
Gödel Incompleteness Theorems: Solutions to sheet 1

Apologies for the lateness of this; I’ve been ill and everything is behind.
I do not people to do formal deductions in a system of first-order logic; I assume people

know about the Completeness Theorem and are not afraid to use it.

A.

1. (Optional: have a go at this if you’ve not seen PA before.) Show that all of the following
can be proved from PA.

(i) Every natural number is either even or odd (i.e. for all n, either there exists m
such that n = 2.m, or there exists m such that n = (2.m)+).

0 = 2.0, so the statement is true for 0.
Suppose that n is either even or odd.
If n is even, then for some m, n = 2.m, so n+ = (2.m)+, so n+ is odd.
If n is odd, then for some m, n = (2.m)+, so n+ = (2.m)++ = (2.m + 0)++ =

((2.m+ 0+)+ = 2.m+ 0++ = 2.m+ 2 = 2.m+, so n+ is even.
Hence n+ is even or odd.
Now by induction, every natural number is either even or odd.
(Further exercise: prove that no natural number is both.)

(ii) Addition is associative.
We prove by induction on k that, for all m and n, (m+ (n+ k)) = ((m+ n) + k).
For k = 0, it is straightforward: (m+ (n+ 0)) = m+ n = (m+ n) + 0.
Now suppose the result true for k. Then m+(n+k+) = m+(n+k)+ = (m+(n+k))+

which is equal, by the inductive hypothesis, to ((m+ n) + k)+ = (m+ n) + k+.

(iii) Addition is commutative. (Hard.)
We first prove by induction on n that 0 + n = n. This is certainly true for n = 0.

Now suppose that 0 + n = n. Then 0 + n+ = (0 + n)+ = n+ as required.
Now we prove by induction on n that for all m, m + n+ = m+ + n. For n = 0, we

prove this by induction on m: for m = 0, we have 0 + 0+ = 0+ + 0 by the previous result.
If m + 0+ = m+ + 0, then m+ + 0+ = (m+ + 0)+ = (0 +m+)+ by the previous result,
which is equal to 0 +m++, which is equal to m++ + 0 by the previous result.

Now we prove that if, for all m, m + n = n +m, then for all m, m+ n+ = n+ +m.
For, m + n+ = (m + n)+ = (n + m)+ by the inductive hypothesis, and this is equal to
n+m+, which is equal to n+ +m by the previous result.

(iv) Multiplication is associative.
We prove by induction on k that for all m and n, (m.n).k = m.(n.k).
For k = 0, (m.n).0 = 0 = m.0 = m.(n.0).
If (m.n).k = m.(n.k), then (m.n).k+ = (m.n).k+(m.n) = m.(n.k)+m.n = m.(n.k+n)

by distributivity on the left, which I should have put first, which is equal to m.(n.k+).

(v) Multiplication is commutative. (Harder.)
We prove first that for all m, 0.m = 0. For, 0.0 = 0; and if 0.m = 0, then 0.m+ =

0.m+ 0 = 0 + 0 = 0.
Now for each m, we prove by induction on n that m+.n = m.n+ n.



For n = 0, m+.0 = 0 = 0 + 0 = m.0 + 0.
Now suppose m+.n = m.n + n. Then m+.n+ = m+.n + m+ = (m.n + n) + m+ =

m.n+(n+m+) since addition is associative, and this is equal to m.n+(n++m) by a lemma
proved in part (iii), and this is equal to m.n + (m + n+) since addition is commutative,
and this is equal by associativity of addition to (m.n+m) + n+, which is in turn equal to
m.n+ + n+ as required.

Now we prove by induction on n that for all m, m.n = n.m.
If n = 0, then m.0 = 0 = 0.m as proved above.
For the inductive step, assume that m.n = n.m for all m. Then m.n+ = (m.n)+m =

n.m+m = n+.m by the previous result.
Hence addition is commutative.

(vi) Multiplication is distributive over addition.
We prove by induction on k that for all m and n, m.(n+ k) = m.n+m.k.
For k = 0, we have m.(n+ 0) = m.n = m.n + 0 = m.n+m.0.
For the inductive step, m.(n+k+) = m.(n+k)+ = m.(n+k)+m = (m.n+m.k)+m =

m.n+ (m.k +m) by associativity of additon, which is equal to m.n+m.k+ as required.

2. Describe informally a method by which it can be decided whether an expression of LE

is a term, a formula, or neither.

3. (i) Write down a true sentence in LE containing exactly eight symbols, and write
down its Gödel number according to the system given in lectures (write it in base 13 if you
prefer).

For example, 0 ≤ 0
+++++

; Gödel number (1B100000)13.

(ii) Write down a true sentence in the language LE containing ¬, → and ∀ that is
not logically valid (ie. that is not true in every logical structure whatever), and give an
informal argument to show that it is true.

For example, ∀v¬∀v′ (v ≤ v′ → v = v′), with the meaning “Every point has some
other point strictly to the right”, which cannot be true in any finite partially ordered set.

B.

4. (i) Show that the relation “x divides y” can be expressed in LE .
∃k ≤ y (y = x.k) which (even better) is Σ0.

(ii) Show that the property of being a power of 7 can be expressed in LE . Can it be
expressed without using exponentiation?

7 divides n, and for all k ≤ n, either k = 1, or 7 divides k. (This is Σ0.)

(iii) Show that if A is a set and g is a (unary) function, and both A and g are definable
in LE , then g

−1(A) is also definable in LE .
If φ(x) expresses “x ∈ A” and ψ(x, y) expresses “g(x) = y”, then ∃y (ψ(x, y) ∧ φ(y))

expresses “x ∈ g−1(A)”.

5. (i) Show that for any formula F (vi, vj),

PA ⊢ (∃vj ∃vi F (vi, vj) ↔ ∃vk (∃vj ≤ vk)(∃vi ≤ vk)F (vi, vj)).



We only need the axioms for a total order. We show that the result is true in any
totally ordered set, and then note that total orders are first-order definable in our language.

In any total order, if ∃vj ∃vi F (vi, vj) is true, then suppose this is witnessed by elements
aj and ai of the structure, and let ak be whichever is greater. Then ak, aj and ai witness
the truth of ∃vk ∃vj ≤ vk ∃vi ≤ vkF (vi, vj).

The other way round is similar but easier.

(ii) Show that for any formula F (vi, vj),

PA ⊢ ((∀vj ≤ vk)∃vi F (vi, vj) ↔ ∃vr(∀vj ≤ vk)(∃vi ≤ vr)F (vi, vj)).

Suppose that N is a model of PA, and that for some ak ∈ N, N � (∀vj ≤ ak) ∃vi F (vi, vj).
We may prove by induction on n the (first order) statement: there exists m such that

for all k < n, if k ≤ ak also, then there exists vi ≤ m such that F (vi, k) holds.
The base case is vacuous, and for the inductive step, if n > ak then nothing need be

done, while if n ≤ ak, then the value of m appropriate for n + 1 is the maximum of the
value of m appropriate for n and a witness of the statement ∃vi F (vi, n).

Thus N � ∃vr(∀vj ≤ vk)(∃vi ≤ vr)F (vi, vj); for the appropriate value of vr is mn+1.
The reverse implication is easier.

6. (i) Show that the function

p(m,n) = 1

2
(m+ n+ 1)(m+ n) +m

is a pairing function on the natural numbers, that is, it is a bijection from N×N to N; and
show that it is Σ0 (that is, the statement “k = [m,n]” is provably Σ0).

The fact that p(m,n) is one-to-one and onto follows from the fact that
∑

i≤k i =
1

2
(k + 1)k; 1

2
(k + 1)k ≤ p(m,n) < 1

2
(k + 1)k if and only if m + n = k, and then m =

p(m,n)− 1

2
(k + 1)k.

It is clearly Σ0.

(ii) Show that there are two one-place Σ0-functions pl and pr such that pl(p(m,n)) = m

and pr(p(m,n)) = n.
m = pl(p) if and only if ∃n ≤ p 2.p = (m+ n+ 1)(m+ n) +m, and n = pr(p) if and

only if ∃m ≤ p 2.p = (m+ n+ 1)(m+ n) +m; both statements are Σ0.

C.

7. Show that

(i) for n > 0, formulae provably Σn with respect to PA are closed under existential
quantification, and formulae provably Πn with respect to PA are closed under universal
quantification,

By question 5.(i), ∃vi ∃vj φ is equivalent to ∃vk ∃vi ≤ vk ∃vj ≤ vk φ. We now need to
argue that if φ is Πn−1, where n > 0 (for n = 0 it’s obvious) then ∃vi ≤ vk ∃vj ≤ vk φ is
provably Πn−1. But this follows from (an easy adaptation of) question 5.(ii).

(ii) formulae provably equivalent Σn with respect to PA are closed under conjunction
and disjunction, and formulae provably Πn with respect to PA are closed under conjunction
and disjunction,



We first note that if vj is not free in φ(vi), then ∀vi, φ(vi) is provably equivalent to
∀vj φ(vj). So, given two different statements beginning with a quantifier, we can assume
the quantified variables are different or the same as it suits us.

Now ∃vi φ ∨ ∃vi ψ is equivalent to ∃vi (φ ∨ ψ).
∃vi φ ∧ ∃vj ψ is equivalent to ∃vi ∃vj (φ ∧ ψ) if i 6= j.
∀vi φ ∧ ∀vi ψ is equivalent to ∀vi (φ ∧ ψ).
∀vi φ ∧ ∀vj ψ is equivalent to ∀vi ∀vj (φ ∨ ψ) if i 6= j.
We apply the previous part, or 5.(i), to replace two ∃ or two ∀ by one.

(iii) formulae that are provably ∆n with respect to PA are closed under conjunction
and disjunction.

Now obvious.


