Geometric Group Theory

Cornelia Druțu

University of Oxford

Part C course HT 2024

Cornelia Druțu (University of Oxford)

Geometric Group Theory

Part C course HT 2024 1 / 19

Construction of a free group

Given n, we want to construct "the largest infinite group" generated by n elements.

This must be a group with no prescribed relation ("free").

Take $X \neq \emptyset$. Its elements = letters/symbols. Take inverse letters/symbols $X^{-1} = \{a^{-1} \mid a \in X\}$. We call $\mathcal{A} = X \sqcup X^{-1}$ an alphabet. A word w in \mathcal{A} is a finite (possibly empty) string of letters in \mathcal{A}

$$a_{i_1}^{\epsilon_1}a_{i_2}^{\epsilon_2}\cdots a_{i_k}^{\epsilon_k},$$

where $a_i \in X$, $\epsilon_i = \pm 1$. The length of w is k. We use the notation 1 for the empty word (the word with no letters). We say it has length 0.

 X^* = the set of words in the alphabet $\mathcal{A} = X \sqcup X^{-1}$, empty word included.

Construction of a free group 2

A word w is reduced if it contains no pair of consecutive letters of the form aa^{-1} or $a^{-1}a$.

F(X) = the set of reduced words in A, empty word included.

A reduction of a word w is the deletion of a pair of consecutive letters of the form aa^{-1} or $a^{-1}a$.

An insertion is the opposite operation: insert a pair of consecutive letters of the form aa^{-1} or $a^{-1}a$.

We define an equivalence relation on X^* by $w \sim w'$ if w' can be obtained from w by a finite sequence of reductions and insertions.

Proposition

 $\forall w \in X^*$, there exists a unique $u \in F(X)$ such that $w \sim u$.

Construction of a free group, Ping-pong lemma

Definition

The free group over X is the set F(X) endowed with the product * defined by: w * w' is the unique reduced word equivalent to the word ww'. The unit is the empty word.

Example

Take $r \in \mathbb{R}$, $r \geq 2$,

$$g_1=\left(egin{array}{cc} 1 & r \ 0 & 1 \end{array}
ight)$$
 and $g_2=\left(egin{array}{cc} 1 & 0 \ r & 1 \end{array}
ight).$

 $SL(2,\mathbb{R})$ acts by isometries on $\mathbb{H}^2=\{z\in\mathbb{C}:\mathit{Im}(z)>0\}$, via

$$g \cdot z = rac{az+b}{cz+d}, \qquad g = \left(egin{array}{cc} a & b \\ c & d \end{array}
ight) \in SL(2,\mathbb{R}).$$

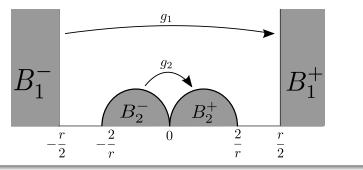
Geometric Group Theory

Why is $\langle g_1, g_2 \rangle$ free 1

Statement: We have that $\langle g_1, g_2 \rangle \leq SL(2, \mathbb{R})$ is isomorphic to $F(\{g_1, g_2\})$ Proof

$$g_1(z) = z + r, \ g_2(z) = \frac{z}{rz+1}.$$

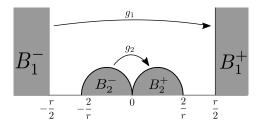
$$I(z) = -\frac{1}{z} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} z, \ g_2 = I \circ g_1^{-1} \circ I^{-1}.$$



Cornelia Druțu (University of Oxford)

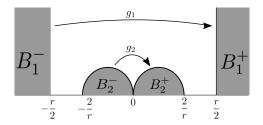
Geometric Group Theory

Why is $\langle g_1,g_2 angle$ free 2



$$\begin{array}{l} g_1(\mathbb{H}^2 \setminus B_1^-) \subset B_1^+, \ g_1^{-1}(\mathbb{H}^2 \setminus B_1^+) \subset B_1^-.\\ g_2 \text{ does the same for } B_2^- = I(B_1^+), \ B_2^+ = I(B_1^-).\\ \text{Let } w = a_1...a_k, \ a_i \in \{g_1^\pm, g_2^\pm\}, \ w \text{ in } F(\{g_1^\pm, g_2^\pm\}) \setminus \{1\}.\\ \text{Test } 1: \ \forall z \in \mathbb{H}^2 \setminus \bigcup_{i=1}^2 B_i^\pm, \ w(z) \in \bigcup_{i=1}^2 B_i^\pm. \text{ And so } w(z) \neq z. \end{array}$$

Why is $\langle g_1, g_2 \rangle$ free 3



Test 2: Take $M = B_1^- \cup B_1^+$, $N = B_2^- \cup B_2^+$. Then $M \cap N = \emptyset$ and $g_1^n(N) \subset M$, $g_2^n(M) \subset N$.

Ping-Pong Lemma: Let G be a group acting on a set S and $a, b \in G$. If $\exists A, B$ non empty disjoint subsets of S s. t. $a^n B \subseteq A$ and $b^n A \subseteq B$, $\forall n \in \mathbb{Z} \setminus \{0\}$ then $\langle \{a, b\} \rangle \simeq F(\{a, b\})$. (Problem Sheet 1, Ex. 3).

Free groups are the largest

Proposition (Universal Property of free groups)

Let X be a set and let G be a group. A map $\varphi : X \to G$ has a unique extension

$$\Phi:F(X)
ightarrow G$$

that is a group homomorphism.

Proof

- φ can be extended to a map on $X \cup X^{-1}$ by $\varphi(a^{-1}) = \varphi(a)^{-1}$.
- For every reduced word $w = a_1 \cdots a_n$ in F = F(X) define

$$\Phi(a_1\cdots a_n)=\varphi(a_1)\cdots\varphi(a_n).$$

• Set $\Phi(1_F) := 1_G$, the identity element of G.

Geometric Group Theory

Free groups are the largest

Uniqueness:

Let $\Psi : F(X) \to G$ be a homomorphism such that $\Psi(x) = \varphi(x)$ for every $x \in X$.

Then for every reduced word $w = a_1 \cdots a_n$ in F(X),

$$\Psi(w) = \Psi(a_1) \cdots \Psi(a_n) = \varphi(a_1) \cdots \varphi(a_n) = \Phi(w).$$

Terminology: If $\varphi(X) = Y$ is such that Φ is an injective homomorphism, $\Phi(F(X)) = H$, we say that $Y \subset G$ generates a free subgroup or that Y freely generates H.

Example

$$\{g_1,g_2\}$$
 freely generate $\langle g_1,g_2
angle \leq {\it SL}(2,\mathbb{R}).$

Free groups are the largest

Corollary

Every group $G = \langle X \rangle$, #X = n, is a quotient of a free group F(X).

Proof.

 $X \hookrightarrow G$ extends to $\Phi : F(X) \to G$. Since $X \subset Im(\Phi)$, we have that

 $G \leq Im(\Phi) \leq G$

and so Φ is onto.

Rank of a free group

Corollary

Consider two groups G and H, $G = \langle X \rangle$.

- Every homomorphism $\phi : G \to H$ is uniquely determined by $\phi|_X : X \to H$. In particular there are at most $|H|^{|X|}$ homomorphisms.
- **2** If moreover G = F(X) then there are exactly $|H|^{|X|}$ homomorphisms.

Proof.

- The map Hom(G, H) → Map(X, H), φ ↦ φ |_X is injective. NB. It is not in general onto.
- So For G = F(X) it is onto (by the Universal Property).

Rank of a free group

Proposition

 $F(X) \simeq F(Y) \iff |X| = |Y|$ (X and Y can have any cardinality).

Proof.

 \Leftarrow : Obvious. A bijection $f: X \to Y$ extends to an isomorphism.

$$\Rightarrow: \text{ If } |X| = \infty, \text{ then } |X| = |F(X)| = |F(Y)| = |Y|.$$

If $|X| < \infty$, then $|\text{Hom}(F(X), \mathbb{Z}_2)| = 2^{|X|}$. Now, $F(X) \simeq F(Y)$ implies that there exists an isomorphism $\phi : F(X) \to F(Y)$. This induces a bijection

$$\operatorname{Hom}(F(Y),\mathbb{Z}_2)\to\operatorname{Hom}(F(X),\mathbb{Z}_2)\quad f\mapsto f\circ\phi$$

Hence $2^{|X|} = 2^{|Y|}$. So Y must also be finite and |X| = |Y|.

Rank of a free group

Proposition

The rank of F(X) is |X|.

Proof.

Suppose that $F(X) = \langle Y \rangle$, |Y| < |X|. Then

$$2^{|X|} = |\operatorname{Hom}(F(X), \mathbb{Z}_2)| \le |\operatorname{Hom}(Y, \mathbb{Z}_2)| = 2^{|Y|}$$

Hence, $|X| \leq |Y|$ and we have a contradiction.

We begin with a loose formulation of some algorithmic problems (to be made more precise).

Word problem: Given a group $G = \langle X \rangle$, describe an algorithm or construct a Turing machine that would recognise when a word $w \in X^*$ satisfies w = 1 in G.

Example

G = F(X). Given $w \in X^*$, reduce w to $u \in F(X)$. If $u \neq w_{\emptyset}$ then $w \neq 1$ in G.

Conjugacy problem: Given $G = \langle X \rangle$, describe an algorithm that can recognise when $w, w' \in X^*$ are conjugate in G, i.e. there exists $g \in G$ such that $w = gw'g^{-1}$ in G.

Example: G = F(X). Let $w, w' \in X^*$ and let $u, v \in F(X)$ be such that $w \sim u, w' \sim v$.

 $u = a_1...a_n \in F(X)$ is cyclically reduced if all its cyclic permutations

 $a_1...a_n$, $a_2...a_na_1$, $a_3...a_na_1a_2$, ..., $a_na_1...a_{n-1}$

are reduced. Equivalently, if $u \neq axa^{-1}$ where $a \in X \sqcup X^{-1}$.

Proposition

- Every $u \in F(X)$ is conjugate to a cyclically reduced word.
- If u, v ∈ F(X) are cyclically reduced then they are conjugate if and only if they are cyclic permutations of each other.

Proof: (1): Take $r \sim gug^{-1}$, $g \in F(X)$, r of minimal length. Then $r \neq axa^{-1}$. (2): $(\Leftarrow) a_2...a_n a_1 = a_1^{-1}(a_1...a_n)a_1$.

Proposition

- Every $u \in F(X)$ is conjugate to a cyclically reduced word.
- If u, v ∈ F(X) are cyclically reduced then they are conjugate if and only if they are cyclic permutations of each other.

(⇒) Take *u* cyclically reduced. We will prove that if *v* is cyclically reduced and $v \sim gug^{-1}$ then *v* is a cyclic permutation of *u*. Argue by contradiction: let $g \in F(X)$ be of minimal length such that $v \sim gug^{-1}$ is not a cyclic permutation of *u*. So $u \sim g^{-1}vg$. First assume $g^{-1}vg$ is reduced. Then $u = g^{-1}vg$ in F(X), contradicting the assumption that *u* was cyclically reduced. So $g^{-1}vg$ is not reduced, i.e. if $g = a_1...a_n$ either $v = xa_1^{-1}$ or $v = a_1x$. In the first case, (the second case is similar) we have

$$g^{-1}vg = a_k^{-1}...a_2^{-1}a_1^{-1}xa_2...a_n$$

By the minimal length assumption on g, $a_1^{-1}x$ is a cyclic permutation of u. Hence, $v = xa_1^{-1}$ is a cyclic permutation of u. Contradiction.

Cornelia Druțu (University of Oxford)

17 / 19

Using the previous proposition it is easy to solve algorithmically the conjugacy problem in F(X):

- Given u, v ∈ F(X) find their conjugates u', v' ∈ F(X) that are cyclically reduced (whenever a is the first letter and a⁻¹ the last, delete both).
- Por u', v' ∈ F(X) cyclically reduced thus found, check if they are cyclic permutations of each other.

The previous proposition solves the conjugacy problem for F(X) and also implies

Corollary

All non-trivial elements in F(X) have infinite order.

Proof.

For all non-trivial $w \in F(X)$, $w = gug^{-1}$, u cyclically reduced and non-trivial. And for all cyclically reduced non-trivial u, u^n is reduced and hence $\neq w_{\emptyset}$.

Corollary

If
$$g, h \in F(X)$$
 are such that $g^k = h^k$ for some k then $g = h$.