B4.3 Distribution Theory
Sheet 4 — MT23/HT24 Week 1
Localization and convolution of distributions. Hypoelliptic

differential operators and elliptic regularity

Only work on the questions from Section B should be handed in.

Section A

1. Let © be a non-empty open subset of R” and p € [1, o).
(a) What does it mean to say that a distribution on 2

(i) has order k € Ny on the open subset w of 27
(ii) is a regular distribution on the open subset w of (27

(iii) is L” on the open subset w of Q27

Assume that u € 2'(12) is a regular distribution on the open subset w C €. Show

that « must have order 0 on w. Next, let (¢;) be a sequence in () such that

for some compact set K C w and constant ¢ > 0 we have supp(¢;) C K and

SUP,eq |@j(7)| < ¢ for all j € N. Prove that if ¢;(z) — 0 pointwise in almost all

x € () as j — oo, then (u,¢;) = 0 as j — oo.

(b) Let 6,, denote Dirac’s delta function concentrated at the point xy € Q. Prove that

0z, 1s a distribution on Q of order 0 that is a regular distribution on Q \ {z¢}, but

not on 2.

(c¢) Let p be a locally finite Borel measure on € and assume there exists a compact
set N C Q with Z"(N) = 0 and u(N) > 0 (the measure p is then said to have a

singular part with respect to £™). Consider the corresponding distribution

(1, 6) % /Q bdu, & e D).

Show it has order 0 and that it is not a regular distribution on €.

(d) Identifying 2 € C with (z,y) € R? in the usual way and denoting by B;(0) the

open unit disc in R?, show that

1

u=—1
S B1(0)

is a regular distribution on R? and calculate its distributional Wirtinger derivative

Ou/0z. Ts it a regular distribution on R?? Find the supports and the singular

supports of u and du/0z.
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Solution: (a): (i) means that the restriction ul, is a distribution on w of order k. The
restriction ul|, was defined in lectures by the rule (ul,, @) = (u, ¢°), ¢ € Z(w), where ¢*
denotes
o vaef | o(z) ifzrew,
¢°(x) = .
0 ifze\w.

It is clear that ¢ — ¢° is a linear and Z-continuous map of Z(w) into Z(£2), so that
the above definition makes sense. Note that strictly speaking the restriction wul, is
nothing but u|4(.)e, but we prefer the former notation as it emphasizes that we think
of distributions as generalized functions defined on Q. (ii) means that there exists
f € Li.(w) such that (u,¢) = [ fodz for ¢ € 2(Q2) with support in w. This is often

written simply as ul, € Li (w). (iii) means that the f in (ii) belongs to LP(w) (and we

loc

then often write u|, € LP(w)).

Assume ul, € Ll (w). Let L C w be compact. Then denoting u|, = f we have that
f is integrable over L and so for ¢ € Z(w) with support contained in L it follows that

f¢ € LY (w) and
/f¢dx

where ¢;, = [, |f| dz. Therefore ul,, has order 0.

’<u|w7¢>| =

< cpsup|gl,
w

The continuity property of the regular distribution |, = f follows by use of Lebesgue’s
DCT: Under the stated assumptions we get |f¢;| < ¢[f|1x a.e. on w for all j € N, and
c|f|1k is integrable over w. The pointwise convergence a.e. implies that also f¢; — 0

a.e. on w, hence (ul,, ;) = [ fo;dx — 0, as required.

(b): It is clear that d,, is a distribution of order 0 on . In fact, for any ¢ € Z(Q)
we have that [(0,,,¢)| = [¢(z0)| < supg |¢| (note that we do not even need to restrict
the test functions to have support contained in compact subsets K C () here as the
constants cx can all be taken as 1). Because supp(dg,) = {zo} we have u|o\(z1 = 0,
which in particular is a regular distribution on Q\ {xo}. To see that ¢,, is not a regular
distribution on €2 we can show that it does not have the continuity property established
for regular distributions in (a) above. We use this approach in (c) below. Instead we

proceed here by contradiction: assume that we could find f € Ll _(Q2) such that

(o) = /Qfgbdx for all ¢ € 2(Q2).

If we consider only ¢ that are supported in Q\ {z(}, then we get from the fundamental
lemma of the calculus of variations that f = 0 a.e. in Q\ {zo}. But as {x} is a null set
we can strengthen this to f = 0 a.e. in 2. But J,, # 0 so this is a contradiction proving

that J,, cannot be a regular distribution on €.
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(c): To see that p has order 0 we fix a compact set K C §2. Then for ¢ € Z(Q) with

support in K we have

(1, 8] < / 6] ds < () sup |9,
K Q

and because p is locally finite we have u(K) < 400, so the order is 0, as required.

Next, we show that 4 cannot be a regular distribution on {2 by showing that it does not
have the necessary continuity property established in (a) above. Put ¢° = p.x1p_() for
e € (0,dist(N,99Q)/3). Then ¢° € 2(Q) is supported in the compact subset K = Byg(N)
of  when d = dist(NV,09)/3. We also record that 0 < ¢°(z) < 1forallz € Q, ¢ € (0,d)

and that ¢°(x) — 0 pointwise in z € Q\ N as € \, 0. However since ¢* =1 on N,

1.6 = [ 6 du=p() >0 forall = € 0.0),
K

it follows that (i, ¢°) does not converge to 0 as € \ 0, and so that u cannot be a regular

distribution on §2.

(d): w is a regular distribution since (integrating in polar coordinates)

/1
R2

_131(0) d(l’,y) =2< —+00,
so that we even have u € L*(R?). In order to calculate the Wirtinger derivative we use

Tz

that u locally is the product of a C* function and a distribution so that we can employ
the Leibniz rule:

ou 1 0 1 0

FER do1p,(0) + e (131(0)> = 0o + o (1B1(0)>7
where we used a result from Problem Sheet 3. In order to calculate the last term we let
¢ € P2(R?) and use the divergence theorem:

5 ) 06
<£(1Bl(0)>7¢> - _/Bl(o)id(mjy)

1 .
= / 5 (:L’ + ly) gb dS(x,y)
8B4 (0)

27 ei@
= / —gb(cos 0, sin 9) de,
0 2

where in the last line we wrote out the curve integral. The Wirtinger derivative is

therefore

ou 1z 1
— =00+ —=dS =9y + —dS
0z " * Tz 2 0t 2r
where dS denotes integration over the unit circle dB;(0) in R?. With the normalization,

%dS , is a probability measure p on R?: if A is a Borel subset of R?, then
1

= — ds.
27 J{6€(0,2n): 0 €A}

1(A)
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Using (c) above we see that the Wirtinger derivative of u therefore is a distribution of

order 0 that is not a regular distribution on R2.

Finally, we see by inspection that supp(u) = B;(0), supp(du/0z) = {0} U 9B;(0) and
sing.supp(u) = {0} U dB;(0), sing.supp(du/0z) = {0} U IB1(0). As a check we note
that sing.supp(u) = sing.supp(du/9z), as it should be according to the elliptic regularity
theorem since the Wirtinger differential operator 0/0z is hypoelliptic.

2. (a) Let # € 2(R") and denote as usual its L' dilation by factor e > 0 as

o 1
0.(x) X ~ g <§

— ) , xR
£
(i) Prove that 6. has a limit in 2'(R") as € \, 0.
(ii) Prove that for each ¢ € Z(R") we have 6. x ¢ — [,,0dz ¢ in Z(R") as e \, 0.
(iii) Prove that for each ¢ € C(R") we have 0. x ¢ — [0 dz 4 locally uniformly
on R™ as € \, 0. What can you say about the partial derivatives 0“ (95 * w) as

e\ 07
(b) Let f: R — C be locally integrable and T-periodic (that is, f(x +T) = f(x) for

all x € R). For a non-empty open interval (a,b) C R and natural numbers j € N
define f;(x) = f(jx), « € (a,b). Prove that

1 /T
fj—>f/ fdz in P'(a,b) as j — co.
0

[This result is sometimes called the generalized Riemann-Lebesgue lemma.]
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Solution: (a)(i): If ¢ € 2(R"), then by the distributional definition of the L' dilation

(so by change of variables) and continuity of ¢ at 0 we have as € \, 0:

0., 0) = /nQ(m)gb(em) dz — [ 6(z)dz ¢(0).

RTL
Consequently, 6, — fR,ﬁ dz dp in Z'(R™) as € \( 0.

(ii): Let ¢ € Z(R™). Then by the support rule supp(f. x ¢) C supp(6:) + supp(¢) =
esupp(f) + supp(¢). Take r > 0 such that supp(f) C B,.(0) and note that for e € (0,1)
we have supp(6-x¢) C B,(0)+supp(¢) C K, where K = B, (supp(¢)) is a fixed compact
set. By the differentiation rule we have for & € Nj that 0%(6. = ¢) = 6. * (9°¢) and
since 0%¢ is uniformly continuous employing the argument of (i) above this converges

uniformly to fRnQ dx 0%¢ on R™ as € N\ 0. But this is what we were required to prove.

(iii): Because 1 is continuous, and hence is uniformly continuous on compact sets, we
have as € \ 0,

(0. ) (x) = / O —cy)dy — [ 0dyi(a)

n Rn

locally uniformly in x € R". The derivatives 0%y must be understood as distributions

here and so it follows from the differentiation rule and (i) above that, as € \, 0,

O*(0- %) =00 — [ 6dz9*¢ in Z'(R").
R
(b): Put A = L [Tf(t)dt and F(z) = [J(f(t) — A)dt, € R. Then by results
from lectures F' is locally absolutely continuous with F/ = f — A in 2'(R). Since
Flx+T)—- F(z) = ferT (f(t) = A)dt = 0 for all z € R, where the last equality
follows because f is T-periodic, also F'is T-periodic. In particular, F' is then a bounded
function on R. Define Fj(x) = F(jz), « € (a,b). Then F} is absolutely continuous and

by inspection, F = j(f; — A) in Z'(a,b). Now for ¢ € P(a,b) we get

1 I
(i = A ¢) = <§F¢> = (Fd)=— / F(jz)¢/(x) dz,
and since
b b
% /aF(jx)gzﬁ/(x) dz| < w/a |¢'(z)|dz — 0 as j — oo,

we are done.
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Section B

3. Distributions defined by finite parts.

On Problem Sheet 2 it was shown that the distributional derivative of log|z| is the
distribution pv( ) defined by the principal value 1ntegral

(ov(2),0) < iy (/ /) e, ¢ DR).

In order to represent the higher order derivatives one can use finite parts: Let n € N
with n > 1. We then define fp( ) for each ¢ € Z(R) by the finite part integral
n—2 ¢ (0) ;i (n=1() p—
> ¢(x) — Zj 0 i jl( dgd — d)( 1)(1)‘(17 Lay(z)

(o). 0) 2 [ o T et oy,

[e.o]

(a) Check that hereby fp(=5) is a well-defined distribution on R. Show that
() = () ad (k) = —nib()
dx ‘” de =7 x
for all n > 1. Is fp(xin) homogeneous? (See Problem Sheet 2 for the definition
of homogeneity.) Determine the order, the support and the singular support of
fp(5r)-
(b) Show that for n > 1 we have x”fp(m%) = 1 and find the general solution to
the equation z"u = 1 in Z'(R). What is the general solution to the equation
(x —a)v=11in Z'(R) when a € R\ {0}?
(c) Let p(z) € C[z]\ {0} be a polynomial. Describe the general solution w € 2'(R) to
the equation

plx)w =1 in Z'(R).

Solution: (a): Fix ¢ € Z(R). To see that the definition yields a distribution note first
that the function
o) = 3575 5
e
is continuous for |z| > 1 and that it is O(z72) as |x| — +oo. It is therefore integrable

over R\ (—1,1), and we record the bound

dz| < cymax{[pV(#)]: teR,0<j<n}, (1)
xn

n—2 ¢ (0 i
/ o(x) — 2255, ¢T()x]
R\(=1,1)

where (for instance) ¢; = 10 will do. Next, for |z| < 1 we have by Taylor’s formula with

Lagrange remainder term that for some £ = &, between 0 and z that

0@) = S5 S5 4

" n!
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Therefore the function on the left-hand side is uniformly continuous on (—1,0) U (0, 1),

and so integrable over (—1,1). We record a corresponding bound:

n—1 ¢ (0)
o(x) — .:1¢ 2
/ D720 T o] < e o), (2)
(-1,1) x

Consequently, by linearity of the integral, fp(#): P2(R) — C is a well-defined linear
functional. Combining (1) and (2) we get the bound

‘<fp($),¢>‘ < cmax{[¢V(1)]: t €R, 0<j <n} (3)

valid for all ¢ € Z(R), where (for instance) ¢ = 1+¢; will do. Note that (3) in particular
implies the Z-continuity of fp( ) proving that it is a distribution on R.

Before we calculate the distributional derivative it is convenient to denote the k-th

Taylor polynomial for ¢ € Z(R) about 0 as

and note that because 1/x is an odd function,

(o)) ([ Yoo

This also holds for n = 1 and so unifies the notation (so for n = 1 we have pv = fp).

Observe ¢'(z) — Tg,_l(x) = (¢(z) — Tg(x))l, S0

(30(2)) - -(o(2))

Now for 7 > 0 so small that ¢ is supported in (—1/r,1/r) we have by partial integration

- - , do —r) =Ty (—r
( [+ )<¢<x>—Tg<x>) R e O

and therefore

(d0(2)) =+ (o) )
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as required.

The distribution fp( xin) is homogeneous of degree —n: This follows for instance by direct
verification (showing and exploiting that Tq’;fl = (T;L’l)r) or by use of results established
on Problem Sheet 2: it was shown there that pv(%) is homogeneous of degree —1 and
that the derivative of a S-homogeneous distribution is (5 — 1)-homogeneous. The result

then follows from the above identification of derivatives.

Note that 1/2™ is a regular distribution on R\ {0} and that fp (=) |r\j0; = =. Therefore
the support of fp(=) is R (closure of R\{0}) and its singular support must be contained
in {0}. The singular support must be {0} because if it was not, it would be empty and
the distribution would then have a C* function as representative on R. This function

would have to equal 1/2™ on R\ {0}, preventing it from being a C* function on R.

The bound (3) implies that fp(ﬁ) has order at most n. To see that the order is

n we recall from Problem Sheet 2 that pv(%) has order 1, and so using the identity

fp(xin) = cn%pv(%), where ¢, = ((_nlzjil, we infer that the order is n. (It is acceptable

if the students assert this as I have mentioned it, though not proved it, in lectures.)

Lemma: If u € 2'(R) has order k € N, then u' has order k + 1. (Note this is false if
k=0.)

Proof. 1t is easy to see that v’ has order at most k 4+ 1. To see that the order is k + 1
assume for a contradiction that the order is at most k. Then for any R > 0 we find a

constant ¢ = cp > 0 such that
k
(W, )| <> max|pV)] (4)
j=0

holds for all ¢ € Z(R) with support in (=R, R). Take x € Z(—R, R) with [,xdz = 1.
For ¢ € 2(—R, R) put p = ¢—cx withc = [¢dz. Thenp € Z(—R, R) and [ dz =0
and so ¢(z) = [T,o(t)dt, x € R, belongs to Z(—R, R). Plugging it into (4) yields,

after rearranging terms, the bound
k—1
‘(u, ¢)‘ < C’Zmax W]
j=0

for some constant C' = Ci. But this is contradicting the assumption that v has order
k. O
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(b): For ¢ € Z(R) we calculate

(0(2)-) - (n(2)-
- 1{“(/ /) - T )
= lim (/_ +/rr)¢(x)dx=/ﬂg¢(x)dx

as required. This also yields a particular solution to the equation x™u = 1. To find the
general solution to the homogeneous equation ™« = 0 we note that any such v must be
supported in {0}, and so, by a result from lectures, be a linear combination of §, and
its derivatives: u = Z}]:o cjé((]j ) for some J € Ny and ¢; € C. Plugging in this u we see
that when J = n — 1, then we are free to choose the coefficients ¢; € C. To see that
these are all the solutions we use special test functions. Indeed if it is a solution then
we get for any ¢ € Z(R) that for J > n:

J J ‘
. 7 <
=3 {6, chz( )aelemaa) o 0) = S (4 Jatotr 0,
7=0 7=0 Jj=n
For s € {0, . —n} we select ¢ € Z(R) with ¢ (0) = §; for all j € Ny (see

Problem Sheet 1 for a possible construction of such ¢). We now have that the terms in

the above sum are 0 unless j —n = s and so we get 0 = ¢, (”:S)n!, that is, ¢; = 0

for all 7 > n. Therefore GS is u = fp(mn) + Z 0]6((]3 , where ¢1, ..., ¢, € (C By
inspection we see that GS to the equation (z —a)™v = 1isv = fp( ) + Zj —o G50, a ,
where ¢, ..., ¢,_1 € C.

(c): We find the GS as wy + wpg, where wy is a general solution to the homogeneous
equation and wpg is any solution to the inhomogeneous equation. Suppose ay, ..., a, €
R are all the distinct real roots of p(z) and let m; € N be the multiplicity of a;. Then
p(z) = q(x) [1;—,(z —a;)™, where g(x) is a polynomial without real roots. We first find

7j=1
wy and note that since 1/¢(x) € C*(R) this is GS to (H;Zl(x —a;)™)w = 0. Using
localization and a result from (b) we find
n mkfl
wn =) > el
k=1 j=0

where ¢ ; € C are arbitrary. To find wpg we expand in partial fractions:
1 1 b j
D @ )
= J_
and so using localization and a result from (b) we get

wps = 75 iZf (x_ak )

k?l]l
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4. (a) Let n € N. Calculate the limits

(x + iO) o dd l{% (x + iE) " and (a: — iO) o def ll{‘% (m — is) -

in 2'(R). Prove the Plemelj-Sokhotsky jump relations:

—1)"
(x+10)”—(x—10)":2m7(1 ) 5y,

where dq is Dirac’s delta-function on R concentrated at 0.
(b) Show that for ¢ € Z(R) with ¢)(0) = 0 for each j € {0, ..., n} we have
(x£10) ", 6) :/ X e,
(c¢) Show that
r(z+i0)" =1 in Z'(R).
Deduce that
(z +10) " (2d) = 0 # 6 = <(g; + 10)‘1:(;) 8.
Next, show that
(x£i0) "2"=1 in Z'(R)
holds for each n € N

(d) Find distributions u,, u— € Z'(R) such that their n-th distributional derivatives
satisfy
W = (z+10)" and W™ = (2 —i0) "

Solution: (a): First note that (z £ic) " € LL (R), so for ¢ € Z(R) we calculate by

loc

n — 1 successive integrations by parts:

((z i) ™", ¢) = ﬁ /Rd)(nl)(x) dz

xrEie’
Now a primitive for 1/(x + ie) is the principal logarithm Log(z =+ ie), and we record
that, as € \0,

Log(z £ ic) = log(a? + €)% + iArg(z & ic) — log |z| + miH (—z)
pointwise in # € R\ {0}. Here H denotes Heaviside’s function. Therefore another

integration by parts and then Lebesgue’s DCT yields as € N\, 0 that

-1

((z i) ™", ¢) — CE] /R¢(")(x)(log || + miH (—z)) da.
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It is clear that the right-hand sides define distributions on R. Their difference is

<(£L‘ +ie) " = (x - ic) - ¢> = —% /_Oo¢(")(x) do = — <n2fil>!¢(n1)(0),

and since ¢ 1(0) = (—1)”*1(5(()"_1), ¢) this is the required jump relation.

(b): If p(0) = 0 for 0 < j < m, then 2 "¢(x) — 0 as + — 0, and so x7"@(z) is
integrable on R. Because |(z + ie)_n¢(:c)‘ < |xz7"¢(x)| for all z € R\ {0} we get by
Lebesgue’s DCT that

{(x £10) ", ¢) = /Ra:_”qb(:v) dz.

(c): First we note that if ¢ € Z(R), then x¢(z) is a test function that vanishes at 0 and
s0 by (b) we get (z(z+i0)"",¢) = ((z £i0) ", 2¢) = [oodz, thus z(z £i0) " = 1.
The deduction is then clear.

For n € N and ¢ € Z(R) the function z"¢ is a test function that vanishes to order n at

0, and so we may use (b) as above to see that 2" (z £10) " = 1.

(d): This calculation was essentially done in our solution of (a) above:

Uy = E;l_)”l)' (log || + 7iH (—x))

is the limit in 2'(R) of ((;Ll)—n_lLog(x +ie) as ¢ \( 0. The latter is the n-th primitive

—)!
of (z £ie) ". By continuity of differentiation in %'(R) we therefore see that uﬂ? ) =

(z+i0) "

5. A real-valued distribution u on R? is called subharmonic provided Au > 0 in 2/'(R?).
In the following we identify z € C in the usual way with (z,y) € R? and we assume

f: C — C is an entire function that is not identically zero. Define
def
0oy ™ [ owy)loglf )] d(ey) o€ 7(E)
R

Show that u is a well-defined and subharmonic distribution on R2.

What happens above if f: C — C U {oo} is allowed to be meromorphic?

Solution: First we note that the zero set for f, Z = {z eC: f(z) = 0}, cannot have
limit points in C since otherwise f = 0 by the identity theorem. The set Z is therefore
locally finite (so for each zp € C and r > 0 the intersection B, (z9) N Z is a finite set). It
is then in particular at most countable and so can be enumerated, say Z = {Zj 7€ d },

where J is at most countable. We also record that for each w € C we can select r > 0
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such that Bs,(w) contains at most one zero for f. When By,.(w) N Z = () the function
log |f(2)] is C*>° on By, (w), and so is in particular integrable on B, (w). If w = z; € Z
choose r > 0 such that Z N By, (2;) = {#;} and by applying Taylor’s theorem to f about
z; we get f(z) = Z;X;mj %(z—zj)s on C. Defining g(z) = Z:imj %(z—zj)“mﬂ'
we have that g: C — C is an entire function that has no zeroes on By, (z;) and f(z) =
(z—2;)™g(z) on C. Thus log|f(2)| = m;log|z — z;| +1log|g(z)| and the second term is
integrable on B, (z;). The first term is also seen to be integrable on B, (z;) (for instance
we may check this by integrating in polar coordinates about z;). Thus log|f(2)| is
locally integrable, and so defines a regular distribution u on C. By the above we see
that the restriction of u to the open set C\ Z can be represented by a C* function, and

so we may calculate on C\ Z:

0 (0

S
29 (f,(z) + 0) =0,

+
=
Q
=
B
~—
N————

2\ 1(2)
where we applied the Cauchy-Riemann equations twice. If w = z; € Z we select r > 0
as above such that By, (z;) N Z = {z;} and u = m;log| - —z;| + log|g| on B,(z;). Using
results from Problem Sheet 3 and lectures we then calculate in the sense of distributions
on B,(z;):
0 1
Au=mjAlog|z — zj| = 2mj£ — | =2mmyd.,;.

Z—Zj

It follows by localization that

Au =Y 2rm;s., in 2'(C),
jeJ
and since each m; € N, Au > 0, so that u is subharmonic. By localization we in-
tend: given ¢ € Z(C) we cover supp(¢) by a finite number of balls as above, say
supp(¢) C Ule B, (wy), and then we select a smooth partition of unity 7, k € K, that
is subordinated the open cover { By, (wk)}keK. We now have (Au, ) = S°1 (Au, m.0).
Here each term in the sum is covered by the above calculation, namely (Au,nz¢) = 0
when By, (wg)NZ = 0 and (Au, ni¢) = 2mm;j(ne¢)(z;) when Ba,, (wi) N Z = {z;}. The

result then follows as asserted.

When f: C — CU{oo} is meromorphic we allow a set P of isolated poles for f to exist.
The set P will then be locally finite, so in particular at most countable and so can be
enumerated, say P = {pk ke K}. Denote the order of the pole p; by ny € N. Clearly
Z NP =10. As before we have if w € C\ (Z U P) that u is C* near w and if w € Z
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we take r > 0 such that Bsy,.(w) N (Z U P) = {w} so u is again integrable on B, (w).
If w=p, € P we take r > 0 such that By, (px) N (P U Z) = {px} and have then by
Laurent’s theorem f(z) = > 7 cs(z — pi)® for suitable ¢, € C and ¢, # 0. Write
9(2) = >0 Cs—ny (2 — pi)® and note that g: B, (pr) — C is nonvanishing, holomorphic
and f(z) = (z — pr) ™ g(z). We have therefore on B,, (p;) that

u = —nylog |z — pi| +log|g(2)],

which shows that w is integrable on B, (px). Thus u is again a regular distribution on

C and calculating as above we find that

Au = Z 2mm;o., — Z 270, -

jeJ keK

This is clearly not a positive distribution, so w is not subharmonic in this case.

6. (a) Let A: R? — R? be a bijective linear map and define for ¢ € Z(R?) the function
Ag: B = C by (A9)(2,y) © 6(A(x,y)), (x.y) € R

Prove that A: 2(R?) — 2(R?) is a well-defined, linear and Z-continuous map.

How should we define Au for a distribution v € 2'(R?*)? Find a formula for

A7'AAu, where A denotes the Laplacian on R?.

(b) Let p(9) be a differential operator on R? with real coefficients and that is homoge-
neous of order 2:

p(0) = ad? + 88,0, + 12,

where a, 3,7 € R are not all zero. Prove that p(9) is elliptic if and only if 3% < 4ary.
Next, show that if p(9) is elliptic, then it is also hypoelliptic.

(c) Let ©2 be an open non-empty subset of R? and assume that u € 2/() satisfies
Pu+ 0,0u+du=f inZ'(Q),

where f € 2'(Q2). Prove that if f is C* on B,(zo,y0) C €2, then so is u.

Optional: What can you say about w if f is L2 _ on B,(zg,y0) C Q7

loc
Solution: (a): Put A(x,y) = (ax + by, cx + dy), where a, b, ¢, d € R and ad — bc # 0.
Then by iterative use of the chain rule it follows that for ¢ € Z(R?) the function
Ap(z,y) = ¢lax + by,cx + dy) is in C°(R?) and since supp(A¢) = A~ lsupp(¢) is
compact, we have Ap € 2(R?). It is then clear that A: 2(R?) — 2(R?) is a well-
defined linear map. To show that it is Z-continuous it suffices by linearity to consider

a null sequence. Let ¢; € 2(R?) and suppose that ¢; — 0 in Z(R?). That is, for some
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compact set K C R? we have supp(¢;) C K for all j, and 9%¢; — 0 uniformly on R? for
each multi-index . Then supp(A¢;) C A~'K for all j, where again A~'K is compact.
For the uniform convergence of partial derivatives we use induction on the lenght of the
multi-index «. First, we clearly have A¢; — 0 uniformly, and for the induction step we

use the formulas
0, AY = aA(0,¢) + cA(Oyy) and 0,AY = bA(0,v) + dA(O,0) (5)

that are valid for any 1) € C'(R?). Assume we have established the uniform convergence
to 0 for all partial derivatives of order less than n € N. Then for o € N2 of lenght n we
put 5 =a —(1,0) if a; > 0 (and o — (0,1) if oy = 0). Assuming the former we then
have 0“A¢; = 0°(aA(9,¢;) + cA(dy¢;)) — 0 uniformly by the induction hypothesis.
The Z-continuity of A follows.

In order to extend the definition of A to distributions we use the adjoint identity scheme,

and for that purpose we derive an adjoint identity. For ¢, 1 € 2(R?) we calculate by

the change-of-variables formula:
/ A d(z,y) =/ PA™ )| det Al d(z,y).
R2 R2

Here we note that the map 2(R?) 3 ¢ — A '|det A|] € Z(R?) is linear and Z-
continuous. We must therefore for v € 2’(R?) define Au by the rule

(Au,¢) < (u, A7\ gl det A]), ¢ € D(R?).

The adjoint identity scheme then ensures that hereby A: 2'(R?) — 2'(R?) is a well-

defined, linear and 2’-continuous map.

By successive use of the formulas (5) we next calculate for v € 2'(R?) (first assume

u € C°°(R?) and then transfer the formula to general u by mollification):
(AT'AA)u = (a® + 0*)02u + 2(ac + bd) D, 0yu + (¢ + d°) 3 u.

(b): p(9) is elliptic iff p(x,y) = ax? + Bay + yy* # 0 for (z,y) € R?\ {(0,0)}. Consider
the equation ax? + By + yy* = 0 and assume first that o # 0. If there is a solution
(x,y) with y = 0, then it can only be (0,0). If (z,y) is a solution with y # 0, then
we must have «a (g)Q + Bi +~ = 0. The solutions are real iff 3?2 — 4oy > 0. It thus
follows that when « # 0, p(9) is elliptic iff 52 < 4a~y holds. When « = 0 we have that
p(z,0) =0 for all x € R and so in this case p(9) is never elliptic, concluding the proof
that we have ellipticity iff 52 < 4y holds.

Assume that p(0) is elliptic. To prove it is hypoelliptic, so that it admits a fundamental
solution with singular support {(0,0)} we aim to find an automorphism A of R? such
that p(9) = A7'AA and use that G(z) = log |z|/27 is a fundamental solution for A.
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By above we must have 3?2 < 4+, and so in particular that o, v have the same sign.
Because also —p(0) is elliptic we can without loss in generality assume that a > 0,
v > 0. For the following calculation it is convenient to introduce ¢ = /a(cos 6y, sin ;)
and w = /y(cos b, sin f,) for some angles 0y, 0, € (—m, 7] still to be determined. Note
that 0w = /a7y cos(6; — ) and if A denotes the square matrix whose first and second
row is U and @, respectively, then det A = /a7ysin(6; — 6). Thus A is regular iff
01 — 0y ¢ 7Z, and so in this case the corresponding linear map A is an automorphism
of R?. We may then write A™'AA = ad? + 2 /a7 cos(fy — 02)0,0, + y05. Because
B < dary, that is, |f] < 2,/a7, we can solve cos(0y — 05) = (/2,/ay € (—1,1) for
6, — 0y € R\ 7Z. Take (for instance) o = 0 and ¢, € (—n,0) U (0,7) solving the
equation and let A denote the corresponding automorphism. Then p(9) = A'AA, or
A = Ap(9)A~!, hence we have §p = AG = Ap(9)A~'G and so p(0)A~1G = A~14,.
Using the definition we see that A~y = do| det A| and thus if we define

E(z,y) log |A™ ()],

1

~ 2n[det 4]
then F is a regular distribution on R? with singular support {(0,0)} and by construction
p(0)E = dy, as required.

(c): This follows easily from (b) and the elliptic regularity theorem from lectures. Indeed
the differential operator 07 + 9,0, + 95 is elliptic because a = § = v = 1, so evidently
%=1 < 4 = 4ay. Tt is then also hypoelliptic and so if the right-hand side f is C* on
the ball B C 2, then so is the solution w.

Optional part: Assume that f|p, (zo40) € Live(Br (20, Y0)). Fix a ball B € B,(z¢,yo) and

loc
f in B,
fB = .
0 inR*\B.
Then fp € L?*(R?) has compact support and we may define v = E % fg. By the

denote

differentiation rule for convolutions, p(0)v = (p(0)E) * fp = fp, and so p(d)(u—v) =0
on B, so that by hypoellipticity, u — v is C* on B, and so u is locally as regular as v is
on B. Because the coefficients are real we may assume that f is real-valued as otherwise
we can consider separately the PDEs with the real and imaginary parts of f on the
right-hand side. First, we check that v € L (R?): for R > 0 and writing Br = Bg(0),

z =1x + iy and w = wy + iw, we have
9 Cauchy—Schwarz 9 9
[ aey LT[ BG - wdw el el Gy
Br BrJB

< TR / E(w)? d(wy, ws) || £5])% < +00
Br—B

For the higher order regularity it is convenient to transform the equation back to the

Laplacian (though it is not necessary). We have fz = p(9)v = A"'AAv on R?, and so
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g = Aw on R?, where g = Afg, w = Av. Clearly the regularity of w and v are the
same on corresponding sets and g € L*(R?). We have established that w € L2 (R?). We
assert that w € W2 (R?), and consequently that u is W22 on B,(z0,). We of course

loc
have the formula w = G * g, but it seems easier to use w € L2 _(R?) and Aw = g.
Put w. = p. * w, g. = p. * g and note that Aw. = g.. For ¢ € Z(R?*) we have
J29:0 = Jp2Awedp = — [, Vwe - V. Fix two concentric balls B' € B” and take a
cut-off function n € Z(R?) satisfying 1z < 1 < 1gr. Test AW = G with ¢ = n*W,

where W = w., — w,, and G = ¢., — g., to get
/ Gy*W = — | VW -V(*W) = —/ (P [VW|* + 20WVW - V),
R? R? R?
and hence (using 2st < s?/2 + 2t* and 2st < s* + %)
/ P IVW|* = /(277WVW-V7]—772WG)
R2 R2
1 1 1
< / (P IVW ]+ 202 Vn* + - W2 + -’ G?),
22 2 2
and thus
VI < c/ (W2 +G2),
B/ "

where ¢ = 1 + 4max |Vn|? will do. Thus we have shown

/ |vw61 - vw€2|2 S C/ (|w61 - w52|2 + |961 - ga2|2)
B/ 1"

2
loc

Cauchy in L?(B’,R?) as € \, 0, and so by completeness we find y € L*(B’,R?) such
that (Vw,.)|p — x in L*(B/,R?). (Note: L2 (B’,R?) denotes the space of R%-valued
L2 . functions on B’ normed by using the usual norm on R%) But we also have that

Vw. = Vw in 2'(R* R?) and so we conclude that (Vw)|z = x € L?(B’,R?). Because
B’ was an arbitrary ball we conclude that Vw € L2 (R? R?). Finally, for the second

loc

and since w, g € L2 _(R?) it follows that the sequence of restrictions, ((Vw.)|s) is

order derivatives we retain the above notation and calculate

R2|V2(77W)|2 = /R Q(A(nW)Q +2((W)32, — (nW)m(nW)yy))
= / (AW + 2V - VW + W AR)?

+2 /R 2(((nw>x(nvv)xy)y - ((nW>x(nW)yy)x>-

Here the last integral is 0 and so as AW = G we get after routine estimations (as above)
that

|V2W|? < c/ (G* + [VW|* + W?),
Bl 1!
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where ¢ = 3(1+max |Vn|* +max(An)?) will do. Thus we can conclude exactly as above

that also the Hessian matrix V2w is locally square integrable on R? and so w € W12 (R?),

as asserted.
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Section C

7. Let p(x) € C[z] be a complex polynomial of degree d € N in n indeterminates and let

p(0) = Z €a 0%

lal<d

be the corresponding differential operator. Prove that

sing.supp(p(@)u) C sing.supp(u)

holds for all distributions v on an open non-empty subset €2 of R”. Give an example

where the inclusion is strict. Does such an example exist when the dimension n = 17

Solution: Recall that
Q \ sing.supp(u) = Q\ {z € Q: ulons, @) € C(QN B,(x)) for some r > 0}.

Fix x in this set. We may then find r € (0, dist(z,0f2)) such that u is C* on B,(x).
But then also p(d)u is C* on B, (z), and therefore z € Q\ sing.supp(p(d)u) so that we
have proved the required inclusion. An example with strict inclusion can for instance
be obtained using the wave differential operator 97 — k0% on R? and the solutions
mentioned in Question 2 on Problem Sheet 2. However, more dramatic examples can
also be constructed: For instance consider the differential operator p(d) = 9, on R

Let {gn}nen be an enumeration of the rational numbers Q and define
def n
u(z,y) = 22 Lcoogn(@), (z,y) € R,
n=1

Then u: R?> — R is a well-defined function that is independent of y and is increasing
and right-continuous in # € R. It is therefore in particular locally integrable on R? and
so defines a regular distribution on R2. Since u is discontinuous at each point of the set
Q x R, which is dense in R?, it follows that sing.supp(u) = R2%. However, since d,u = 0

in 2'(R?) we have sing.supp(9,u) = 0.

No such example can exist when n = 1. We skip the details here and merely indicate
a possible proof of the following result: if f € C>(a,b) and u € Z'(a,b) satisfies
P (%) u= Z?:o c;u) = fin P'(a,b), then u € C*(a,b) too. In order to show this, one
can use the factorization of the polynomial p(z) to factorize the differential operator
D (%), then use the fundamental theorem and the constancy theorem iteratively as was

done in an example with a second order operator on Problem Sheet 3.
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8. A function f: R — C is Lipschitz continuous if there exists a constant L > 0 such that
|f(z) — f(y)| < Llz — y| holds for all z, y € R.

Prove that u € 2'(R) has a Lipschitz continuous representative if and only if ' € L>°(R).
What does this mean for elements of the Sobolev space W1 (R)?

Solution: If ' € L*(R), then by results from lectures f(z) = c+ f;;u’(t) dt, z € R, is

for suitable ¢ € C and xg € R, an absolutely continuous representative of u. Because

f(a) = fy)| =

[ < wlale -
Yy
for all x, vy € R, f is also Lipschitz continuous. Conversely, assume that u has a
Lipschitz continuous representative and denote it by u again, so that u: R — C satisfies
|u(z) —u(y)| < Llx —y| for all z, y € R, where L > 0 is a constant. In an example from
lectures we saw that the difference quotients of a distribution converge in the sense of
distributions to its distributional derivative, so

Apu  TRU —u

h h

Here it follows from the Lipschitz condition that ||Apu/h|l« < L for all real h # 0. It
follows then by general results of Functional Analysis that «’ € L>°(R) (more precisely

—u in 2'(R) as h — 0.

one can use that L°(R) is the dual space of the separable space L!(R)), but as we have
not developed that here we use a mollification argument instead. Put u. = p. * u. Then
us. € C*(R) and by inspection |u.(z) — u.(y)| < L|x — y| holds for all z, y € R and
e > 0. We start by showing that u' is a regular distribution on R and to that end fix

a > 0. Now for g1, 5 > 0 we estimate

a
/ / _
Hu€1 B u52HL1(—a,a) o /
—a

a 1
/ 10l Lles — &ly| dy da
—aJ -1

< dallp'llooLler — eaf,

[ #W(ata = 19) = ule — zaw) dy s

1

VAN

showing that (u.|(_eq)) is Cauchy in L'(—a,a) as e \, 0. By completeness of L'(—a, a)
we find v, € L'(—a,a) such that u.|_a. — v, in L'(—a,a) as € N\, 0. Consequently,
(', o) = ffavagb dz for all ¢ € Z(R) supported in (—a, a), and since a > 0 was arbitrary
here we infer that v’ is a regular distribution on R. To conclude we fix a > 0 again, take
a null sequence €; ~\, 0 such that v, (z) — v'(x) pointwise in a.e. z € (—a,a). Using
that the u.; satisfy an L-Lipschitz condition we get |u; (z)| < L for all z € R, hence
/()] = lim; o0 |ul, (z)| < L holds for a.e. x € (—a,a), and since a > 0 is arbitrary we

are done.
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Recall that we defined WH*(R) to consist of all u € 2'(R) for which u, v’ € L>(R).
It therefore follows that W'*°(R) consists of those distributions on R that admit a

bounded Lipschitz function as representative.
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