B5.6 Nonlinear Dynamics, Bifurcations and Chaos Sheet 2 - HT 2024

Solutions to all problems in Sections A and C

Section A: Problems 1, 2 and 3

1. Consider the ODE system

$$
\begin{aligned}
& \frac{\mathrm{d} x_{1}}{\mathrm{~d} t}=\mu x_{1}+2 x_{1}^{3}-x_{1}^{5} \\
& \frac{\mathrm{~d} x_{2}}{\mathrm{~d} t}=-x_{2}
\end{aligned}
$$

where $\mu \in \mathbb{R}$ is a parameter.
(a) Find and classify all bifurcations of the ODE system. Plot the bifurcation diagram.
(b) Sketch the phase plane for $\mu=-3 / 4$.

Solution:

(a) The origin $[0,0]$ is a critical point for all values $\mu \in \mathbb{R}$. Other critical points are of the form $\left[x_{c}, 0\right]$, where x_{c} is a solution of $\mu=x_{c}^{4}-2 x_{c}^{2}$. Completing the square, we have $\left(x_{c}^{2}-1\right)^{2}=\mu+1$, which implies:
(i) There is only one critical point $\mathbf{x}_{0}=[0,0]$ for $\mu \in(-\infty,-1)$, which is stable.
(ii) There are five critical points

$$
\begin{aligned}
& \mathbf{x}_{-2}=[-\sqrt{1+\sqrt{\mu+1}}, 0], \quad \mathbf{x}_{-1}=[-\sqrt{1-\sqrt{\mu+1}}, 0], \quad \mathbf{x}_{0}=[0,0], \\
& \mathbf{x}_{1}=[\sqrt{1-\sqrt{\mu+1}}, 0], \quad \mathbf{x}_{2}=[\sqrt{1+\sqrt{\mu+1}}, 0], \quad \text { for } \quad \mu \in(-1,0) .
\end{aligned}
$$

Moreover, the critical points $\mathbf{x}_{-2}, \mathbf{x}_{0}$ and \mathbf{x}_{2} are stable nodes, while the critical points \mathbf{x}_{-1} and \mathbf{x}_{1} are (unstable) saddles.
(iii) There are three critical points

$$
\mathbf{x}_{-2}=[-\sqrt{1+\sqrt{\mu+1}}, 0], \quad \mathbf{x}_{0}=[0,0], \quad \mathbf{x}_{2}=[\sqrt{1+\sqrt{\mu+1}}, 0]
$$

for $\mu \in(0, \infty)$. Moreover, the critical points \mathbf{x}_{-2} and \mathbf{x}_{2} are stable, while the critical point \mathbf{x}_{0} is unstable.

We have a subcritical pitchfork bifurcation at $\mu=0$. The origin is (locally) stable for $\mu<0$ and unstable for $\mu>0$. Two branches of unstable fixed points bifurcate from the origin when $\mu=0$, as can be seen on the following bifurcation diagram:

In addition to the subcritical pitchfork bifurcation at $\mu=0$, we also have a saddlenode bifurcation at $\mu=-1$: stable node \mathbf{x}_{-2} moves towards saddle \mathbf{x}_{-1} as μ approaches -1 from above, and these two critical points collide (mutually annihilate) at $\mu=-1$. We also have a saddle-node bifurcation at $\mu=-1$, where stable node \mathbf{x}_{2} collides with saddle \mathbf{x}_{1}.
(b) Using $\mu=-3 / 4$, there are five critical points

$$
\mathbf{x}_{-2}=\left[-\sqrt{\frac{3}{2}}, 0\right], \quad \mathbf{x}_{-1}=\left[-\sqrt{\frac{1}{2}}, 0\right], \quad \mathbf{x}_{0}=[0,0], \quad \mathbf{x}_{1}=\left[\sqrt{\frac{1}{2}}, 0\right], \quad \mathbf{x}_{2}=\left[\sqrt{\frac{3}{2}}, 0\right]
$$

with saddles at \mathbf{x}_{-1} and \mathbf{x}_{1} and stable nodes at $\mathbf{x}_{-2}, \mathbf{x}_{0}$ and \mathbf{x}_{2}.
The phase plane is plotted in the figure on the next page, where we visualize stable critical points using filled-in black dots and unstable critical points as empty dots. The figure also includes 14 illustrative trajectories, each starting at the boundary of the plotted box $[-2,2] \times[-2,2]$ and converging to one of the stable nodes \mathbf{x}_{-2}, x_{0} or x_{2}.

2. Consider the system of $n=2$ chemical species X_{1} and X_{2} which are subject to the following $\ell=6$ chemical reactions:
$X_{1} \xrightarrow{k_{1}} X_{2}$
$X_{2} \xrightarrow{k_{2}} X_{1}$
$X_{1} \xrightarrow{k_{3}} \emptyset$
$\emptyset \xrightarrow{k_{4}} X_{2}$
$2 X_{1} \xrightarrow{k_{5}} 3 X_{1}$
$3 X_{1} \xrightarrow{k_{6}} 2 X_{1}$

Let $x_{1}(t)$ and $x_{2}(t)$ be the concentrations of the chemical species X_{1} and X_{2}, respectively.
(a) Assuming mass action kinetics, write a system of ODEs (reaction rate equations) describing the time evolution of $x_{1}(t)$ and $x_{2}(t)$.
(b) Assume the problem has already been non-dimensionalized and choose the values of dimensionless rate constants as

$$
k_{1}=3, \quad k_{2}=1, \quad k_{3}=12, \quad k_{4}=\mu, \quad k_{5}=9 \quad \text { and } \quad k_{6}=2,
$$

where $\mu>0$ is a single parameter that we will vary.
Find and classify all bifurcations of the ODE system.
(c) Plot the bifurcation diagram.
(d) Sketch the phase plane for $\mu=9 / 2$.

Solution:

(a) Using the definition of mass action kinetics (covered in Lecture 1), we have:

$$
\begin{aligned}
& \frac{\mathrm{d} x_{1}}{\mathrm{~d} t}=k_{2} x_{2}-\left(k_{1}+k_{3}\right) x_{1}+k_{5} x_{1}^{2}-k_{6} x_{1}^{3} \\
& \frac{\mathrm{~d} x_{2}}{\mathrm{~d} t}=k_{4}+k_{1} x_{1}-k_{2} x_{2}
\end{aligned}
$$

(b) Using our values of parameters $k_{1}=3, k_{2}=1, k_{3}=12, k_{4}=\mu, k_{5}=9, k_{6}=2$, we have

$$
\begin{aligned}
& \frac{\mathrm{d} x_{1}}{\mathrm{~d} t}=x_{2}-15 x_{1}+9 x_{1}^{2}-2 x_{1}^{3} \\
& \frac{\mathrm{~d} x_{2}}{\mathrm{~d} t}=\mu+3 x_{1}-x_{2}
\end{aligned}
$$

The nullclines can be written as functions of x_{1} :

$$
\begin{align*}
& x_{2}=15 x_{1}-9 x_{1}^{2}+2 x_{1}^{3} \tag{1}\\
& x_{2}=\mu+3 x_{1} \tag{2}
\end{align*}
$$

The x_{1}-nullcline is independent of μ and is plotted below as the black curve.
The x_{2}-nullcline is a straight line that depends on μ. We plot x_{2}-nullcline for five different values of μ below:

The ODE system has two saddle-node bifurcations: one at $\mu=4$, where the critical point $[2,10]$ bifurcates into a saddle and a node for $\mu>4$, and one at $\mu=5$, where the critical point $[1,8]$ bifurcates into a saddle and a node for $\mu<5$.

Both bifurcations can be further analyzed using the the extended center manifold theory. We define new (local) variables by

$$
\begin{array}{llll}
\text { bifurcation at } \mu=4: & \bar{x}_{1}=x_{1}-2, & \bar{x}_{2}=x_{2}-10, & \nu=\mu-4, \\
\text { bifurcation at } \mu=5: & \bar{x}_{1}=x_{1}-1, & \bar{x}_{2}=x_{2}-8, & \nu=\mu-5 .
\end{array}
$$

Then the ODE system can be written in the matrix form as

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\binom{\bar{x}_{1}}{\bar{x}_{2}}=\left(\begin{array}{cc}
-3 & 1 \tag{3}\\
3 & -1
\end{array}\right)\binom{\bar{x}_{1}}{\bar{x}_{2}}+\binom{\mp 3 \bar{x}_{1}^{2}-2 \bar{x}_{1}^{3}}{\nu}
$$

where the top sign (minus -) corresponds to the local variables used for the bifurcation at $\mu=4$ and the bottom sign (plus +) corresponds to the local variables used for the analysis of the bifurcation at $\mu=5$. We define new coordinates by

$$
\binom{\bar{x}_{1}}{\bar{x}_{2}}=\left(\begin{array}{cc}
1 & 1 \\
-1 & 3
\end{array}\right)\binom{y_{1}}{y_{2}}
$$

with the inverse transform

$$
\binom{y_{1}}{y_{2}}=\frac{1}{4}\left(\begin{array}{cc}
3 & -1 \\
1 & 1
\end{array}\right)\binom{\bar{x}_{1}}{\bar{x}_{2}} .
$$

Then the system (3) can be written as

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\binom{y_{1}}{y_{2}}=\left(\begin{array}{cc}
-4 & 0 \\
0 & 0
\end{array}\right)\binom{y_{1}}{y_{2}}+\frac{1}{4}\left(\begin{array}{cc}
3 & -1 \\
1 & 1
\end{array}\right)\binom{\mp 3\left(y_{1}+y_{2}\right)^{2}-2\left(y_{1}+y_{2}\right)^{3}}{\nu} .
$$

The extended system is given by

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\begin{array}{l}
y_{1} \tag{4}\\
y_{2} \\
\nu
\end{array}\right)=\left(\begin{array}{ccc}
-4 & 0 & -1 / 4 \\
0 & 0 & 1 / 4 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
\nu
\end{array}\right)+\frac{\mp 3\left(y_{1}+y_{2}\right)^{2}-2\left(y_{1}+y_{2}\right)^{3}}{4}\left(\begin{array}{l}
3 \\
1 \\
0
\end{array}\right) .
$$

The corresponding stable and center subspaces are

$$
E^{s}=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\}, \quad E^{c}=\operatorname{span}\left\{\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-1 / 4 \\
0 \\
4
\end{array}\right)\right\} .
$$

The extended center manifold is given by

$$
\begin{equation*}
y_{1}=h\left(y_{2}, \nu\right)=c_{01} \nu+c_{20} y_{2}^{2}+c_{11} \nu y_{2}+c_{02} \nu^{2}+\ldots \tag{5}
\end{equation*}
$$

Differentiating with respect of time t, we get

$$
\frac{\mathrm{d} y_{1}}{\mathrm{~d} t}=\frac{\partial h}{\partial y_{2}}\left(y_{2}, \nu\right) \frac{\mathrm{d} y_{2}}{\mathrm{~d} t}+\frac{\partial h}{\partial \nu}\left(y_{2}, \nu\right) \frac{\mathrm{d} \nu}{\mathrm{~d} t}=\frac{\partial h}{\partial y_{2}}\left(y_{2}, \nu\right) \frac{\mathrm{d} y_{2}}{\mathrm{~d} t} .
$$

Using (4) and (5), we get

$$
\begin{gathered}
\left(4 c_{01}+\frac{1}{4}\right) \nu+\left(4 c_{20} \pm \frac{9}{4}\right) y_{2}^{2}+\left(4 c_{11} \pm \frac{9 c_{01}}{2}+\frac{c_{20}}{2}\right) \nu y_{2} \\
+ \\
\left.+4 c_{02} \pm \frac{9 c_{01}^{2}}{4}+\frac{c_{11}}{4}\right) \nu^{2} \cdots=0
\end{gathered}
$$

where the top sign (plus +) corresponds to the local variables used for the bifurcation at $\mu=4$ and the bottom sign (minus -) corresponds to the local variables used for the analysis of the bifurcation at $\mu=5$. This implies

$$
c_{01}=-\frac{1}{16}, \quad c_{20}=\mp \frac{9}{16}, \quad c_{11}= \pm \frac{9}{64}, \quad c_{02}=\mp \frac{45}{4096} .
$$

Thus the center manifold is given locally by

$$
y_{1}=-\frac{1}{16} \nu \mp \frac{9}{16} y_{2}^{2}+\ldots,
$$

and we have saddle-node bifurcations at $\mu=4$ (top signs) and $\mu=5$ (bottom signs) with the dynamics on the center manifold given by

$$
\frac{\mathrm{d} y_{2}}{\mathrm{~d} t}=\frac{1}{4} \nu \mp \frac{3}{4} y_{2}^{2}+\ldots
$$

(c) The bifurcation diagram is plotted below. The first coordinate of all steady states $\left(x_{1}\right)$ is visualized as a function of parameter μ :

To plot this diagram, we can substitute for x_{2} in equation (1) by using equation (2). We get a polynomial equation

$$
\begin{equation*}
\mu=12 x_{1}-9 x_{1}^{2}+2 x_{1}^{3} \tag{6}
\end{equation*}
$$

which can be solved to obtain all steady states. However, we can also observe that equation (6) defines μ as a function of x_{1}, so we can simply plot it and swap the axis to obtain the above bifurcation diagram.
(d) Using $\mu=9 / 2$, equation (6) reads as follows

$$
4 x_{1}^{3}-18 x_{1}^{2}+24 x_{1}-9=0 .
$$

The solutions of this equation are $3 / 2 \pm \sqrt{3} / 2$ and $3 / 2$. Using (2), we conclude that there are three critical points

$$
\mathbf{x}_{-}=\left[\frac{3-\sqrt{3}}{2}, 9-\frac{3 \sqrt{3}}{2}\right], \quad \mathbf{x}_{0}=\left[\frac{3}{2}, 9\right], \quad \mathbf{x}_{+}=\left[\frac{3+\sqrt{3}}{2}, 9+\frac{3 \sqrt{3}}{2}\right],
$$

where \mathbf{x}_{-}and \mathbf{x}_{+}are stable nodes and \mathbf{x}_{0} is a saddle. The phase plane is plotted here:

We visualized stable critical points using filled-in black dots and the unstable critical point as an empty dot. The above figure also includes 8 illustrative trajectories, each starting at the boundary of the plotted box $[0,3] \times[4,14]$ and converging to one of the stable nodes \mathbf{x}_{-}or \mathbf{x}_{+}.
3. Let $\mu>0$ be a parameter. Consider the map

$$
x_{k+1}=F\left(x_{k} ; \mu\right)
$$

where

$$
F(x ; \mu)=\mu x \exp [1-x] .
$$

(a) Let $\mu>0$ be fixed. Find $a(\mu)$ such that $F(x ; \mu)$ maps interval $[0, a(\mu)]$ in $[0, a(\mu)]$.
(b) Sketch the graphs of $F(x ; \mu)$ and $F(F(x ; \mu) ; \mu)$ on interval $[0, a(\mu)]$ for $\mu=4$.
(c) Find all fixed points and the values of μ for which the fixed points are stable.
(d) Find a value of μ such that the map has a stable period 2-cycle.
(e) Plot the bifurcation diagram.

Solution:

(a) The maximum of function $F(x ; \mu)$ is equal to μ, which is achieved at $x=1$.

In particular, we can choose

$$
a(\mu)= \begin{cases}1 & \text { for } \quad \mu \in(0,1) \\ \mu & \text { for } \quad \mu>1\end{cases}
$$

Then $F(x ; \mu)$ maps interval $[0, a(\mu)]$ in $[0, a(\mu)]$ for all $\mu>0$.
(b) The graphs of $F(x ; 4)$ and $F(F(x ; 4) ; 4)$ are given here:

Using the simplified notation (introduced in lectures), we have

$$
F_{\mu}(x)=F(x ; \mu)=\mu x \exp [1-x]
$$

and

$$
F_{\mu}^{(2)}=F_{\mu}\left(F_{\mu}(x)\right), \quad F_{\mu}^{(3)}=F_{\mu}\left(F_{\mu}\left(F_{\mu}(x)\right)\right), \quad \ldots
$$

In particular, graphs plotted in part (b) visualize $F_{\mu}(x)$ and $F_{\mu}^{(2)}(x)$ and can be used to find fixed points and 2-cycles.
(c) To find formulas for fixed points, we solve

$$
x=F_{\mu}(x)=\mu x \exp [1-x] .
$$

This equation has two solutions

$$
x=0, \quad \text { and } \quad x=1+\log (\mu)
$$

Differentiating, we obtain

$$
F_{\mu}^{\prime}(x)=\mu(1-x) \exp [1-x],
$$

which implies

$$
F_{\mu}^{\prime}(0)=\mu \exp [1], \quad F_{\mu}^{\prime}(1+\log (\mu))=-\log (\mu) .
$$

In particular, the fixed point at $x=0$ is stable for $\mu \in(0,1 / e]$ and the fixed point at $x=1+\log (\mu)$ is stable for $\mu \in[1 / e, e)$.

If $\mu=1 / e$, then there is one stable fixed point at $x=1+\log (\mu)=0$.
(d) To find 2-cycles, we have to solve:

$$
x=F_{\mu}^{(2)}(x)=F_{\mu}\left(F_{\mu}(x)\right)=\mu^{2} x \exp [2-x-\mu x \exp [1-x]]
$$

Since $x \neq 0$, we have

$$
x+\mu x \exp [1-x]=2(1+\log (\mu)) .
$$

This equation is solved by the fixed point $x=1+\log (\mu)$, but it also has two other solutions for $\mu>e$ giving a period 2-cycle, which is stable until $\mu \approx 4.6$, so we can choose, for example, $\mu=3$ or $\mu=4$.
(e) To plot the bifurcation diagram, we can visualize the information derived in parts (c) and (d), and continue numerically:

or we can numerically compute the whole bifurcation diagram:

Section C: Problem 7

7. Let $x_{0} \in[-1,1]$ and $F:[-1,1] \rightarrow[-1,1]$.

Define sequence $x_{k} \in[-1,1], k=0,1,2, \ldots$, iteratively by

$$
x_{k+1}=F\left(x_{k}\right) .
$$

(a) Let $F(x)=2 x^{2}-1$, i.e. we have

$$
x_{k+1}=2 x_{k}^{2}-1
$$

(i) Find maxima and minima of F in interval $[-1,1]$ and verify that $F([-1,1]) \subset[-1,1]$.
(ii) Let $h(y)=\cos (\pi y)$ and define function $G:[0,1] \rightarrow[0,1]$ by $G=h^{-1} \circ F \circ h$. Find $G(y)=h^{-1}(F(h(y)))$ for $y \in[0,1]$ as a piecewise defined function.
(iii) Define the sequence $y_{k} \in[0,1], k=0,1,2, \ldots$, iteratively by $y_{k+1}=G\left(y_{k}\right)$. Find a relation between x_{k} and y_{k}.
(iv) Find the invariant distribution $p(x)$, defined for $x \in[-1,1]$, and satisfying: If the random variable X is distributed according to $p(x)$, then the random variable $F(X)$ is also distributed according to $p(x)$.
(v) Write a computer code which plots a histogram of first 10^{6} points in the orbit of $x_{0}=0.7$ obtained by $x_{k+1}=F\left(x_{k}\right)$. Plot the invariant distribution $p(x)$ (obtained in part (iv)) in the same figure for comparison.
(b) Let $F(x)=x\left(4 x^{2}-3\right)$, i.e. we have

$$
x_{k+1}=x_{k}\left(4 x_{k}^{2}-3\right) .
$$

Answer questions (i), (ii), (iii), (iv) and (v) for this map.
(c) Let $F(x)=8 x^{2}\left(x^{2}-1\right)+1$, i.e. we have

$$
x_{k+1}=8 x_{k}^{2}\left(x_{k}^{2}-1\right)+1 .
$$

Answer questions (i), (ii), (iii), (iv) and (v) for this map.

Solution:

(a) Let $F(x)=2 x^{2}-1$. Then $F^{\prime}(x)=4 x$.
(i) Since $F^{\prime}(x)=4 x$, the minimum is at $x=0$ and is equal to -1 . The maxima are at the boundaries of the interval $[-1,1]$ and $F(\pm 1)=1$. Therefore, $F([-1,1]) \subset[-1,1]$.
(ii) Since $h(y)=\cos (\pi y)$ for $y \in[0,1]$, we have $h^{-1}(z)=(\arccos z) / \pi$ for $z \in$ $[-1,1]$, which implies

$$
G(y)=h^{-1}(F(h(y)))=\frac{1}{\pi} \arccos \left(2 \cos ^{2}(\pi y)-1\right)=\frac{1}{\pi} \arccos (\cos (2 \pi y)) .
$$

Since arccos : $[-1,1] \rightarrow[0, \pi]$, we conclude

$$
G(y)=\left\{\begin{array}{lll}
2 y & \text { for } & y \in[0,1 / 2] \\
2(1-y) & \text { for } & y \in[1 / 2,1]
\end{array}\right.
$$

(iii) Let $x_{0}=h\left(y_{0}\right)$. Then, using $G=h^{-1} \circ F \circ h$, we have

$$
\begin{aligned}
y_{0} & =h^{-1}\left(x_{0}\right) \\
y_{1} & =G\left(y_{0}\right)=h^{-1}\left(F\left(h\left(y_{0}\right)\right)\right)=h^{-1}\left(F\left(x_{0}\right)\right)=h^{-1}\left(x_{1}\right) \\
y_{2} & =G\left(y_{1}\right)=h^{-1}\left(F\left(h\left(y_{1}\right)\right)\right)=h^{-1}\left(F\left(x_{1}\right)\right)=h^{-1}\left(x_{2}\right) \\
\vdots & =\vdots
\end{aligned}
$$

In particular, we have $y_{k}=h^{-1}\left(x_{k}\right)$ by induction.
(iv) The invariant distribution is

$$
\begin{equation*}
p(x)=\frac{1}{\pi \sqrt{1-x^{2}}} . \tag{7}
\end{equation*}
$$

(v) The blue histogram of first 10^{6} points in the orbit of $x_{0}=0.7$ compared with the invariant distribution (red line) given by formula (7):

(b) Let $F(x)=x\left(4 x^{2}-3\right)$. Then $F^{\prime}(x)=12 x^{2}-3$ and F has maxima at $x=-1 / 2$ and $x=1$ where $F(-1 / 2)=F(1)=1$ and minima at $x=-1$ and $x=1 / 2$ where
$F(-1)=F(1 / 2)=-1$. Using $\cos (3 z)=4 \cos ^{3}(z)-3 \cos (z)$, we get

$$
G(y)=\left\{\begin{array}{lll}
3 y & \text { for } & y \in[0,1 / 3] \\
2-3 y & \text { for } & y \in[1 / 3,2 / 3] \\
3 y-2 & \text { for } & y \in[2 / 3,1]
\end{array}\right.
$$

The invariant distribution is again given by (7) and the histogram is:

(c) Let $F(x)=8 x^{2}\left(x^{2}-1\right)+1$. The invariant distribution is again given by (7) and the histogram is:

