B5.6 Nonlinear Dynamics, Bifurcations and Chaos
Sheet 2 — HT 2024

Solutions to all problems in Sections A and C

Section A: Problems 1, 2 and 3

1. Consider the ODE system

dx

d_tl = pmr + 225 — 23
dfl]g

JE— — —x

dt ’

where ;1 € R is a parameter.

(a) Find and classify all bifurcations of the ODE system. Plot the bifurcation diagram.

(b) Sketch the phase plane for p = —3/4.

Solution:
(a) The origin [0, 0] is a critical point for all values p € R. Other critical points are of

the form [z, 0], where z. is a solution of y = x! — 222 Completing the square,
we have (22 — 1)? = u+ 1, which implies:

(i) There is only one critical point xg = [0, 0] for u € (—oo, —1), which is stable.

(ii) There are five critical points

XQZ{—\/H\/F,()}, xlz{—\/l—\/ﬁ,O], xo = [0,0],

xlz[ 1—/p 1,0}, ng{ 1+/p 1,0], for pe (—1,0).
Moreover, the critical points x_o, Xg and x5 are stable nodes, while the critical

points x_; and x; are (unstable) saddles.

(iii) There are three critical points

x_gz{—\/H\/ﬁ,o}, xo = [0, 0], x2=[1+\/ﬁ,o},

for p € (0,00). Moreover, the critical points x_5 and x5 are stable, while the

critical point x( is unstable.
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We have a subcritical pitchfork bifurcation at p = 0. The origin is (locally) stable
for ;1 < 0 and unstable for © > 0. Two branches of unstable fixed points bifurcate

from the origin when p = 0, as can be seen on the following bifurcation diagram:
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In addition to the subcritical pitchfork bifurcation at = 0, we also have a saddle-
node bifurcation at 4 = —1: stable node x_5 moves towards saddle x_; as pu
approaches —1 from above, and these two critical points collide (mutually annihi-
late) at u = —1. We also have a saddle-node bifurcation at g = —1, where stable

node x5y collides with saddle x;.

(b) Using u = —3/4, there are five critical points

o e o e

with saddles at x_; and x; and stable nodes at x_o, xg and X,.

The phase plane is plotted in the figure on the next page, where we visualize stable
critical points using filled-in black dots and unstable critical points as empty dots.
The figure also includes 14 illustrative trajectories, each starting at the boundary
of the plotted box [—2,2] x [—2,2] and converging to one of the stable nodes x_s,

Xp Or Xo.
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2. Consider the system of n = 2 chemical species X; and X, which are subject to the

following ¢ = 6 chemical reactions:

X, X, X, 2 x, X, 250
[JRENG 'R 92X, 23X, 3X, 50X,

Let x1(t) and z5(t) be the concentrations of the chemical species X; and X5, respectively.

(a) Assuming mass action kinetics, write a system of ODEs (reaction rate equations)

describing the time evolution of z(t) and ().

(b) Assume the problem has already been non-dimensionalized and choose the values

of dimensionless rate constants as
]{?1:3, k‘zzl, ]{?3:12, /{:4:,u, k5:9 and k?6:2,

where p1 > 0 is a single parameter that we will vary.

Find and classify all bifurcations of the ODE system.
(c) Plot the bifurcation diagram.

(d) Sketch the phase plane for p = 9/2.
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Solution:

(a) Using the definition of mass action kinetics (covered in Lecture 1), we have:

d

% = k2x2—(/€1+k3)x1+k5x%—k6x?
dz

d—; = k4+l€1$1—k21’2

(b) Using our values of parameters ky = 3, ko = 1, k3 = 12, ky = p, ks = 9, kg = 2, we

have
d
% = 29 — 152; + 927 — 21}
d
% = M+3ZE1—ZE2

The nullelines can be written as functions of xy:

To = W+ 31 (2)
The x;-nullcline is independent of ;1 and is plotted below as the black curve.

The zo-nullcline is a straight line that depends on p. We plot xo-nullcline for five

different values of i below:

14 7—:E1—nullcline
zo-nullcline p =6
—xzo-nullcline p =5
12 H=—zy-nullcline u = 4.5
—x9-nullcline y =4
10 | |=—z9-nullcline p = 3

)

1

The ODE system has two saddle-node bifurcations: one at yu = 4, where the
critical point [2,10] bifurcates into a saddle and a node for p > 4, and one at

p =5, where the critical point [1, 8] bifurcates into a saddle and a node for p < 5.
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Both bifurcations can be further analyzed using the the extended center manifold

theory. We define new (local) variables by
bifurcation at p =4 : T =21 — 2, Ty = 19 — 10, v=pu—4,

bifurcation at u =5 : Ty =x1 — 1, Ty = X9 — 8, v=—>5.

Then the ODE system can be written in the matrix form as

d (7 -3 1 T F372 — 273
i) 2)E) () e

where the top sign (minus —) corresponds to the local variables used for the bifur-
cation at p = 4 and the bottom sign (plus +) corresponds to the local variables

used for the analysis of the bifurcation at u = 5. We define new coordinates by

fl o 1 1 Y1
Tg -1 3 Y2
with the inverse transform
Y1 o 1(3 —1 T
Y2 4\l 1 Ty)

Then the system (3) can be written as

d o) (40 (m) L (3 A1) (F3On ) - 200 )
dt \yy) L0 0/ \p) 4\1 1 v '

The extended system is given by

w\ (4 0 —1/4\ [u 3
d 3yt +12)? — 2(y1 + )3
dt 4

v 0 0 0 v 0

The corresponding stable and center subspaces are

1 0 —1/4
E?® = span 0 , E° = span 11, 0
0 4

The extended center manifold is given by
Y1 = h(ya,v) 2001V+Czoy§+011 Vys + coa V2 + .. (5)

Differentiating with respect of time ¢, we get

dy, _ 0Oh dy,  Oh dv  0h dys

u 6_y2<y2’y> 1 + 5(3/2;1/) Fri a—m(yzﬂf) P
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Using (4) and (5), we get

1 9 9c c
<4C()1 + Z) v + <4C20 + 1) y; + <4CH + % + %) Vs

92
+ (4c02i%+%> W a—

where the top sign (plus +) corresponds to the local variables used for the bifur-
cation at pu = 4 and the bottom sign (minus —) corresponds to the local variables
used for the analysis of the bifurcation at ¢ = 5. This implies

1 9 9 45

16 Co0 = :FE’ 11 = i6_4’ Co2 = ¢m'

Thus the center manifold is given locally by

Co1 = —

__iy g 2_|_
=gV T g

and we have saddle-node bifurcations at p = 4 (top signs) and p = 5 (bottom

signs) with the dynamics on the center manifold given by

dyg 1 3 2

(c¢) The bifurcation diagram is plotted below. The first coordinate of all steady states

(x1) is visualized as a function of parameter p:

3

2.5 1

L

To plot this diagram, we can substitute for z5 in equation (1) by using equation (2).

We get a polynomial equation

p=12x; — 9a] + 2279 (6)
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which can be solved to obtain all steady states. However, we can also observe that
equation (6) defines 1 as a function of x1, so we can simply plot it and swap the

axis to obtain the above bifurcation diagram.
(d) Using u = 9/2, equation (6) reads as follows
4% — 1827 + 241, — 9 = 0.

The solutions of this equation are 3/2 & v/3/2 and 3/2. Using (2), we conclude

that there are three critical points

X_[s-ﬁ _%]’ XO_FQ]’

.9

2 2 *+

3+2\/§79+ 3\2/§] |

where x_ and x, are stable nodes and xg is a saddle. The phase plane is plotted

here: 0
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We visualized stable critical points using filled-in black dots and the unstable criti-
cal point as an empty dot. The above figure also includes 8 illustrative trajectories,
each starting at the boundary of the plotted box [0, 3] x [4,14] and converging to

one of the stable nodes x_ or x,.
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3. Let i > 0 be a parameter. Consider the map

Tpy1 = F(zg; p)

where

F(a;p) = paexp[l — z].
(a) Let u > 0 be fixed. Find a(pu) such that F'(x; 1) maps interval [0, a(u)] in [0, a(p)].
(b) Sketch the graphs of F'(x;u) and F(F(x; u); 1) on interval [0, a(u)] for p = 4.
(c¢) Find all fixed points and the values of p for which the fixed points are stable.

(d) Find a value of p such that the map has a stable period 2-cycle.

(e) Plot the bifurcation diagram.

Solution:
(a) The maximum of function F(x;u) is equal to p, which is achieved at x = 1.

In particular, we can choose

1 for pe(0,1);
a(p) =
po for p>1.

Then F(z; ) maps interval [0, a(u)] in [0, a(w)] for all u > 0.

(b) The graphs of F(x;4) and F(F(x;4);4) are given here:

p =4

4 ‘
=
<3
\.&;
L3
— 2
£
=
g1
Ry —F(x;4)

—F(F(z;4);4)
0 L L
0 1 2 3 4
Wi
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Using the simplified notation (introduced in lectures), we have
Fu(z) = F(x;p) = pa expll — ]

and

In particular, graphs plotted in part (b) visualize F),(x) and Ff)(x) and can be
used to find fixed points and 2-cycles.

(c¢) To find formulas for fixed points, we solve
r=F,(x)=px exp[l —z|.
This equation has two solutions
x =0, and x=1+log(p).
Differentiating, we obtain
Fy(w) = (1~ 2) expl1 - a].
which implies

F(0) = pexp[l],  F(1+log(n)) = —log(n).

In particular, the fixed point at x = 0 is stable for p € (0,1/e] and the fixed point
at x = 1 + log(p) is stable for u € [1/e, e).

If n = 1/e, then there is one stable fixed point at 2z = 1 + log(u) = 0.
(d) To find 2-cycles, we have to solve:
v =F(z) = F,(Fu(2)) = pi*x exp[2 — & — pa exp[l — z]]
Since z # 0, we have
x+ pxexpll —x] = 2(1 4 log(n)).

This equation is solved by the fixed point z = 1+ log(u), but it also has two other
solutions for p > e giving a period 2-cycle, which is stable until ; =~ 4.6, so we can

choose, for example, p = 3 or p = 4.

Mathematical Institute, University of Oxford Page 9 of 13
Radek Erban: erban@maths.ox.ac.uk



B5.6 Nonlinear Dynamics, Bifurcations and Chaos: Sheet 2 — HT 2024

(e) To plot the bifurcation diagram, we can visualize the information derived in parts

(c) and (d), and continue numerically:

8

(@)
|,
|

or we can numerically compute the whole bifurcation diagram:

8
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Section C: Problem 7

7. Let xp € [-1,1] and F':

1,1 — [ L 1]
Define sequence zj € [—1,1]

k= .., iteratively by
gy = F(xy).
(a) Let F(x) =2z*—1, i.e. we have
Tpa1 = 2:1:% — 1.
(i) Find maxima and minima of F' in interval [—1, 1] and
verify that F'([-1,1]) C [-1,1].

(i) Let h(y) = cos(my) and define function G : [0,1] — [0,1] by G =h'o Foh.
Find G(y) = h 1 (F(h(y))) for y € [0, 1] as a piecewise defined function.

(iii) Define the sequence y; € [0,1], & = 0,1,2,..., iteratively by ypr1 = G(yx) -

Find a relation between x; and y.

(iv) Find the invariant distribution p(x), defined for x € [—1, 1], and satisfying:
If the random variable X is distributed according to p(z), then the random
variable F'(X) is also distributed according to p(x).

(v) Write a computer code which plots a histogram of first 10° points in the orbit
of xg = 0.7 obtained by xx,1 = F(zy). Plot the invariant distribution p(z)

(obtained in part (iv)) in the same figure for comparison.
(b) Let F(x) = z(4z* — 3), i.e. we have

Tpp1 = oy (4af — 3).

Answer questions (i), (ii), (iii), (iv) and (v) for this map.

(c) Let F(z) = 8z2(2* — 1) + 1, i.e. we have
Ty =875 (27 — 1)+ 1.
Answer questions (i), (ii), (iii), (iv) and (v) for this map.
Solution:

(a) Let F(x) = 22? — 1. Then F'(z) = 4x.

(i) Since F'(z) = 4z, the minimum is at = 0 and is equal to -1. The max-
ima are at the boundaries of the interval [—1,1] and F(£1) = 1. Therefore,
F(-1,1]) € [-1,1].
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(ii) Since h(y) = cos(my) for y € [0,1], we have h™!(z) = (arccosz)/w for z €
[—1, 1], which implies
1
G(y) = h Y (F(h(y))) = ! arccos (2 cos®(my) — 1) = — arccos (cos(2my)) .
T 7r

Since arccos : [—1,1] — [0, 7], we conclude

2y for y€[0,1/2]
2(1—y) for ye[l/2,1].

(iii) Let 2o = h(yo). Then, using G = h™' o F o h, we have

yo = h'(xo)
vy = Gyo) = h(F(h(y))) = b~ (F(x0)) = b~} (1)
) =h" (F(h(y))) = h™ ' (F(x1)) = b (22)

v = G

In particular, we have y, = h~!(z;) by induction.

(iv) The invariant distribution is

1

p(z) = A (7)

(v) The blue histogram of first 10° points in the orbit of zyp = 0.7 compared with

the invariant distribution (red line) given by formula (7):

A =

S m histogram zj,; = 2 a:i —1

(b) Let F(z) = z(42* — 3). Then F'(z) = 122> — 3 and F has maxima at x = —1/2
and x = 1 where F/(—1/2) = F(1) = 1 and minima at x = —1 and x = 1/2 where
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F(—1) = F(1/2) = —1. Using cos(3z) = 4 cos®(z) — 3 cos(z), we get

3y for y€[0,1/3]
Gly) =123y for yecl1/3,2/3]
3y—2 for ye[2/3,1].

The invariant distribution is again given by (7) and the histogram is:

3 —1?(96‘)27“/%7332

= m histogram x;,1 = xj (4 x% —3)

(c) Let F(z) = 82%(x* — 1) + 1. The invariant distribution is again given by (7) and

the histogram is:

3] —pla)= —
p) = ——ms
— m histogram x;1 = 87 (x5 — 1) + 1
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