Axiomatic Set Theory: Problem sheet 1

Apologies for the lateness of this; I've been ill and everything is behind.

A.

1. Write the following as formulas of LST:

(a)
$$x = \langle y, z \rangle$$
;

In the solutions I will use symbols such as \exists and \land which are not in the language, but for which it is clear how to replace them with symbols that are in the language. I will also sometimes omit brackets, when it clear how to reinsert them.

$$\exists w \exists v \left(w \in x \land v \in x \land \forall u \left(u \in x \leftrightarrow (u = v \lor u = w) \right) \right. \\ \left. \land \left(\forall t (t \in v \leftrightarrow t = y) \land \forall t (t \in w \leftrightarrow (t = y \lor t = z)) \right) \right).$$

(b)
$$x = y \times z$$
;

In this solution, I will use the notation $\langle \cdot, \cdot \rangle$, which we already know how to eliminate, by the previous part.

$$\forall w (w \in x \leftrightarrow \exists a \in y \, \exists b \in z \, w = \langle a, b \rangle).$$

(c)
$$x = y \cup \{y\};$$

$$\forall z \ \big(z \in x \leftrightarrow (z \in y \lor z = y)\big).$$

(d) "x is a successor set";

$$\exists y \in x \, \forall z \, (\neg z \in y) \land \forall y \in x \, \exists z \in x \, \big(z = y \cup \{y\}\big).$$

(e)
$$x = \omega$$
.

In this solution, I will use the notation $\mathbf{S}(x)$ to refer to a formula expressing that x is a successor set.

$$\mathbf{S}(x) \land \forall y \, (\mathbf{S}(y) \to x \subseteq y).$$

I leave it as an exercise how to express " $x \subseteq y$ ".

Let x and y be sets.

By the Axiom of Infinity, there is a successor set. It follows that the two-element set $2 = \{\emptyset, \{\emptyset\}\}$ exists also, as it must, by definition, by an element of any successor set (being the double successor of the empty set).

Now define a class term F so that $F(\emptyset) = x$, $F(\{\emptyset\}) = y$, and F takes some value or other for any other set.

By Replacement, $\{F(\emptyset), F(\{\emptyset\})\} = \{x, y\}$ is a set.

3. Assuming ZF, show that if a is a non-empty transitive set then $\emptyset \in a$.

Apply Foundation to a. Let m be an element of a disjoint from a.

Suppose that $z \in m$. Then $z \in a$ because a is transitive, giving a contradiction.

Therefore m is empty, as required.

(Note that Foundation is essential here.)

В.

4. Which of the Axiom of Extensionality, the Empty Set Axiom, the Powerset Axiom, and the Axiom of Infinity hold in the structure $\langle \mathbb{Q}, \langle \rangle$? Also, find an instance of the Separation Schema that is true in $\langle \mathbb{Q}, \langle \rangle$ and one that is false.

Write $\mathfrak{Q} = \langle \mathbb{Q}, \langle \rangle$.

Suppose that in \mathbb{Q} , a < b. Then it is not the case that a < a. Thus $\mathfrak{Q} \models \text{Extensionality}$. Since, in \mathbb{Q} , for all a, a - 1 < a, the Empty Set Axiom is false in \mathfrak{Q} .

Let $a \in \mathbb{Q}$. We ask what it would mean, for an element b of \mathbb{Q} , to say that $\mathfrak{Q} \models b = \wp(a)$.

If a < c, then for all d < a, d < c, so $\mathfrak{Q} \models a \subseteq c$. It is easy to see that this also works if a = c, and it does not work if c < a.

So for all d, we would need that $\mathfrak{Q} \models d \in b \leftrightarrow (d < a \lor d = a)$. But in \mathbb{Q} , no element has an immediate successor, so the Powerset Axiom is false in \mathfrak{Q} .

Since the Empty Set Axiom is false in \mathfrak{Q} , the Axiom of Infinity must be false also.

Now we look at the Separation Schema, as applied to an element a of \mathbb{Q} .

The instance of the Schema corresponding to the expression x=x is true, since $\mathfrak{Q} \models \forall y (y \in a \leftrightarrow (y \in a \land y=y))$, so a itself is the required "subset" of a.

Since the Empty Set Axiom is false, the instance of the Schema corresponding to the formula $\neg x = x$ must fail.

- **5.** Assuming ZF^* , show that there exists a transitive set M such that
- (a) $\varnothing \in M$, and
- (b) if $x \in M$ and $y \in M$, then $\{x, y\} \in M$, and
- (c) every element of M contains at most two elements.

Show further that if σ is an axiom of ZF*+AC other than the Axioms of Infinity, Unions and Powerset, then $\langle M, \in \rangle \models \sigma$. (It follows that if ZF* is consistent then so is this reduced set of axioms, together with the Axiom of Choice.)

Let F(x) be a class term such that $y \in F(x)$ if and only if y is a subset of x having at most two elements. (F(x)) exists as a set by the Powerset Axiom and the Separation Schema.) Let G(x) be a class term such that $G(x) = x \cup F(x)$.

Use recursion on ω to define a function g with domain ω such that $g(0) = \emptyset$, and for all $n \in \omega$, g(n+1) = G(g(n)).

Let $M = \bigcup \operatorname{ran} g$.

Then M is as required.

M is transitive, so it satisfies the Axiom of Extensionality. It satisfies the Empty Set Axiom and the Axiom of Pairs by construction.

Since every subset of a set with at most two elements has at most two elements, M satisfies the Separation Schema.

Since every set has at most two elements, the Replacement Schema in M is equivalent to the Axiom of Pairs, which is satisfied in M.

Suppose that $a, b \in M$. If the Axiom of Foundation is false about $\{a, b\}$ in M, then we must have $a \in a$, $b \in b$, or $a \in b$ and $b \in a$. Now we can recursively define a function $f: M \to \omega$ such that $f(\emptyset) = 0$, and $f(\{a, b\}) = \max(f(a), f(b)) + 1$. (We can use recursion on n to define $f \upharpoonright n$, for example.) Then we find that if $a \in b$, then f(a) < f(b). So failures of Foundation are impossible in M.

As for the Axiom of Choice, Suppose $A \in M$, and A is a non-empty set of non-empty sets. Suppose $A = \{a, b\}$. Let c be an element of a and let d be an element of b. Then $\{c, d\}$ is an element of M, and is a witness to this instance of the Axiom of Choice.

$\mathbf{C}.$

- **6.** (a) Assuming ZF (ie. ZF*+Foundation) prove that the following two definitions of "ordinal" are equivalent:
 - (i) An ordinal is a transitive set well-ordered by $\stackrel{\in}{_}$.
 - (ii) An ordinal is a transitive set totally ordered by $\in \top =$.

It is obvious that any transtivie set well-ordered by $\stackrel{\in}{=}$ is totally ordered by that relation.

Now suppose that α is a transitive set totally ordered by $\stackrel{\in}{\underline{}}$.

Let S be a non-empty subset of α .

We apply Foundation to S. Suppose that β is an element of S such that $\beta \cap S = \emptyset$.

Suppose that γ is an element of S. Then since α is totally ordered by $\stackrel{\in}{=}$, $\beta \stackrel{\in}{=} \gamma$, or $\gamma \stackrel{\in}{=} \beta$. Since $\beta \cap S = \emptyset$, it cannot be the case that $\gamma \in \beta$. So $\beta \stackrel{\in}{=} \gamma$.

So β is the least element of S.

So every non-empty subset of α has a $\stackrel{\in}{=}$ -least element, so α is well-ordered.

(b) Prove the principle of induction for **On** using only ZF*.

Let $\phi(\alpha)$ be a statement in the language of set theory such that in V^* , $\phi(0)$ is true, that if $\phi(\alpha)$ is true, then so is $\phi(\alpha+1)$, and that if for all α less than a limit λ , $\phi(\alpha)$ is true, then so is $\phi(\lambda)$.

Suppose that there exists an ordinal α such that $\phi(\alpha)$ is false.

Let $S = \{ \beta \in \alpha + 1 : \neg \phi(\beta) \}.$

Then S is a non-empty subset of the ordinal $\alpha + 1$, which must have a least element, since $\alpha + 1$ is well-ordered. Let β be the least element of S.

Then whether β is 0, a successor, or a limit, the hypothesis about ϕ tells us that in fact $\phi(\beta)$ must be true, giving a contradiction.

The the Principle of Induction is true for **On**.

7. (ZF) Let H_{ω} denote the class of hereditarily finite sets, ie. $H_{\omega} = \{x : TC(x) \text{ is finite}\}$. Prove that $H_{\omega} = V_{\omega}$ (and hence that H_{ω} is a set). Prove that $\langle V_{\omega}, \in \rangle \vDash$ the axiom of foundation, and $\langle V_{\omega}, \in \rangle \vDash \neg$ the axiom of infinity.

[It is easy, but tedious, to check that $\langle V_{\omega}, \in \rangle \vDash$ the other axioms of ZF. This shows that the other axioms of ZF do not imply the axiom of infinity.]

We first show that $V_{\omega} \subseteq H_{\omega}$, by showing, by induction on n, that for all n, that V_n is finite, and that $V_n \subseteq H_{\omega}$. This is trivial if n = 0, and if $V_n \subseteq H_{\omega}$ and V_n is finite, then $V_{n+1} = \wp V_n$ is finite; and if $x \in V_{n+1} \setminus V_n$, then $x \subseteq V_n$ and is therefore finite, and

$$TC(x) = x \cup \bigcup_{y \in x} TC(y),$$

so that TC(x), being a finite union of finite sets, is finite.

Now suppose that it is not the case that $H_{\omega} \subseteq V_{\omega}$. Let $W = H_{\omega} \setminus V_{\omega}$.

We apply the Axiom of Foundation to W, to find $m \in W$ such that $m \cap W = \emptyset$.

Then since $m \in H_{\omega}$, m is finite; say $m = \{a_0, \ldots, a_{k-1}\}$ for some natural number k. Then for all $i, a_i \in V_{\omega}$. Recalling that $V_{\omega} = \bigcup_{n \in \omega} V_n$, let n_i be such that $a_i \in V_n$. Let $n = \max_{i < k} n_i$.

Now it is the case that if n < n', then $v_n \subseteq V_{n'}$.

So m is a subset of V_n , and thus an element of V_{n+1} , giving a contradiction.

So $H_{\omega} = V_{\omega}$, as required.