
B5.6 Nonlinear Dynamics, Bifurcations and Chaos

Sheet 2 — HT 2024

Solutions to all problems in Sections A and C

Section A: Problems 1, 2 and 3

1. Consider the ODE system

dx1

dt
= µx1 + 2x3

1 − x5
1

dx2

dt
= − x2

where µ ∈ R is a parameter.

(a) Find and classify all bifurcations of the ODE system. Plot the bifurcation diagram.

(b) Sketch the phase plane for µ = −3/4.

Solution:

(a) The origin [0, 0] is a critical point for all values µ ∈ R. Other critical points are of

the form [xc, 0], where xc is a solution of µ = x4
c − 2x2

c . Completing the square,

we have (x2
c − 1)2 = µ+ 1 , which implies:

(i) There is only one critical point x0 = [0, 0] for µ ∈ (−∞,−1), which is stable.

(ii) There are five critical points

x−2 =

[

−
√

1 +
√

µ+ 1, 0

]

, x−1 =

[

−
√

1−
√

µ+ 1, 0

]

, x0 = [0, 0],

x1 =

[
√

1−
√

µ+ 1, 0

]

, x2 =

[
√

1 +
√

µ+ 1, 0

]

, for µ ∈ (−1, 0).

Moreover, the critical points x−2, x0 and x2 are stable nodes, while the critical

points x−1 and x1 are (unstable) saddles.

(iii) There are three critical points

x−2 =

[

−
√

1 +
√

µ+ 1, 0

]

, x0 = [0, 0], x2 =

[
√

1 +
√

µ+ 1, 0

]

,

for µ ∈ (0,∞). Moreover, the critical points x−2 and x2 are stable, while the

critical point x0 is unstable.
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We have a subcritical pitchfork bifurcation at µ = 0. The origin is (locally) stable

for µ < 0 and unstable for µ > 0. Two branches of unstable fixed points bifurcate

from the origin when µ = 0, as can be seen on the following bifurcation diagram:

-2 -1 0 1 2
-2

-1

0

1

2

In addition to the subcritical pitchfork bifurcation at µ = 0, we also have a saddle-

node bifurcation at µ = −1: stable node x−2 moves towards saddle x−1 as µ

approaches −1 from above, and these two critical points collide (mutually annihi-

late) at µ = −1. We also have a saddle-node bifurcation at µ = −1, where stable

node x2 collides with saddle x1.

(b) Using µ = −3/4, there are five critical points

x−2=

[

−
√

3

2
, 0

]

, x−1=

[

−
√

1

2
, 0

]

, x0 = [0, 0], x1=

[

√

1

2
, 0

]

, x2=

[

√

3

2
, 0

]

with saddles at x−1 and x1 and stable nodes at x−2, x0 and x2.

The phase plane is plotted in the figure on the next page, where we visualize stable

critical points using filled-in black dots and unstable critical points as empty dots.

The figure also includes 14 illustrative trajectories, each starting at the boundary

of the plotted box [−2, 2]× [−2, 2] and converging to one of the stable nodes x−2,

x0 or x2.
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-2 -1 0 1 2
-2

-1

0
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2. Consider the system of n = 2 chemical species X1 and X2 which are subject to the

following ℓ = 6 chemical reactions:

X1
k1−→X2 X2

k2−→X1 X1
k3−→∅

∅ k4−→X2 2X1
k5−→ 3X1 3X1

k6−→ 2X1

Let x1(t) and x2(t) be the concentrations of the chemical speciesX1 andX2, respectively.

(a) Assuming mass action kinetics, write a system of ODEs (reaction rate equations)

describing the time evolution of x1(t) and x2(t).

(b) Assume the problem has already been non-dimensionalized and choose the values

of dimensionless rate constants as

k1 = 3, k2 = 1, k3 = 12, k4 = µ, k5 = 9 and k6 = 2,

where µ > 0 is a single parameter that we will vary.

Find and classify all bifurcations of the ODE system.

(c) Plot the bifurcation diagram.

(d) Sketch the phase plane for µ = 9/2.
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Solution:

(a) Using the definition of mass action kinetics (covered in Lecture 1), we have :

dx1

dt
= k2 x2 − (k1 + k3) x1 + k5 x

2
1 − k6 x

3
1

dx2

dt
= k4 + k1 x1 − k2 x2

(b) Using our values of parameters k1 = 3, k2 = 1, k3 = 12, k4 = µ, k5 = 9, k6 = 2, we

have

dx1

dt
= x2 − 15x1 + 9x2

1 − 2x3
1

dx2

dt
= µ + 3x1 − x2

The nullclines can be written as functions of x1:

x2 = 15x1 − 9x2
1 + 2x3

1 (1)

x2 = µ + 3x1 (2)

The x1-nullcline is independent of µ and is plotted below as the black curve.

The x2-nullcline is a straight line that depends on µ. We plot x2-nullcline for five

different values of µ below:

0 1 2 3

4

6

8

10

12

14

The ODE system has two saddle-node bifurcations: one at µ = 4, where the

critical point [2, 10] bifurcates into a saddle and a node for µ > 4, and one at

µ = 5, where the critical point [1, 8] bifurcates into a saddle and a node for µ < 5.
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Both bifurcations can be further analyzed using the the extended center manifold

theory. We define new (local) variables by

bifurcation at µ = 4 : x1 = x1 − 2, x2 = x2 − 10, ν = µ− 4,

bifurcation at µ = 5 : x1 = x1 − 1, x2 = x2 − 8, ν = µ− 5.

Then the ODE system can be written in the matrix form as

d

dt

(

x1

x2

)

=

(

−3 1

3 −1

)(

x1

x2

)

+

(

∓3x2
1 − 2x3

1

ν

)

(3)

where the top sign (minus −) corresponds to the local variables used for the bifur-

cation at µ = 4 and the bottom sign (plus +) corresponds to the local variables

used for the analysis of the bifurcation at µ = 5. We define new coordinates by
(

x1

x2

)

=

(

1 1

−1 3

)(

y1

y2

)

with the inverse transform
(

y1

y2

)

=
1

4

(

3 −1

1 1

)(

x1

x2

)

.

Then the system (3) can be written as

d

dt

(

y1

y2

)

=

(

−4 0

0 0

)(

y1

y2

)

+
1

4

(

3 −1

1 1

)(

∓3 (y1 + y2)
2 − 2 (y1 + y2)

3

ν

)

.

The extended system is given by

d

dt







y1

y2

ν






=







−4 0 −1/4

0 0 1/4

0 0 0













y1

y2

ν






+

∓3 (y1 + y2)
2 − 2 (y1 + y2)

3

4







3

1

0






. (4)

The corresponding stable and center subspaces are

Es = span

















1

0

0

















, Ec = span

















0

1

0






,







−1/4

0

4

















.

The extended center manifold is given by

y1 = h(y2, ν) = c01 ν + c20 y
2
2 + c11 νy2 + c02 ν

2 + . . . (5)

Differentiating with respect of time t, we get

dy1
dt

=
∂h

∂y2
(y2, ν)

dy2
dt

+
∂h

∂ν
(y2, ν)

dν

dt
=

∂h

∂y2
(y2, ν)

dy2
dt

.
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Using (4) and (5), we get
(

4c01 +
1

4

)

ν +

(

4c20 ± 9

4

)

y22 +

(

4c11 ±
9c01
2

+
c20
2

)

ν y2

+

(

4c02 ±
9c201
4

+
c11
4

)

ν2 · · · = 0 ,

where the top sign (plus +) corresponds to the local variables used for the bifur-

cation at µ = 4 and the bottom sign (minus −) corresponds to the local variables

used for the analysis of the bifurcation at µ = 5. This implies

c01 = − 1

16
, c20 = ∓ 9

16
, c11 = ± 9

64
, c02 = ∓ 45

4096
.

Thus the center manifold is given locally by

y1 = − 1

16
ν ∓ 9

16
y22 + . . . ,

and we have saddle-node bifurcations at µ = 4 (top signs) and µ = 5 (bottom

signs) with the dynamics on the center manifold given by

dy2
dt

=
1

4
ν ∓ 3

4
y22 + . . .

(c) The bifurcation diagram is plotted below. The first coordinate of all steady states

(x1) is visualized as a function of parameter µ:

3 4 5 6
0

0.5

1

1.5

2

2.5

3

To plot this diagram, we can substitute for x2 in equation (1) by using equation (2).

We get a polynomial equation

µ = 12x1 − 9x2
1 + 2x3

1, (6)
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which can be solved to obtain all steady states. However, we can also observe that

equation (6) defines µ as a function of x1, so we can simply plot it and swap the

axis to obtain the above bifurcation diagram.

(d) Using µ = 9/2, equation (6) reads as follows

4x3
1 − 18x2

1 + 24x1 − 9 = 0.

The solutions of this equation are 3/2 ±
√
3/2 and 3/2. Using (2), we conclude

that there are three critical points

x−=

[

3−
√
3

2
, 9− 3

√
3

2

]

, x0 =

[

3

2
, 9

]

, x+=

[

3 +
√
3

2
, 9 +

3
√
3

2

]

,

where x− and x+ are stable nodes and x0 is a saddle. The phase plane is plotted

here:

0 1 2 3
4

6

8

10

12

14

We visualized stable critical points using filled-in black dots and the unstable criti-

cal point as an empty dot. The above figure also includes 8 illustrative trajectories,

each starting at the boundary of the plotted box [0, 3] × [4, 14] and converging to

one of the stable nodes x− or x+.
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3. Let µ > 0 be a parameter. Consider the map

xk+1 = F (xk;µ)

where

F (x;µ) = µx exp[1− x].

(a) Let µ > 0 be fixed. Find a(µ) such that F (x;µ) maps interval [0, a(µ)] in [0, a(µ)].

(b) Sketch the graphs of F (x;µ) and F (F (x;µ);µ) on interval [0, a(µ)] for µ = 4.

(c) Find all fixed points and the values of µ for which the fixed points are stable.

(d) Find a value of µ such that the map has a stable period 2-cycle.

(e) Plot the bifurcation diagram.

Solution:

(a) The maximum of function F (x;µ) is equal to µ, which is achieved at x = 1.

In particular, we can choose

a(µ) =







1 for µ ∈ (0, 1);

µ for µ > 1.

Then F (x;µ) maps interval [0, a(µ)] in [0, a(µ)] for all µ > 0.

(b) The graphs of F (x; 4) and F (F (x; 4); 4) are given here:

0 1 2 3 4
0

1

2

3

4
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Using the simplified notation (introduced in lectures), we have

Fµ(x) = F (x;µ) = µx exp[1− x]

and

F (2)
µ = Fµ(Fµ(x)), F (3)

µ = Fµ(Fµ(Fµ(x))), . . .

In particular, graphs plotted in part (b) visualize Fµ(x) and F
(2)
µ (x) and can be

used to find fixed points and 2-cycles.

(c) To find formulas for fixed points, we solve

x = Fµ(x) = µx exp[1− x].

This equation has two solutions

x = 0, and x = 1 + log(µ).

Differentiating, we obtain

F ′

µ(x) = µ (1− x) exp[1− x],

which implies

F ′

µ(0) = µ exp[1], F ′

µ(1 + log(µ)) = − log(µ) .

In particular, the fixed point at x = 0 is stable for µ ∈ (0, 1/e] and the fixed point

at x = 1 + log(µ) is stable for µ ∈ [1/e, e).

If µ = 1/e, then there is one stable fixed point at x = 1 + log(µ) = 0.

(d) To find 2-cycles, we have to solve:

x = F (2)
µ (x) = Fµ(Fµ(x)) = µ2 x exp[2− x− µx exp[1− x]]

Since x 6= 0, we have

x+ µx exp[1− x] = 2(1 + log(µ)).

This equation is solved by the fixed point x = 1+ log(µ), but it also has two other

solutions for µ > e giving a period 2-cycle, which is stable until µ ≈ 4.6, so we can

choose, for example, µ = 3 or µ = 4.
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(e) To plot the bifurcation diagram, we can visualize the information derived in parts

(c) and (d), and continue numerically:

or we can numerically compute the whole bifurcation diagram:
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Section C: Problem 7

7. Let x0 ∈ [−1, 1] and F : [−1, 1] → [−1, 1].

Define sequence xk ∈ [−1, 1], k = 0, 1, 2, . . . , iteratively by

xk+1 = F (xk) .

(a) Let F (x) = 2x2 − 1, i.e. we have

xk+1 = 2x2
k − 1 .

(i) Find maxima and minima of F in interval [−1, 1] and

verify that F ([−1, 1]) ⊂ [−1, 1].

(ii) Let h(y) = cos(πy) and define function G : [0, 1] → [0, 1] by G = h−1 ◦ F ◦ h.
Find G(y) = h−1(F (h(y))) for y ∈ [0, 1] as a piecewise defined function.

(iii) Define the sequence yk ∈ [0, 1], k = 0, 1, 2, . . . , iteratively by yk+1 = G(yk) .

Find a relation between xk and yk.

(iv) Find the invariant distribution p(x), defined for x ∈ [−1, 1], and satisfying:

If the random variable X is distributed according to p(x), then the random

variable F (X) is also distributed according to p(x).

(v) Write a computer code which plots a histogram of first 106 points in the orbit

of x0 = 0.7 obtained by xk+1 = F (xk). Plot the invariant distribution p(x)

(obtained in part (iv)) in the same figure for comparison.

(b) Let F (x) = x(4x2 − 3), i.e. we have

xk+1 = xk (4x
2
k − 3) .

Answer questions (i), (ii), (iii), (iv) and (v) for this map.

(c) Let F (x) = 8x2(x2 − 1) + 1, i.e. we have

xk+1 = 8x2
k (x

2
k − 1) + 1 .

Answer questions (i), (ii), (iii), (iv) and (v) for this map.

Solution:

(a) Let F (x) = 2x2 − 1. Then F ′(x) = 4x.

(i) Since F ′(x) = 4x, the minimum is at x = 0 and is equal to -1. The max-

ima are at the boundaries of the interval [−1, 1] and F (±1) = 1. Therefore,

F ([−1, 1]) ⊂ [−1, 1].
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(ii) Since h(y) = cos(πy) for y ∈ [0, 1], we have h−1(z) = (arccos z)/π for z ∈
[−1, 1], which implies

G(y) = h−1(F (h(y))) =
1

π
arccos

(

2 cos2(πy)− 1
)

=
1

π
arccos (cos(2πy)) .

Since arccos : [−1, 1] → [0, π], we conclude

G(y) =







2y for y ∈ [0, 1/2]

2(1− y) for y ∈ [1/2, 1].

(iii) Let x0 = h(y0). Then, using G = h−1 ◦ F ◦ h, we have

y0 = h−1(x0)

y1 = G(y0) = h−1(F (h(y0))) = h−1(F (x0)) = h−1(x1)

y2 = G(y1) = h−1(F (h(y1))) = h−1(F (x1)) = h−1(x2)
... =

...

In particular, we have yk = h−1(xk) by induction.

(iv) The invariant distribution is

p(x) =
1

π
√
1− x2

. (7)

(v) The blue histogram of first 106 points in the orbit of x0 = 0.7 compared with

the invariant distribution (red line) given by formula (7):

-1 -0.5 0 0.5 1
0

1

2

3

(b) Let F (x) = x(4x2 − 3). Then F ′(x) = 12x2 − 3 and F has maxima at x = −1/2

and x = 1 where F (−1/2) = F (1) = 1 and minima at x = −1 and x = 1/2 where
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F (−1) = F (1/2) = −1. Using cos(3z) = 4 cos3(z)− 3 cos(z), we get

G(y) =



















3y for y ∈ [0, 1/3]

2− 3y for y ∈ [1/3, 2/3]

3y − 2 for y ∈ [2/3, 1].

The invariant distribution is again given by (7) and the histogram is:
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3

(c) Let F (x) = 8x2(x2 − 1) + 1. The invariant distribution is again given by (7) and

the histogram is:
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