \in \mathscr{D}(\mathbb{R})$ with $\phi^{(j)}(0) = \delta_{j,s}$ for all $j \in \mathbb{N}_0$ (see Problem Sheet 1 for a possible construction of such ϕ). We now have that the terms in the above sum are 0 unless j - n = s and so we get $0 = c_{n+s} \binom{n+s}{n} n!$, that is, $c_j = 0$ for all $j \ge n$. Therefore GS is $u = \operatorname{fp}(\frac{1}{x^n}) + \sum_{j=0}^{n-1} c_j \delta_0^{(j)}$, where $c_1, \ldots, c_{n-1} \in \mathbb{C}$. By inspection we see that GS to the equation $(x - a)^n v = 1$ is $v = \operatorname{fp}(\frac{1}{(x-a)^n}) + \sum_{j=0}^{n-1} c_j \delta_a^{(j)}$, where $c_1, \ldots, c_{n-1} \in \mathbb{C}$.

(c): We find the GS as $w_H + w_{PS}$, where w_H is a general solution to the homogeneous equation and w_{PS} is any solution to the inhomogeneous equation. Suppose $a_1, \ldots, a_n \in$ \mathbb{R} are all the distinct real roots of p(x) and let $m_j \in \mathbb{N}$ be the multiplicity of a_j . Then $p(x) = q(x) \prod_{j=1}^n (x - a_j)^{m_j}$, where q(x) is a polynomial without real roots. We first find w_H and note that since $1/q(x) \in \mathbb{C}^{\infty}(\mathbb{R})$ this is GS to $(\prod_{j=1}^n (x - a_j)^{m_j})w = 0$. Using localization and a result from (b) we find

$$w_H = \sum_{k=1}^n \sum_{j=0}^{m_k - 1} c_{k,j} \delta_{a_k}^{(j)},$$

where $c_{k,j} \in \mathbb{C}$ are arbitrary. To find w_{PS} we expand in partial fractions:

$$\frac{1}{p(x)} = \frac{1}{q(x)} \sum_{k=1}^{n} \sum_{j=1}^{m_k} \frac{b_{k,j}}{(x-a_k)^j},$$

and so using localization and a result from (b) we get

$$w_{PS} = \frac{1}{q(x)} \sum_{k=1}^{n} \sum_{j=1}^{m_k} \operatorname{fp}\left(\frac{b_{k,j}}{(x-a_k)^j}\right).$$

4. (a) Let $n \in \mathbb{N}$. Calculate the limits

$$(x + i0)^{-n} \stackrel{\text{def}}{=} \lim_{\varepsilon \searrow 0} (x + i\varepsilon)^{-n}$$
 and $(x - i0)^{-n} \stackrel{\text{def}}{=} \lim_{\varepsilon \searrow 0} (x - i\varepsilon)^{-n}$

in $\mathscr{D}'(\mathbb{R})$. Prove the Plemelj-Sokhotsky jump relations:

$$(x + i0)^{-n} - (x - i0)^{-n} = 2\pi i \frac{(-1)^n}{(n-1)!} \delta_0^{(n-1)},$$

where δ_0 is Dirac's delta-function on \mathbb{R} concentrated at 0.

(b) Show that for $\phi \in \mathscr{D}(\mathbb{R})$ with $\phi^{(j)}(0) = 0$ for each $j \in \{0, \ldots, n\}$ we have

$$\left\langle \left(x \pm i0\right)^{-n}, \phi \right\rangle = \int_{-\infty}^{\infty} \frac{\phi(x)}{x^n} dx.$$

(c) Show that

$$x(x \pm i0)^{-1} = 1$$
 in $\mathscr{D}'(\mathbb{R})$.

Deduce that

$$(x \pm i0)^{-1}(x\delta_0) = 0 \neq \delta_0 = \left((x \pm i0)^{-1}x\right)\delta_0.$$

Next, show that

$$(x \pm i0)^{-n} x^n = 1$$
 in $\mathscr{D}'(\mathbb{R})$

holds for each $n \in \mathbb{N}$

(d) Find distributions $u_+, u_- \in \mathscr{D}'(\mathbb{R})$ such that their *n*-th distributional derivatives satisfy

$$u_{+}^{(n)} = (x + i0)^{-n}$$
 and $u_{-}^{(n)} = (x - i0)^{-n}$.

Solution: (a): First note that $(x \pm i\varepsilon)^{-n} \in L^1_{loc}(\mathbb{R})$, so for $\phi \in \mathscr{D}(\mathbb{R})$ we calculate by n-1 successive integrations by parts:

$$\left\langle \left(x \pm i\varepsilon\right)^{-n}, \phi \right\rangle = \frac{1}{(n-1)!} \int_{\mathbb{R}} \phi^{(n-1)}(x) \frac{\mathrm{d}x}{x \pm i\varepsilon}.$$

Now a primitive for $1/(x \pm i\varepsilon)$ is the principal logarithm $\text{Log}(x \pm i\varepsilon)$, and we record that, as $\varepsilon \searrow 0$,

$$\operatorname{Log}(x \pm i\varepsilon) = \log(x^2 + \varepsilon^2)^{\frac{1}{2}} + i\operatorname{Arg}(x \pm i\varepsilon) \to \log|x| \pm \pi i H(-x)$$

pointwise in $x \in \mathbb{R} \setminus \{0\}$. Here *H* denotes Heaviside's function. Therefore another integration by parts and then Lebesgue's DCT yields as $\varepsilon \searrow 0$ that

$$\langle (x \pm i\varepsilon)^{-n}, \phi \rangle \to \frac{-1}{(n-1)!} \int_{\mathbb{R}} \phi^{(n)}(x) (\log |x| \pm \pi i H(-x)) dx.$$

B4.3 Distribution Theory: Sheet 4 — MT23/HT24 Week 1

It is clear that the right-hand sides define distributions on \mathbb{R} . Their difference is

$$\left\langle \left(x + i\varepsilon\right)^{-n} - \left(x - i\varepsilon\right)^{-n}, \phi \right\rangle = -\frac{2\pi i}{(n-1)!} \int_{-\infty}^{0} \phi^{(n)}(x) \, \mathrm{d}x = -\frac{2\pi i}{(n-1)!} \phi^{(n-1)}(0),$$

and since $\phi^{(n-1)}(0) = (-1)^{n-1} \langle \delta_0^{(n-1)}, \phi \rangle$ this is the required jump relation.

(b): If $\phi^{(j)}(0) = 0$ for $0 \le j \le n$, then $x^{-n}\phi(x) \to 0$ as $x \to 0$, and so $x^{-n}\phi(x)$ is integrable on \mathbb{R} . Because $|(x \pm i\varepsilon)^{-n}\phi(x)| \le |x^{-n}\phi(x)|$ for all $x \in \mathbb{R} \setminus \{0\}$ we get by Lebesgue's DCT that

$$\langle (x \pm i0)^{-n}, \phi \rangle = \int_{\mathbb{R}} x^{-n} \phi(x) \, \mathrm{d}x.$$

(c): First we note that if $\phi \in \mathscr{D}(\mathbb{R})$, then $x\phi(x)$ is a test function that vanishes at 0 and so by (b) we get $\langle x(x \pm i0)^{-1}, \phi \rangle = \langle (x \pm i0)^{-1}, x\phi \rangle = \int_{\mathbb{R}} \phi \, dx$, thus $x(x \pm i0)^{-1} = 1$. The deduction is then clear.

For $n \in \mathbb{N}$ and $\phi \in \mathscr{D}(\mathbb{R})$ the function $x^n \phi$ is a test function that vanishes to order n at 0, and so we may use (b) as above to see that $x^n (x \pm i0)^{-n} = 1$.

(d): This calculation was essentially done in our solution of (a) above:

$$u_{\pm} = \frac{(-1)^{n-1}}{(n-1)!} \left(\log |x| \pm \pi i H(-x) \right)$$

is the limit in $\mathscr{D}'(\mathbb{R})$ of $\frac{(-1)^{n-1}}{(n-1)!} \operatorname{Log}(x \pm i\varepsilon)$ as $\varepsilon \searrow 0$. The latter is the *n*-th primitive of $(x \pm i\varepsilon)^{-n}$. By continuity of differentiation in $\mathscr{D}'(\mathbb{R})$ we therefore see that $u_{\pm}^{(n)} = (x \pm i0)^{-n}$.

5. A real-valued distribution u on \mathbb{R}^2 is called *subharmonic* provided $\Delta u \ge 0$ in $\mathscr{D}'(\mathbb{R}^2)$. In the following we identify $z \in \mathbb{C}$ in the usual way with $(x, y) \in \mathbb{R}^2$ and we assume $f: \mathbb{C} \to \mathbb{C}$ is an entire function that is not identically zero. Define

$$\langle u, \phi \rangle \stackrel{\text{def}}{=} \int_{\mathbb{R}^2} \phi(x, y) \log |f(z)| \, \mathrm{d}(x, y), \quad \phi \in \mathscr{D}(\mathbb{R}^2).$$

Show that u is a well-defined and subharmonic distribution on \mathbb{R}^2 .

What happens above if $f: \mathbb{C} \to \mathbb{C} \cup \{\infty\}$ is allowed to be meromorphic?

Solution: First we note that the zero set for $f, Z = \{z \in \mathbb{C} : f(z) = 0\}$, cannot have limit points in \mathbb{C} since otherwise $f \equiv 0$ by the identity theorem. The set Z is therefore locally finite (so for each $z_0 \in \mathbb{C}$ and r > 0 the intersection $B_r(z_0) \cap Z$ is a finite set). It is then in particular at most countable and so can be enumerated, say $Z = \{z_j : j \in J\}$, where J is at most countable. We also record that for each $w \in \mathbb{C}$ we can select r > 0 such that $B_{2r}(w)$ contains at most one zero for f. When $B_{2r}(w) \cap Z = \emptyset$ the function log |f(z)| is \mathbb{C}^{∞} on $B_{2r}(w)$, and so is in particular integrable on $B_r(w)$. If $w = z_j \in Z$ choose r > 0 such that $Z \cap B_{2r}(z_j) = \{z_j\}$ and by applying Taylor's theorem to f about z_j we get $f(z) = \sum_{s=m_j}^{\infty} \frac{f^{(s)}(z_j)}{j!}(z-z_j)^s$ on \mathbb{C} . Defining $g(z) = \sum_{s=m_j}^{\infty} \frac{f^{(s)}(z_j)}{j!}(z-z_j)^{s-m_j}$ we have that $g \colon \mathbb{C} \to \mathbb{C}$ is an entire function that has no zeroes on $B_{2r}(z_j)$ and f(z) = $(z-z_j)^{m_j}g(z)$ on \mathbb{C} . Thus $\log |f(z)| = m_j \log |z-z_j| + \log |g(z)|$ and the second term is integrable on $B_r(z_j)$. The first term is also seen to be integrable on $B_r(z_j)$ (for instance we may check this by integrating in polar coordinates about z_j). Thus $\log |f(z)|$ is locally integrable, and so defines a regular distribution u on \mathbb{C} . By the above we see that the restriction of u to the open set $\mathbb{C} \setminus Z$ can be represented by a \mathbb{C}^{∞} function, and so we may calculate on $\mathbb{C} \setminus Z$:

$$\begin{split} \Delta u &= 4 \frac{\partial}{\partial \bar{z}} \left(\frac{\partial}{\partial z} \log |f(z)| \right) \\ &= 2 \frac{\partial}{\partial \bar{z}} \left(\frac{1}{|f(z)|^2} \left(\frac{\partial f(z)}{\partial z} \overline{f(z)} + f(z) \frac{\partial \overline{f(z)}}{\partial z} \right) \right) \\ &= 2 \frac{\partial}{\partial \bar{z}} \left(\frac{f'(z)}{f(z)} + 0 \right) = 0, \end{split}$$

where we applied the Cauchy-Riemann equations twice. If $w = z_j \in Z$ we select r > 0as above such that $B_{2r}(z_j) \cap Z = \{z_j\}$ and $u = m_j \log |\cdot -z_j| + \log |g|$ on $B_r(z_j)$. Using results from Problem Sheet 3 and lectures we then calculate in the sense of distributions on $B_r(z_j)$:

$$\Delta u = m_j \Delta \log |z - z_j| = 2m_j \frac{\partial}{\partial \bar{z}} \left(\frac{1}{z - z_j}\right) = 2\pi m_j \delta_{z_j}.$$

It follows by localization that

$$\Delta u = \sum_{j \in J} 2\pi m_j \delta_{z_j} \text{ in } \mathscr{D}'(\mathbb{C}),$$

and since each $m_j \in \mathbb{N}$, $\Delta u \geq 0$, so that u is subharmonic. By *localization* we intend: given $\phi \in \mathscr{D}(\mathbb{C})$ we cover $\operatorname{supp}(\phi)$ by a finite number of balls as above, say $\operatorname{supp}(\phi) \subset \bigcup_{k=1}^{K} B_{r_k}(w_k)$, and then we select a smooth partition of unity $\eta_k, k \in K$, that is subordinated the open cover $\{B_{r_k}(w_k)\}_{k\in K}$. We now have $\langle \Delta u, \phi \rangle = \sum_{k=1}^{K} \langle \Delta u, \eta_k \phi \rangle$. Here each term in the sum is covered by the above calculation, namely $\langle \Delta u, \eta_k \phi \rangle = 0$ when $B_{2r_k}(w_k) \cap Z = \emptyset$ and $\langle \Delta u, \eta_k \phi \rangle = 2\pi m_j(\eta_k \phi)(z_j)$ when $B_{2r_k}(w_k) \cap Z = \{z_j\}$. The result then follows as asserted.

When $f: \mathbb{C} \to \mathbb{C} \cup \{\infty\}$ is meromorphic we allow a set P of isolated poles for f to exist. The set P will then be locally finite, so in particular at most countable and so can be enumerated, say $P = \{p_k : k \in K\}$. Denote the order of the pole p_k by $n_k \in \mathbb{N}$. Clearly $Z \cap P = \emptyset$. As before we have if $w \in \mathbb{C} \setminus (Z \cup P)$ that u is \mathbb{C}^{∞} near w and if $w \in Z$ we take r > 0 such that $B_{2r}(w) \cap (Z \cup P) = \{w\}$ so u is again integrable on $B_r(w)$. If $w = p_k \in P$ we take r > 0 such that $B_{2r}(p_k) \cap (P \cup Z) = \{p_k\}$ and have then by Laurent's theorem $f(z) = \sum_{s=-n_k}^{\infty} c_s(z-p_k)^s$ for suitable $c_s \in \mathbb{C}$ and $c_{-n_k} \neq 0$. Write $g(z) = \sum_{s=0}^{\infty} c_{s-n_k}(z-p_k)^s$ and note that $g: B_{r_k}(p_k) \to \mathbb{C}$ is nonvanishing, holomorphic and $f(z) = (z-p_k)^{-n_k}g(z)$. We have therefore on $B_{r_k}(p_k)$ that

$$u = -n_k \log |z - p_k| + \log |g(z)|,$$

which shows that u is integrable on $B_{r_k}(p_k)$. Thus u is again a regular distribution on \mathbb{C} and calculating as above we find that

$$\Delta u = \sum_{j \in J} 2\pi m_j \delta_{z_j} - \sum_{k \in K} 2\pi n_k \delta_{p_k}.$$

This is clearly not a positive distribution, so u is not subharmonic in this case.

- 6. (a) Let A: ℝ² → ℝ² be a bijective linear map and define for φ ∈ D(ℝ²) the function Aφ: ℝ² → ℂ by (Aφ)(x, y) ^{def}= φ(A(x, y)), (x, y) ∈ ℝ². Prove that A: D(ℝ²) → D(ℝ²) is a well-defined, linear and D-continuous map. How should we define Au for a distribution u ∈ D'(ℝ²)? Find a formula for A⁻¹ΔAu, where Δ denotes the Laplacian on ℝ².
 - (b) Let p(∂) be a differential operator on ℝ² with real coefficients and that is homogeneous of order 2:

$$p(\partial) = \alpha \partial_x^2 + \beta \partial_x \partial_y + \gamma \partial_y^2,$$

where $\alpha, \beta, \gamma \in \mathbb{R}$ are not all zero. Prove that $p(\partial)$ is elliptic if and only if $\beta^2 < 4\alpha\gamma$. Next, show that if $p(\partial)$ is elliptic, then it is also hypoelliptic.

(c) Let Ω be an open non-empty subset of \mathbb{R}^2 and assume that $u \in \mathscr{D}'(\Omega)$ satisfies

$$\partial_x^2 u + \partial_x \partial_y u + \partial_y^2 u = f \quad \text{in } \mathscr{D}'(\Omega),$$

where $f \in \mathscr{D}'(\Omega)$. Prove that if f is C^{∞} on $B_r(x_0, y_0) \subset \Omega$, then so is u.

Optional: What can you say about u if f is L^2_{loc} on $B_r(x_0, y_0) \subset \Omega$?

Solution: (a): Put A(x, y) = (ax + by, cx + dy), where $a, b, c, d \in \mathbb{R}$ and $ad - bc \neq 0$. Then by iterative use of the chain rule it follows that for $\phi \in \mathscr{D}(\mathbb{R}^2)$ the function $A\phi(x, y) = \phi(ax + by, cx + dy)$ is in $\mathbb{C}^{\infty}(\mathbb{R}^2)$ and since $\operatorname{supp}(A\phi) = A^{-1}\operatorname{supp}(\phi)$ is compact, we have $A\phi \in \mathscr{D}(\mathbb{R}^2)$. It is then clear that $A: \mathscr{D}(\mathbb{R}^2) \to \mathscr{D}(\mathbb{R}^2)$ is a well-defined linear map. To show that it is \mathscr{D} -continuous it suffices by linearity to consider a null sequence. Let $\phi_j \in \mathscr{D}(\mathbb{R}^2)$ and suppose that $\phi_j \to 0$ in $\mathscr{D}(\mathbb{R}^2)$. That is, for some compact set $K \subset \mathbb{R}^2$ we have $\operatorname{supp}(\phi_j) \subseteq K$ for all j, and $\partial^{\alpha} \phi_j \to 0$ uniformly on \mathbb{R}^2 for each multi-index α . Then $\operatorname{supp}(A\phi_j) \subseteq A^{-1}K$ for all j, where again $A^{-1}K$ is compact. For the uniform convergence of partial derivatives we use induction on the lenght of the multi-index α . First, we clearly have $A\phi_j \to 0$ uniformly, and for the induction step we use the formulas

$$\partial_x A\psi = aA(\partial_x\psi) + cA(\partial_y\psi) \text{ and } \partial_y A\psi = bA(\partial_x\psi) + dA(\partial_y\psi)$$
 (5)

that are valid for any $\psi \in C^1(\mathbb{R}^2)$. Assume we have established the uniform convergence to 0 for all partial derivatives of order less than $n \in \mathbb{N}$. Then for $\alpha \in \mathbb{N}_0^2$ of lenght n we put $\beta = \alpha - (1,0)$ if $\alpha_1 > 0$ (and $\alpha - (0,1)$ if $\alpha_1 = 0$). Assuming the former we then have $\partial^{\alpha} A \phi_j = \partial^{\beta} (aA(\partial_x \phi_j) + cA(\partial_y \phi_j)) \to 0$ uniformly by the induction hypothesis. The \mathscr{D} -continuity of A follows.

In order to extend the definition of A to distributions we use the adjoint identity scheme, and for that purpose we derive an adjoint identity. For ϕ , $\psi \in \mathscr{D}(\mathbb{R}^2)$ we calculate by the change-of-variables formula:

$$\int_{\mathbb{R}^2} A\phi\psi \,\mathrm{d}(x,y) = \int_{\mathbb{R}^2} \phi A^{-1}\psi |\det A| \,\mathrm{d}(x,y)$$

Here we note that the map $\mathscr{D}(\mathbb{R}^2) \ni \psi \mapsto A^{-1}\psi |\det A| \in \mathscr{D}(\mathbb{R}^2)$ is linear and \mathscr{D} continuous. We must therefore for $u \in \mathscr{D}'(\mathbb{R}^2)$ define Au by the rule

$$\langle Au, \phi \rangle \stackrel{\text{def}}{=} \langle u, A^{-1}\phi | \det A | \rangle, \quad \phi \in \mathscr{D}(\mathbb{R}^2).$$

The adjoint identity scheme then ensures that hereby $A: \mathscr{D}'(\mathbb{R}^2) \to \mathscr{D}'(\mathbb{R}^2)$ is a welldefined, linear and \mathscr{D}' -continuous map.

By successive use of the formulas (5) we next calculate for $u \in \mathscr{D}'(\mathbb{R}^2)$ (first assume $u \in C^{\infty}(\mathbb{R}^2)$ and then transfer the formula to general u by mollification):

$$(A^{-1}\Delta A)u = (a^2 + b^2)\partial_x^2 u + 2(ac + bd)\partial_x\partial_y u + (c^2 + d^2)\partial_y^2 u.$$

(b): $p(\partial)$ is elliptic iff $p(x, y) = \alpha x^2 + \beta xy + \gamma y^2 \neq 0$ for $(x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\}$. Consider the equation $\alpha x^2 + \beta xy + \gamma y^2 = 0$ and assume first that $\alpha \neq 0$. If there is a solution (x, y) with y = 0, then it can only be (0, 0). If (x, y) is a solution with $y \neq 0$, then we must have $\alpha \left(\frac{x}{y}\right)^2 + \beta \frac{x}{y} + \gamma = 0$. The solutions are real iff $\beta^2 - 4\alpha\gamma \geq 0$. It thus follows that when $\alpha \neq 0$, $p(\partial)$ is elliptic iff $\beta^2 < 4\alpha\gamma$ holds. When $\alpha = 0$ we have that p(x, 0) = 0 for all $x \in \mathbb{R}$ and so in this case $p(\partial)$ is never elliptic, concluding the proof that we have ellipticity iff $\beta^2 < 4\alpha\gamma$ holds.

Assume that $p(\partial)$ is elliptic. To prove it is hypoelliptic, so that it admits a fundamental solution with singular support $\{(0,0)\}$ we aim to find an automorphism A of \mathbb{R}^2 such that $p(\partial) = A^{-1}\Delta A$ and use that $G(z) = \log |z|/2\pi$ is a fundamental solution for Δ .

By above we must have $\beta^2 < 4\alpha\gamma$, and so in particular that α , γ have the same sign. Because also $-p(\partial)$ is elliptic we can without loss in generality assume that $\alpha > 0$, $\gamma > 0$. For the following calculation it is convenient to introduce $\vec{v} = \sqrt{\alpha}(\cos\theta_1, \sin\theta_1)$ and $\vec{w} = \sqrt{\gamma}(\cos\theta_2, \sin\theta_2)$ for some angles $\theta_1, \theta_2 \in (-\pi, \pi]$ still to be determined. Note that $\vec{v} \cdot \vec{w} = \sqrt{\alpha\gamma} \cos(\theta_1 - \theta_2)$ and if \underline{A} denotes the square matrix whose first and second row is \vec{v} and \vec{w} , respectively, then det $\underline{A} = \sqrt{\alpha\gamma} \sin(\theta_1 - \theta_2)$. Thus \underline{A} is regular iff $\theta_1 - \theta_2 \notin \pi\mathbb{Z}$, and so in this case the corresponding linear map A is an automorphism of \mathbb{R}^2 . We may then write $A^{-1}\Delta A = \alpha\partial_x^2 + 2\sqrt{\alpha\gamma} \cos(\theta_1 - \theta_2)\partial_x\partial_y + \gamma\partial_y^2$. Because $\beta^2 < 4\alpha\gamma$, that is, $|\beta| < 2\sqrt{\alpha\gamma}$, we can solve $\cos(\theta_1 - \theta_2) = \beta/2\sqrt{\alpha\gamma} \in (-1, 1)$ for $\theta_1 - \theta_2 \in \mathbb{R} \setminus \pi\mathbb{Z}$. Take (for instance) $\theta_2 = 0$ and $\theta_1 \in (-\pi, 0) \cup (0, \pi)$ solving the equation and let A denote the corresponding automorphism. Then $p(\partial) = A^{-1}\Delta A$, or $\Delta = Ap(\partial)A^{-1}$, hence we have $\delta_0 = \Delta G = Ap(\partial)A^{-1}G$ and so $p(\partial)A^{-1}G = A^{-1}\delta_0$. Using the definition we see that $A^{-1}\delta_0 = \delta_0 |\det A|$ and thus if we define

$$E(x,y) = \frac{1}{2\pi |\det A|} \log |A^{-1}(x,y)|,$$

then E is a regular distribution on \mathbb{R}^2 with singular support $\{(0,0)\}$ and by construction $p(\partial)E = \delta_0$, as required.

(c): This follows easily from (b) and the elliptic regularity theorem from lectures. Indeed the differential operator $\partial_x^2 + \partial_x \partial_y + \partial_y^2$ is elliptic because $\alpha = \beta = \gamma = 1$, so evidently $\beta^2 = 1 < 4 = 4\alpha\gamma$. It is then also hypoelliptic and so if the right-hand side f is C^{∞} on the ball $B \subset \Omega$, then so is the solution u.

Optional part: Assume that $f|_{B_r(x_0,y_0)} \in L^2_{loc}(B_r(x_0,y_0))$. Fix a ball $B \in B_r(x_0,y_0)$ and denote

$$f_B = \begin{cases} f & \text{in } B, \\ 0 & \text{in } \mathbb{R}^2 \setminus B. \end{cases}$$

Then $f_B \in L^2(\mathbb{R}^2)$ has compact support and we may define $v = E * f_B$. By the differentiation rule for convolutions, $p(\partial)v = (p(\partial)E) * f_B = f_B$, and so $p(\partial)(u-v) = 0$ on B, so that by hypoellipticity, u - v is C^{∞} on B, and so u is locally as regular as v is on B. Because the coefficients are real we may assume that f is real-valued as otherwise we can consider separately the PDEs with the real and imaginary parts of f on the right-hand side. First, we check that $v \in L^2_{loc}(\mathbb{R}^2)$: for R > 0 and writing $B_R = B_R(0)$, z = x + iy and $w = w_1 + iw_2$ we have

$$\int_{B_R} v^2 d(x,y) \stackrel{\text{Cauchy-Schwarz}}{\leq} \int_{B_R} \int_B E(z-w)^2 d(w_1,w_2) \|f_B\|_2^2 d(x,y)$$

$$\leq \pi R^2 \int_{B_R-B} E(w)^2 d(w_1,w_2) \|f_B\|_2^2 < +\infty$$

For the higher order regularity it is convenient to transform the equation back to the Laplacian (though it is not necessary). We have $f_B = p(\partial)v = A^{-1}\Delta Av$ on \mathbb{R}^2 , and so

 $g = \Delta w$ on \mathbb{R}^2 , where $g = Af_B$, w = Av. Clearly the regularity of w and v are the same on corresponding sets and $g \in L^2(\mathbb{R}^2)$. We have established that $w \in L^2_{loc}(\mathbb{R}^2)$. We assert that $w \in W^{2,2}_{loc}(\mathbb{R}^2)$, and consequently that u is $W^{2,2}_{loc}$ on $B_r(x_0, y_0)$. We of course have the formula w = G * g, but it seems easier to use $w \in L^2_{loc}(\mathbb{R}^2)$ and $\Delta w = g$.

Put $w_{\varepsilon} = \rho_{\varepsilon} * w$, $g_{\varepsilon} = \rho_{\varepsilon} * g$ and note that $\Delta w_{\varepsilon} = g_{\varepsilon}$. For $\phi \in \mathscr{D}(\mathbb{R}^2)$ we have $\int_{\mathbb{R}^2} g_{\varepsilon} \phi = \int_{\mathbb{R}^2} \Delta w_{\varepsilon} \phi = -\int_{\mathbb{R}^2} \nabla w_{\varepsilon} \cdot \nabla \phi$. Fix two concentric balls $B' \subseteq B''$ and take a cut-off function $\eta \in \mathscr{D}(\mathbb{R}^2)$ satisfying $\mathbf{1}_{B'} \leq \eta \leq \mathbf{1}_{B''}$. Test $\Delta W = G$ with $\phi = \eta^2 W$, where $W = w_{\varepsilon_1} - w_{\varepsilon_2}$ and $G = g_{\varepsilon_1} - g_{\varepsilon_2}$ to get

$$\int_{\mathbb{R}^2} G\eta^2 W = -\int_{\mathbb{R}^2} \nabla W \cdot \nabla(\eta^2 W) = -\int_{\mathbb{R}^2} (\eta^2 |\nabla W|^2 + 2\eta W \nabla W \cdot \nabla \eta),$$

and hence (using $2st \le s^2/2 + 2t^2$ and $2st \le s^2 + t^2$)

$$\begin{split} \int_{\mathbb{R}^2} \eta^2 |\nabla W|^2 &= \int_{\mathbb{R}^2} (2\eta W \nabla W \cdot \nabla \eta - \eta^2 W G) \\ &\leq \int_{\mathbb{R}^2} (\frac{1}{2} \eta^2 |\nabla W|^2 + 2W^2 |\nabla \eta|^2 + \frac{1}{2} \eta^2 W^2 + \frac{1}{2} \eta^2 G^2), \end{split}$$

and thus

$$\int_{B'} |\nabla W|^2 \le c \int_{B''} (W^2 + G^2)$$

where $c = 1 + 4 \max |\nabla \eta|^2$ will do. Thus we have shown

$$\int_{B'} |\nabla w_{\varepsilon_1} - \nabla w_{\varepsilon_2}|^2 \le c \int_{B''} (|w_{\varepsilon_1} - w_{\varepsilon_2}|^2 + |g_{\varepsilon_1} - g_{\varepsilon_2}|^2)$$

and since $w, g \in L^2_{loc}(\mathbb{R}^2)$ it follows that the sequence of restrictions, $((\nabla w_{\varepsilon})|_{B'})$ is Cauchy in $L^2(B', \mathbb{R}^2)$ as $\varepsilon \searrow 0$, and so by completeness we find $\chi \in L^2(B', \mathbb{R}^2)$ such that $(\nabla w_{\varepsilon})|_{B'} \to \chi$ in $L^2(B', \mathbb{R}^2)$. (Note: $L^2_{loc}(B', \mathbb{R}^2)$ denotes the space of \mathbb{R}^2 -valued L^2_{loc} functions on B' normed by using the usual norm on \mathbb{R}^2 .) But we also have that $\nabla w_{\varepsilon} \to \nabla w$ in $\mathscr{D}'(\mathbb{R}^2, \mathbb{R}^2)$ and so we conclude that $(\nabla w)|_{B'} = \chi \in L^2(B', \mathbb{R}^2)$. Because B' was an arbitrary ball we conclude that $\nabla w \in L^2_{loc}(\mathbb{R}^2, \mathbb{R}^2)$. Finally, for the second order derivatives we retain the above notation and calculate

$$\begin{split} \int_{\mathbb{R}^2} |\nabla^2(\eta W)|^2 &= \int_{\mathbb{R}^2} \left(\Delta(\eta W)^2 + 2\left((\eta W)_{xy}^2 - (\eta W)_{xx}(\eta W)_{yy}\right) \right) \\ &= \int_{\mathbb{R}^2} (\eta \Delta W + 2\nabla \eta \cdot \nabla W + W\Delta \eta)^2 \\ &+ 2 \int_{\mathbb{R}^2} \left(\left((\eta W)_x(\eta W)_{xy}\right)_y - \left((\eta W)_x(\eta W)_{yy}\right)_x \right). \end{split}$$

Here the last integral is 0 and so as $\Delta W = G$ we get after routine estimations (as above) that

$$\int_{B'} |\nabla^2 W|^2 \le c \int_{B''} (G^2 + |\nabla W|^2 + W^2),$$

where $c = 3(1 + \max |\nabla \eta|^2 + \max(\Delta \eta)^2)$ will do. Thus we can conclude exactly as above that also the Hessian matrix $\nabla^2 w$ is locally square integrable on \mathbb{R}^2 and so $w \in W^{2,2}_{loc}(\mathbb{R}^2)$, as asserted.

Section C

7. Let $p(x) \in \mathbb{C}[x]$ be a complex polynomial of degree $d \in \mathbb{N}$ in n indeterminates and let

$$p(\partial) = \sum_{|\alpha| \le d} c_{\alpha} \partial^{\alpha}$$

be the corresponding differential operator. Prove that

 $\operatorname{sing.supp}(p(\partial)u) \subseteq \operatorname{sing.supp}(u)$

holds for all distributions u on an open non-empty subset Ω of \mathbb{R}^n . Give an example where the inclusion is strict. Does such an example exist when the dimension n = 1?

Solution: Recall that

$$\Omega \setminus \operatorname{sing.supp}(u) = \Omega \setminus \{ x \in \Omega : u|_{\Omega \cap B_r(x)} \in \mathcal{C}^{\infty}(\Omega \cap B_r(x)) \text{ for some } r > 0 \}.$$

Fix x in this set. We may then find $r \in (0, \operatorname{dist}(x, \partial \Omega))$ such that u is C^{∞} on $B_r(x)$. But then also $p(\partial)u$ is C^{∞} on $B_r(x)$, and therefore $x \in \Omega \setminus \operatorname{sing.supp}(p(\partial)u)$ so that we have proved the required inclusion. An example with strict inclusion can for instance be obtained using the wave differential operator $\partial_t^2 - k^2 \partial_x^2$ on \mathbb{R}^2 and the solutions mentioned in Question 2 on Problem Sheet 2. However, more dramatic examples can also be constructed: For instance consider the differential operator $p(\partial) = \partial_y$ on \mathbb{R}^2 . Let $\{q_n\}_{n \in \mathbb{N}}$ be an enumeration of the rational numbers \mathbb{Q} and define

$$u(x,y) \stackrel{\text{def}}{=} \sum_{n=1}^{\infty} 2^{-n} \mathbf{1}_{(-\infty,q_n)}(x), \quad (x,y) \in \mathbb{R}^2.$$

Then $u: \mathbb{R}^2 \to \mathbb{R}$ is a well-defined function that is independent of y and is increasing and right-continuous in $x \in \mathbb{R}$. It is therefore in particular locally integrable on \mathbb{R}^2 and so defines a regular distribution on \mathbb{R}^2 . Since u is discontinuous at each point of the set $\mathbb{Q} \times \mathbb{R}$, which is dense in \mathbb{R}^2 , it follows that $\operatorname{sing.supp}(u) = \mathbb{R}^2$. However, since $\partial_y u = 0$ in $\mathscr{D}'(\mathbb{R}^2)$ we have $\operatorname{sing.supp}(\partial_y u) = \emptyset$.

No such example can exist when n = 1. We skip the details here and merely indicate a possible proof of the following result: if $f \in C^{\infty}(a, b)$ and $u \in \mathscr{D}'(a, b)$ satisfies $p\left(\frac{d}{dx}\right)u = \sum_{j=0}^{n} c_{j}u^{(j)} = f$ in $\mathscr{D}'(a, b)$, then $u \in C^{\infty}(a, b)$ too. In order to show this, one can use the factorization of the polynomial p(x) to factorize the differential operator $p\left(\frac{d}{dx}\right)$, then use the fundamental theorem and the constancy theorem iteratively as was done in an example with a second order operator on Problem Sheet 3. 8. A function $f \colon \mathbb{R} \to \mathbb{C}$ is Lipschitz continuous if there exists a constant $L \ge 0$ such that $|f(x) - f(y)| \le L|x - y|$ holds for all $x, y \in \mathbb{R}$.

Prove that $u \in \mathscr{D}'(\mathbb{R})$ has a Lipschitz continuous representative if and only if $u' \in L^{\infty}(\mathbb{R})$. What does this mean for elements of the Sobolev space $W^{1,\infty}(\mathbb{R})$?

Solution: If $u' \in L^{\infty}(\mathbb{R})$, then by results from lectures $f(x) = c + \int_{x_0}^x u'(t) dt$, $x \in \mathbb{R}$, is for suitable $c \in \mathbb{C}$ and $x_0 \in \mathbb{R}$, an absolutely continuous representative of u. Because

$$|f(x) - f(y)| = \left| \int_{y}^{x} u'(t) \, \mathrm{d}t \right| \le ||u'||_{\infty} |x - y|$$

for all $x, y \in \mathbb{R}$, f is also Lipschitz continuous. Conversely, assume that u has a Lipschitz continuous representative and denote it by u again, so that $u \colon \mathbb{R} \to \mathbb{C}$ satisfies $|u(x) - u(y)| \leq L|x-y|$ for all $x, y \in \mathbb{R}$, where $L \geq 0$ is a constant. In an example from lectures we saw that the difference quotients of a distribution converge in the sense of distributions to its distributional derivative, so

$$\frac{\Delta_h u}{h} = \frac{\tau_h u - u}{h} \to u' \text{ in } \mathscr{D}'(\mathbb{R}) \text{ as } h \to 0.$$

Here it follows from the Lipschitz condition that $\|\Delta_h u/h\|_{\infty} \leq L$ for all real $h \neq 0$. It follows then by general results of Functional Analysis that $u' \in L^{\infty}(\mathbb{R})$ (more precisely one can use that $L^{\infty}(\mathbb{R})$ is the dual space of the separable space $L^1(\mathbb{R})$), but as we have not developed that here we use a mollification argument instead. Put $u_{\varepsilon} = \rho_{\varepsilon} * u$. Then $u_{\varepsilon} \in C^{\infty}(\mathbb{R})$ and by inspection $|u_{\varepsilon}(x) - u_{\varepsilon}(y)| \leq L|x - y|$ holds for all $x, y \in \mathbb{R}$ and $\varepsilon > 0$. We start by showing that u' is a regular distribution on \mathbb{R} and to that end fix a > 0. Now for $\varepsilon_1, \varepsilon_2 > 0$ we estimate

$$\begin{aligned} \left\| u_{\varepsilon_{1}}^{\prime} - u_{\varepsilon_{2}}^{\prime} \right\|_{L^{1}(-a,a)} &= \int_{-a}^{a} \left| \int_{-1}^{1} \rho^{\prime}(y) \left(u(x - \varepsilon_{1}y) - u(x - \varepsilon_{2}y) \right) \mathrm{d}y \right| \mathrm{d}x \\ &\leq \int_{-a}^{a} \int_{-1}^{1} \|\rho^{\prime}\|_{\infty} L |\varepsilon_{1} - \varepsilon_{2}| |y| \mathrm{d}y \mathrm{d}x \\ &\leq 4a \|\rho^{\prime}\|_{\infty} L |\varepsilon_{1} - \varepsilon_{2}|, \end{aligned}$$

showing that $(u'_{\varepsilon}|_{(-a,a)})$ is Cauchy in $L^{1}(-a,a)$ as $\varepsilon \searrow 0$. By completeness of $L^{1}(-a,a)$ we find $v_{a} \in L^{1}(-a,a)$ such that $u'_{\varepsilon}|_{(-a,a)} \to v_{a}$ in $L^{1}(-a,a)$ as $\varepsilon \searrow 0$. Consequently, $\langle u', \phi \rangle = \int_{-a}^{a} v_{a} \phi \, dx$ for all $\phi \in \mathscr{D}(\mathbb{R})$ supported in (-a,a), and since a > 0 was arbitrary here we infer that u' is a regular distribution on \mathbb{R} . To conclude we fix a > 0 again, take a null sequence $\varepsilon_{j} \searrow 0$ such that $u'_{\varepsilon_{j}}(x) \to u'(x)$ pointwise in a.e. $x \in (-a,a)$. Using that the $u_{\varepsilon_{j}}$ satisfy an *L*-Lipschitz condition we get $|u'_{\varepsilon_{j}}(x)| \leq L$ for all $x \in \mathbb{R}$, hence $|u'(x)| = \lim_{j\to\infty} |u'_{\varepsilon_{j}}(x)| \leq L$ holds for a.e. $x \in (-a,a)$, and since a > 0 is arbitrary we are done. Recall that we defined $W^{1,\infty}(\mathbb{R})$ to consist of all $u \in \mathscr{D}'(\mathbb{R})$ for which $u, u' \in L^{\infty}(\mathbb{R})$. It therefore follows that $W^{1,\infty}(\mathbb{R})$ consists of those distributions on \mathbb{R} that admit a bounded Lipschitz function as representative.