Prof. Louis-Pierre Arguin
A bit about me: Month physics . Stat Mech . Number theory
Expect that students have diverse backgrounds.
Moth Phy Data Sciences
Math Phys RMT Data Sciences
Combinatorics Number Theory
Some technicalities about the class
· 4 PS. (Part B sheet 1,3 graded)
· 4 classes: Week 3, 5, 7 and 1 of TT
· Exam June.
· Following Rof. Keating's Lecture Notes But will bring a different perspective

Welcome to C7.7 RMT.

Why random matrices?
A matrix represents a lihear operator
$M: \mathbb{R}^m \longrightarrow \mathbb{R}^n$
x -> Mx s.t. M (apt+bux) = a Mx+bMy
So in effect we are studying random linear operators between finite-dim. vector spaces
Such operators are ubiquitous:
(1) $Ax = b$ Linear equs
(a) Quantum Mechanics
Hamiltonian WE L2(Rd) Hamiltonian
(3) Dynamics $\frac{dx(e)}{dt} = Mx(e)$
(4) Principal Component Analysis Dataschunas Machine learning
(5) Random networks
(6) Number theory
Why random? For large systems, we might expect the operator to be "typical"
might expect the operator to be "typical"

Figure 1.1. Slow neutron resonance cross-sections on thorium 232 and uranium 238 nuclei. Reprinted with permission from The American Physical Society, Rahn et al., Neutron resonance spectroscopy, X, *Phys. Rev. C* 6, 1854–1869 (1972).

(Mehta)

· H Hermitian so eigenvalues on real

Take
$$H_{ij} \sim W(0,1)$$
 r.v. $H_{ij} = H_{ij}$ $H_{ij} \sim W(0,2) \left(\frac{M+M^{\dagger}}{2} \right)$

(2) Statistics: Wishert 1928.

Consider X⁽¹⁾ a multivariate Granssian n.v.

$$X^{(1)} = (X^{(1)}, ..., X^{(n)})$$
 much obvariance $W(0, Z)$
Take in \overline{MD} capies $X^{(1)}X^{(2)}$... $X^{(n)}$

Then construct
$$X = \begin{pmatrix} \chi^{(a)} & \dots & \chi^{(n)} \end{pmatrix}$$

pan matrix.

Consider $M = \frac{1}{n} XX^T$ pxp matrix.

This is a sample covariance matrix since.

 $M_{i,j} = \frac{1}{r} \sum_{K} X_{i,K} X_{j,K}$ $X_{i,K} X_{j,K} X$

Estimator for Ii.

Probability Framework To inodel a random matrix, we use the stendard prob framework $(\Omega,\mathcal{F},\mathcal{P})$ Sample space (Collection of events 3.7. P(A) A = 52 is well obtained. A random variable X is a function w ⊢s X(w) $\{\omega: X(\omega) \in (a,b]\} \in \mathcal{F} \vee (a,b] \in \mathbb{R}.$ The distribution of X is the probability on IR or probomerson $P(X \in (9,6]) = \mu_X(c_{6})$ Ex.: X ~ W(o,1)

A mandom matrix is simply a mide fet or

$$M: \Omega \longrightarrow \mathbb{R}^{m\times n}$$
 or $C^{m\times n}$
 $\omega \mapsto (M_{ij}(\omega))$

Impartent Romarh

RMT is really just multivariate distributions.

A random matrix distribution or ensemble is jus a prob on proxxx.

Examples of distributions/ensumbles

(i) Ginibre: nxn matrix M

So the PDF is $P(M \in B) = \int_{B_{i,j}} \frac{Te^{-x_{i,j}^2/3}}{\sqrt{3n}} dx_{i,j}$

Ahs ont. not Laborague non measure on TR

(ii) GOE (Gaussian Orthogonal Ensemble)
. MT = M Mis symmetric!

Note that thre are now
$$n + n(n-1)$$
 parametes

Density $f(m) = TT = -Mij/3 TT = -Mii/4$

- · Distribution is supported on symmetric matrices.
- · singuler unt Rnxn
- · . bs ant wrt R n(n+1)/2

Important Observation

$$f(M) = \exp\left(-\frac{1}{4} \operatorname{Tr}(M^{2})\right) \quad \text{check} \quad .$$

Why is it called GOE? The distribution is invariant under orthogonal transf.

Lemma: Let OEO(n), OTO=I and Ma GOE methix.

Then OMOT has some distribution does M.

$$P(OMOT \in B)$$

$$= \int_{Norm} e^{-\frac{1}{4}Tr X^{2}} dX$$

$$OBO$$

Change of variable Y = OTXO Linear

44

Tr
$$M^2 = \sum_{i,k} M_{ik}^2 = \|M\|^2$$
 · Hikert - Sch midt nam!
(M^2) = $\sum_{i,k} M_{ik} M_{ki} = \sum_{k} M_{ik}^2$ · Or Euclidean nam.

But
$$||OMOT||^2 = ||M||^3$$
 is analy so the volume - element is present

(iii) GUE

This is similar to GOE but for Hernitian matrices

Take
$$M s.t. M^{\dagger} = \overline{M}^{\top} = M$$

•
$$M_{ii} \sim W(o,i)$$
 M_{*M}^{\dagger}

Now the distribution of M has

$$N + 2\left(n\frac{(n-1)}{2}\right) = n^2$$
 free real parameters.

As before, the distribution is invariant under unitary transformation Lamma: UMU has same distribution as M Class

(iv) Wishart Matrices (Sample Covariance Matrix)

X"~ WO(Z). as above.

$$\mathcal{P}\left(X^{2}\mathcal{B}\right) = \int_{\mathcal{R}} \frac{e^{-\chi^{2}\Sigma^{4}\chi_{\lambda}}}{(2\pi)^{3/3}} dx$$

A Wishort matrix is a matrix of the form $M = \frac{1}{n} \times X^{T} \quad \text{where } X \text{ is as above}$

Note that this is a non-linear transformation of the X_{ij} . But we can compute the PDF $P(M \in B) = \int_{B} f(M) dM$

Example:
$$p=1$$
 $n=1$ $M=X^2$ $X \sim W(o,i)$ say
$$P(M \le X) = P(X^2 \le X) = P(-\sqrt{X} \le X \le \sqrt{X})$$

$$= 2 \int_0^{\sqrt{X}} e^{-\frac{Y}{2}} dy$$
So PDF is $\frac{\pi}{2} = \frac{1}{\sqrt{X}} e^{-\frac{X}{2}} = \frac{1}{\sqrt{X}} e^{-\frac{X}{2}}$

$$f(M) = \frac{1}{2^{np/2} \Gamma_p(\frac{n}{2}) (\det \Sigma)^{n/2}} (\det M)^{(n-p-1)/2} \exp \left[-\frac{1}{2} \text{Tr}(\Sigma^{-1} M) \right]$$

to Lebesgue measure on the cone of symmetric positive definite matrices.

$$\Gamma_p(\frac{n}{2}) = \pi^{p(p-1)/4} \prod_{j=1}^p \Gamma\left(\frac{n}{2} - \frac{j-1}{2}\right).$$

(V) Rendom Rotations

$$M = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$
 pick θ unifor $[0,\pi]$.

This is like sampling from SO(2) random rotations.

More generally we can sample unif. from O(W) any compact Lie youp.

HAAR MEASURE