Welcome to C7.7 RMT.
Prof. Louis-Pierre Arguing
A bit about me: Math physics

- Stat Mech
- Number theory

Expect that students have diverse backgrounds.

Math Phys

Combinatorics

Data Scienus

Number Theory
Same technicalities about the class

- 4 PS. (Part B shut 1,3 graded)
- 4 classes: week $3,5,7$ and 1 of π
- Exam June.
- Following Raf. Keating's Lecture Notes BUT will bring o different perspective
why mandan matrices?
A matrix ${ }^{M}$ represents a linear operator

$$
\begin{aligned}
M: \quad \mathbb{R}^{m} & \longrightarrow \mathbb{R}^{n} \\
x & \longmapsto M x \quad \text { sit. } \begin{aligned}
& M(a x+b y) \\
&=a M x+b M y
\end{aligned}
\end{aligned}
$$

So in effect we are studying randan linear peratas between finite-dim. vector spaces
Such operators are ubiquitous:
(1) $A x=b \quad$ Linear equs
(2) Quantum Mechanics

$$
\begin{aligned}
& H \\
& \text { Hamiltonian }
\end{aligned} \quad \psi \in L^{2}\left(\mathbb{R}^{d}\right)
$$

(3) Dynamics $\frac{d x(t)}{d t}=M x(t)$
(4) Principal Component Analysis Machine learning
(5) Randan networks
(6) Number theory

Why randan? For large syotems, we might expect the operator to be "typical"
(1)

Figure 1.1. Slow neutron resonance cross-sections on thorium 232 and uranium 238 nuclei spectroscopy, X, Phys. Rev. C 6, 1854-1869 (1972).

Excitation erearies of a nucleus of U_{238}
(eigenvalues)
Wigner 1950's: $H=\left(H_{i j}\right)_{i \text { isis }} n$ large
H Hermitian so eigenvalues ore real
Take $\cdot H_{i j} \sim \underline{W}(0,1)^{\text {r.V. }} i<j$ III

- $H_{j i}=\overline{H_{i j}}$
- $H_{i i} \approx W^{(0,2)}\left(\frac{M+M^{t}}{2}\right)$
(2) Statistics: Wisher 1928.

Consider $X^{(1)}$ a multivariate Gorussian nev.
$X^{(n)}=\left(X_{1}^{(1)}, \ldots, X_{p}^{(1)}\right)$ man ocavaisince $W(0, \Sigma)$
Take n ID copies $X^{(n)} X^{(0)} \ldots X^{(n)}$
Then construct $X=\left(\begin{array}{ccc}x^{(a)} & \ldots & X^{(n)} \\ 1 & & 1\end{array}\right) \quad$ pen matrix.

Consider $\quad M=\frac{1}{n} X X^{\top} \quad$ pxpmatrix.
This is a sample covariance matrix she e.

$$
M_{i j}=\frac{1}{n} \sum_{k} X_{i k} X_{i k}
$$

Estimator for $\sum_{i j}$.

Probability Framewark
To imodel a randon matrix, we use the standed prod framework

sumpe spac σ-dylyera ccollection de enents s.f. P(A) $A \subseteq \Omega$ is well dified.
Hrasuckued
A random voriable X is a function

$$
\Omega \rightarrow \mathbb{R}
$$

$\omega \longmapsto X(\omega)$
s.t. $\{\omega: X(\omega) \in(a, b]\} \in \mathcal{F} \quad \forall(a, b] \leq \mathbb{R}$.

The distribution of X is the poloability on stoent \mathbb{R}

$$
\left.P(X \in(a, b])=\mu_{X}(c a, b]\right)
$$

Ex:: $\quad X \sim W(0,1)$

$$
P(x \in B)=\int_{B} \underbrace{e_{\text {or density }}^{-y^{2} / 2}}_{P D F} d y
$$

N.B.: $\quad(\mathbb{R}, B(\mathbb{R}), \mu)$ is the correct poobe. space, smallest σ-algebora containing $(a, b]^{\prime} s$,

A randan matrix is simply a mole fat a

$$
\text { M: } \quad \Omega \rightarrow \mathbb{R}_{\omega}^{m \times n} \longmapsto\left(M_{i j}(\omega)\right)^{a r} \mathbb{C}^{m \times n}
$$

Impatant Rameorh
RMT is really just multivariate distribution!
A randan matrix distribution or ensemble is jus a prob on Rm xn.

Examples of distributions/ensendles
(i) Ginibre: $n \times n$ matrix M

$$
\begin{aligned}
& M_{i j} \propto W(0,1) \\
& M=\left(\begin{array}{lll}
M_{11} & & M_{i j} \\
& & \\
\mu_{n n}
\end{array}\right)
\end{aligned}
$$

So the PDF is

$$
P(M \in B)=\int_{B} \prod_{i, j} \frac{e^{-x_{i j}^{2} / 3}}{\sqrt{2 \pi}} d x_{i j} \quad \text { Abs ant. }
$$

(ii) GOE (Gaussian Orthogonal Ensemble) - $M^{\top}=M \quad M$ is symmetric!

- $M_{i j} \sim W(a 1) \quad i c j$
$M_{i j} \sim N(0,2) \quad i=j \quad \frac{M+M^{\top}}{\sqrt{2}} \quad$ symmetrize.

Note that there ore nam $n+\frac{n(n-1)}{\partial}$ parametus

$$
\text { Density } f(m)=\prod_{i<j} \frac{e^{-m_{i j}^{2} / \partial}}{\sqrt{2 \pi}} \prod_{i} \frac{e^{-m_{i i}^{2} / 4}}{\sqrt{2 \pi}}
$$

- Distribution is supported on symmetric madras.
- singales crt $\mathbb{R}^{n \times n}$
abs cont wort $\mathbb{R}^{n(n+1) / g}$

Important Ohsemation

$$
f(M)=\frac{\exp \left(-\frac{1}{4} \operatorname{Tr}\left(M^{2}\right)\right)}{(2 \pi)^{n / 2}(2 \pi)^{n(n-1) / 2}} \quad \text { check! }
$$

Why is it called $G O E$? The distribution is incoriant under artheganal Lemma: Let $O \in \theta(n), \theta^{\top} \theta=I$ and $M_{a} G O E$ manic. Then $O M O^{\top}$ has same distribution dos M.

$$
\begin{aligned}
& P\left(O M O^{\top} \in B\right) \\
= & \int_{O_{B}^{T} O} \frac{e^{-\frac{1}{4} T r X^{2}}}{\text { Norm }} d x
\end{aligned}
$$

Change of variable $\quad Y=O^{\top} X O \quad$ Linear

$$
=\int_{B} e \quad d Y \quad \begin{aligned}
& \text { Band } \\
& : \begin{array}{l}
\text { Jacobin } \\
\text { Density }
\end{array}
\end{aligned}
$$

Band B
Density: $\operatorname{Tr}\left(\left(O X O^{\top}\right)^{2}\right)=\operatorname{Tr} X^{2}$ since $\operatorname{Tr} A B=\operatorname{Tr} B A$
Jacobin: we will have to do this later bat here just deserve that.

$$
\begin{aligned}
\operatorname{Tr} M^{2}=\sum_{i, k} M_{i k}^{2}=\|M\|^{2} \quad & \text {. Hitbert-Schmilt nam! } \\
\left(M_{i j}^{2}\right)_{i j} \sum_{k} M_{i k} M_{k i}=\sum_{k} M_{i k}^{2} & \text { Or Euclidean norm. }
\end{aligned}
$$

But $\left\|O M \theta^{\top}\right\|^{0}=\|M\|^{2}$ isometry so the volume-elanent is prasual
(iii) GUE

This is similar to GOE bout for Hermitian matrices
Take M sit. $\cdot M^{t}=\bar{M}^{\top}=M$

$$
\begin{aligned}
& \text {. } M_{i j} \sim W_{\mathbb{C}}(0,1)=\frac{1}{\sqrt{2}} Z_{1}+\frac{i \not \mathbb{Z}_{2}}{\sqrt{2}} \quad V_{(0,1)} \\
& \text { - } M_{i i} \sim W(0,1) \quad \frac{M+M^{+}}{\sqrt{2}}
\end{aligned}
$$

Now the distribution of M has

$$
n+2\left(n \frac{(n-1)}{2}\right)=n^{2} \quad \text { free real parameters. }
$$

PDF: $\quad \prod_{i} \frac{e^{-x_{i i}^{2} / \partial}}{\sqrt{2 \pi}} \prod_{i<j} \frac{e^{-x_{i j}^{2}} e^{-y_{i j}^{2}}}{(\pi)^{y_{L}}}=\exp \left(-\frac{\operatorname{Tr} M^{2}}{2}\right)$

Nov $\quad \operatorname{Tr}\left(M^{2}\right)=\sum_{i} \sum_{k} M_{i k} M_{k i}=\sum_{i} \sum_{k} M_{i k} \overline{M_{i k}}=\sum_{i, k}\left|M_{i k}\right|^{2}=\sum_{i} M_{i}^{2}+2 \sum_{K_{j}} R_{2} M_{i i}^{0}+I_{m} M_{i j}=$
As before, the distribution is invariant under unitary transformation Lemma: $U M U^{+}$has samedistribution as M Clock

Gaussian Ensembles

$$
\begin{aligned}
& \text { - GeE }<e^{-\operatorname{TTM}_{r} M^{2} / 4} \\
& \text {. GUt } \alpha e^{-\operatorname{Tr} M^{2} / \partial} \\
& \text { - sSE } \alpha e^{-\operatorname{Tr} M^{2}} \\
& \text {-GeE } \alpha \quad e^{-\beta T r M^{2} / 4}
\end{aligned}
$$

$M_{i j}$ takes value in Quaternions It
(iv) Wishart Matrices (Sample Couriane Matrix)
$X^{(1)} \sim W(0, \Sigma)$. as above.

$$
P\left(x^{\prime \prime \prime} \in B\right)=\int_{B} \frac{e^{-x^{\top} \Sigma^{-1 / x} / 2}}{(2 \pi)^{n / 2} d a t \Sigma} d x
$$

A Wishort matrix is a matrix of the form $M=\frac{1}{n} X X^{\top} \quad$ where X is as above

Note that this is a nor linear transformation of the $X_{i j}$. But we can compute the PDF

$$
P(M \in B)=\int_{B} f(M) d M
$$

Example: $\quad p=1 \quad n=1 \quad M=X^{2} \quad X \sim V(0,1)$ say

$$
\begin{aligned}
P(M \leqslant x)=P\left(x^{2} \leqslant x\right) & =P(-\sqrt{x} \leqslant x \leqslant \sqrt{x}) \\
& =2 \int_{0}^{\sqrt{x}} \frac{e-y^{2} / 3}{\sqrt{2 \sigma}} d y
\end{aligned}
$$

so PDF is $\frac{2}{2} \frac{1}{x^{1 / 2}} \frac{e^{-x / 2}}{\sqrt{2 \pi}}=\frac{1}{\sqrt{2 \pi} x^{1 / 2}} e^{-x / 2}$

$$
f(M)=\frac{1}{2^{n p / 2} \Gamma_{p}\left(\frac{n}{2}\right)(\operatorname{det} \Sigma)^{n / 2}}(\operatorname{det} M)^{(n-p-1) / 2} \exp \left[-\frac{1}{2} \operatorname{Tr}\left(\Sigma^{-1} M\right)\right]
$$

;o Lebesgue measure on the cone of symmetric positive definite matrices.

$$
\Gamma_{p}\left(\frac{n}{2}\right)=\pi^{p(p-1) / 4} \prod_{j=1}^{p} \Gamma\left(\frac{n}{2}-\frac{j-1}{2}\right)
$$

(V) Randan Rotations

$$
M=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos t
\end{array}\right) \quad \text { pick } \theta \text { unison }[0, \pi \pi] \text {. }
$$

This is like sampling from $S O(2)$ radon rotations.

HaAR measure
cue $U(n)$
$C O E \quad \theta(n)$
CBS ? ?

