Geometric Group Theory

Cornelia Druțu

University of Oxford

Part C course HT 2024

Cornelia Druțu (University of Oxford)

Geometric Group Theory

Part C course HT 2024 1 / 13

How to recognise when two finite presentations give the same group?

Two types of transformations (called Tietze transformations) are relevant.

- (T1) Given $\langle S|R \rangle$ and $r \in \langle \langle R \rangle \rangle$, change the presentation to $\langle S|R \cup \{r\} \rangle$ (or do the inverse operation).
- (T2) Given $\langle S|R\rangle$, a new symbol $a \notin S$ and $w \in F(S)$, change the presentation to $\langle S \cup \{a\}|R \cup \{a^{-1}w\}\rangle$ (or do the inverse operation).

Theorem

Two finite presentations define isomorphic groups if and only if they are related by a finite sequence of Tietze transformations.

Proof: (\Leftarrow) (T1) defines isomorphic groups because $\langle \langle R \rangle \rangle = \langle \langle R \cup \{r\} \rangle \rangle$.

Theorem

Two finite presentations define isomorphic groups if and only if they are related by a finite sequence of Tietze transformations.

Proof continued: For (T2), consider the homomorphisms

$$\iota: F(S) \hookrightarrow F(S \cup \{a\}) \quad \text{(injection)} \\ f: F(S \cup \{a\}) \twoheadrightarrow F(S) \quad f(a) = w \quad \text{(surjection)}$$

Note that $f \circ \iota = id_{F(S)}$. They induce homomorphisms

$$F(S) \xrightarrow{\overline{\iota}} F(S \cup \{a\}) / \langle \langle a^{-1}w \rangle \rangle \xrightarrow{\overline{f}} F(S)$$

with $\overline{f} \circ \overline{\iota} = \operatorname{id}_{F(S)}$. $\overline{\iota}$ is onto, and hence $\overline{\iota}$ and \overline{f} are isomorphisms. Since also $\overline{f}^{-1}(\langle\langle R \rangle\rangle) = \langle\langle R \cup \{a^{-1}w\}\rangle\rangle/\langle\langle a^{-1}w\rangle\rangle$ we have that \overline{f} induces the desired isomorphism.

Cornelia Druţu (University of Oxford)

Theorem

Two finite presentations define isomorphic groups if and only if they are related by a finite sequence of Tietze transformations.

Proof continued:

$$(\Rightarrow)$$
 Let $G_1 = \langle S_1 | R_1 \rangle$, $G_2 = \langle S_2 | R_2 \rangle$. WLOG $S_1 \cap S_2 = \emptyset$.

There exist inverse isomorphisms $\phi : G_1 \to G_2, \psi : G_2 \to G_1. \forall s \in S_1$, choose $w_s \in F(S_2)$ representing $\phi(s)$ in $G_2. \forall t \in S_2$, choose $v_t \in F(S_1)$ representing $\psi(t)$ in G_1 .

Take the two subsets of $F(S_1 \cup S_2)$:

$$U_1 = \{s^{-1}w_s : s \in S_1\}$$
 $U_2 = \{t^{-1}v_t : t \in S_2\}$

Claim: There exist finitely many Tietze transformations from $\langle S_1 | R_1 \rangle$ to $\langle S_1 \cup S_2 | R_1 \cup R_2 \cup U_1 \cup U_2 \rangle$.

Cornelia Druțu (University of Oxford)

Geometric Group Theory

Claim: There exist finitely many Tietze transformations from $\langle S_1 | R_1 \rangle$ to $\langle S_1 \cup S_2 | R_1 \cup R_2 \cup U_1 \cup U_2 \rangle$.

Proof of claim: Use finitely many (T2) to get from $\langle S_1 | R_1 \rangle$ to $\langle S_1 \cup S_2 | R_1 \cup U_2 \rangle$. There exists an isomorphism

 $\rho: \langle S_1 \cup S_2 | R_1 \cup U_2 \rangle \rightarrow \langle S_1 | R_1 \rangle \quad \rho(s) = s, \forall s \in S_1 \quad \rho(t) = v_t, \forall t \in S_2$

Then $\phi \circ \rho : \langle S_1 \cup S_2 | R_1 \cup U_2 \rangle \rightarrow \langle S_2 | R_2 \rangle$ is an isomorphism such that $t \xrightarrow{\rho} v_t \xrightarrow{\phi} t$. Also, $\forall r \in R_2$

 $\phi \circ \rho(\mathbf{r}) = \mathbf{r} \equiv 1 \text{ in } \langle S_2 | R_2 \rangle \Rightarrow \mathbf{r} \in \langle \langle R_1 \cup U_2 \rangle \rangle \Rightarrow R_2 \subseteq \langle \langle R_1 \cup U_2 \rangle \rangle$

Thus $\langle S_1 \cup S_2 | R_1 \cup U_2 \rangle$ is related to $\langle S_1 \cup S_2 | R_1 \cup R_2 \cup U_2 \rangle$ by a sequence of (T1) transformations. Also, $\forall s \in S_1$

$$\phi \circ
ho(s) = w_s(t_1...t_k) \quad \phi \circ
ho(w_s) = \phi \circ
ho(w_s(t_1...t_k)) = w_s(t_1...t_k)$$

Hence, $s^{-1}w_s \in \langle \langle R_1 \cup U_2 \rangle \rangle$, which implies that $U_1 \subseteq \langle \langle R_1 \cup U_2 \rangle \rangle$. So we can apply several (T1) to get $\langle S_1 \cup S_2 | R_1 \cup R_2 \cup U_1 \cup U_2 \rangle$.

Cornelia Druțu (University of Oxford)

5 / 13

Properties of finite presentability

Proposition

- Let G be a group.
 - G finitely presented does not imply that a subgroup is finitely presented or that a quotient is finitely presented.
 - If H is a finite index subgroup of G then G is finitely presented if and only if H is.
 - If N riangleq G is finitely presented and G/N is finitely presented then G is finitely presented.

A proof can be found in the notes.

Graham Higman

Remark

G finitely presented does not imply that a subgroup is finitely presented.

Theorem

Every finitely generated recursively presented group can be embedded as a subgroup of some finitely presented group.

Cornelia Druțu (University of Oxford)

Geometric Group Theory

List of algorithmic problems of M. Dehn

Word problem: Given a finite presentation $G = \langle S | R \rangle$ design an algorithm recognising when $w \in F(S)$ satisfies $w = 1_G$ in G.

Conjugacy problem: Given a finite presentation $G = \langle S | R \rangle$ design an algorithm recognising when $u, v \in F(S)$ represent conjugate elements in G.

Remark

The conjugacy problem implies the word problem.

Isomorphism problem: Given finite presentations $G_i = \langle S_i | R_i \rangle$, i = 1, 2, determine if $G_1 \simeq G_2$.

Triviality problem (a particular case of the isomorphism problem): Given a finite presentation $G = \langle S|R \rangle$ determine if $G \simeq \{1\}$.

Novikov, Boone, Rabin ['56]: All of the above are unsolvable.

Fridman ['60]: There exists a group with solvable word problem, but unsolvable conjugacy problem.

Cornelia Druțu (University of Oxford)

Geometric Group Theory

Word and conjugacy problems

Proposition

If the word problem or conjugacy problem is solvable for $G = \langle S|R \rangle$ then it is solvable for any finite $\langle X|Q \rangle = G$.

Proof.

WP: Given $w \in F(X)$ we run simultaneously 2 procedures:

- List all elements in ⟨⟨Q⟩⟩ (i.e. multiply conjugates q_i^{w_i}, w_i ∈ F(X), q_i ∈ Q and transform into reduced word); check if w is among them. If yes, stop and conclude w = 1.
- List all homomorphisms φ : F(X)/⟨⟨Q⟩⟩ → F(S)/⟨⟨R⟩⟩ (i.e. enumerate all |X|-tuples of words in F(S), then check if each q ∈ Q, rewritten by changing x → w_x, becomes ≡ 1 in F(S)/⟨⟨R⟩⟩). This can be done since the WP for ⟨S|R⟩ is solvable.
 - For each φ, check if φ(w) ≠ 1 in F(S)/⟨⟨R⟩⟩. If yes, stop and conclude w ≠ 1.

Proof continued: CP: Given $w, v \in F(X)$, run the following 2 procedures in parallel:

1 • List all
$$gvg^{-1}w^{-1}$$
 in $F(X)$.

Check if gvg⁻¹w⁻¹ is among the list of elements in ((Q)). If yes, stop and conclude: "v, w conjugate".

2 a List all homomorphisms $\phi : F(X)/\langle\langle Q \rangle\rangle \to F(S)/\langle\langle R \rangle\rangle$.

Check if φ(ν), φ(w) are not conjugate. If yes, stop and conclude:
 "ν, w not conjugate".

Residually finite groups

Idea: Approximate by finite quotients. So we will need enough of those.

Lemma

TFAE

1

$$\bigcap_{H \leq_{f,i} G} H = \{1\}$$

Prove all non-trivial g ∈ G, there exists φ : G → F finite such that φ(g) ≠ 1.

ŀ

So For all $\{g_1, ..., g_n\}$ distinct, there exists $\phi : G \to F$ such that $\phi(g_1), ..., \phi(g_n)$ are distinct. In other words, every finite chunk of the infinite Cayley table of G can be reproduced identically in the Cayley table of a finite quotient.

Residually finite groups

Proof.

The proof is based on the fact that

$$\bigcap_{H \leq_{f,i,G}} H = \bigcap_{N \leq_{f,i,G}} N$$

The implications (3) \Rightarrow (2) \Rightarrow (1) are OK.

And for (1) \Rightarrow (3): $\forall i \neq j$, take $N_{ij} \not\ni g_i g_j^{-1}$ and define

$$N = \bigcap_{i \neq j} N_{ij}$$

and then consider ϕ : $G \rightarrow G/N$.

Residually finite groups

Examples

GL(n, Z) is residually finite. ∀g ≠ id:
If ∃i ≠ j such that |g_{ij}| ≠ 0, take p > |g_{ij}| and reduce mod p.
If ∀i ≠ j, g_{ij} = 0, then ∃ g_{ii} = -1. Reduce mod 3: g_{ii} = 2.

a Any finitely generated $G \leq SL(n, \mathbb{Q})$ (or $GL(n, \mathbb{Q})$) is RF.