Geometric Group Theory

Cornelia Druțu

University of Oxford

Part C course HT 2024

Cornelia Druțu (University of Oxford)

Geometric Group Theory

Part C course HT 2024 1 / 12

William Thurston: "Mathematics is not about numbers, equations, computations, or algorithms: it is about understanding."

Residually finite groups are groups that can be approximated by finite quotients.

Definition

A group is residually finite if one of the following equivalent properties is satisfied:

1

$$\bigcap_{H \leq_{f,j,} G} H = \{1\}$$

- **②** For all non-trivial $g \in G$, there exists $\phi : G \to F$ finite such that $\phi(g) \neq 1$.
- So For all {g₁,...,g_n} distinct, there exists φ : G → F such that φ(g₁),...,φ(g_n) are distinct. In other words, every finite chunk of the infinite Cayley table of G can be reproduced identically in the Cayley table of a finite quotient.

Cornelia Druțu (University of Oxford)

Examples

- $GL(n,\mathbb{Z})$ is residually finite.
- **2** Any finitely generated $G \leq SL(n, \mathbb{Q})$ (or $GL(n, \mathbb{Q})$) is RF.

● $(\mathbb{Q}, +)$ is not RF (and nor is SL(n, \mathbb{Q})): if we have some $\phi : \mathbb{Q} \to F$, $\phi(0) = \operatorname{id}$, take $g = \phi(1)$, n = |F| and then $g = \phi(1) = \phi(\frac{1}{n})^n = \operatorname{id}$.

Theorem (Mal'cev)

Let R be a commutative ring with unity. Any finitely generated $G \leq GL(n, R)$, G is residually finite.

Proposition

- If G is RF and $H \leq G$ then H is RF.
- If H is a finite index subgroup of G then H is RF if and only if G is RF.
- **③** If two groups G and H are RF then $G \times H$ is RF.
- If G = H ⋊ K where H is finitely generated RF, K is RF, then G is RF.

Proposition

For all finite or countable X, F(X) is residually finite.

Proof: We have that
$$F_2 \simeq \langle \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} \rangle \leq GL(2, \mathbb{Z})$$
. And for all X finite or countable, $F(X) \leq F_2$.

Theorem

A finitely presented residually finite group has a solvable word problem.

Remark

Note that every finite group has a solvable word problem.

Proof.

Suppose $G = \langle S | R \rangle$. Take $w \in F(S)$. Run simultaneously two procedures:

- **(**) List all the elements in $\langle \langle R \rangle \rangle$ and check if *w* is among them.
- 2 List all homomorphisms φ : F(S)/⟨⟨R⟩⟩ → S_n, n ∈ N, and check if φ(w) ≠ 1.

Definition

G is Hopf if every onto homomorphism $f : G \to G$ is an isomorphism.

Example Every finite group is Hopf.

Theorem

A finitely generated residually finite group is Hopf.

Theorem

A finitely generated residually finite group is Hopf.

Proof.

Assume there exists an onto homomorphism $f : G \to G$ that is not 1-to-1.

Take $g \in \ker f \setminus \{1\}$. There exists $\phi : G \to F$ with $\phi(g) \neq 1$. Construct a sequence

$$g = g_0, \ g_1 \in f^{-1}(g_0), \ g_2 \in f^{-1}(g_1), \ ... \ , \ g_n \in f^{-1}(g_{n-1})$$

 $\forall n, f^n(g_n) = g \text{ and } f^k(g_n) = 1 \text{ for all } k > n.$ Hence, for all $n > \ell$, $\phi \circ f^n(g_\ell) = 1 \text{ and } \phi \circ f^n(g_n) \neq 1.$ So the homomorphisms $\phi \circ f^n$ are pairwise distinct. But this contradicts $\operatorname{Hom}(G, F) \leq |F|^{|S|}$.

Theorem

A finitely generated residually finite group is Hopf.

Corollary

If $F(X) = \langle A \rangle$ and $|A| = |X| = n < \infty$, then $F(X) \simeq F(A)$. (i.e. A freely generates F(X) i.e. A is a free basis for F(X)).

Proof.

A bijection $X \to A$ extends to $X \to F(A)$ which extends to an onto homomorphism $F(X) \to F(A)$. By Universal Property, we have a second onto homomorphism, hence an onto hom. $F(X) \to F(A) \to F(X)$. Since F(X) is Hopf, the latter hom. is an isomorphism, hence all are.

Residually finite groups. Simple groups

Theorem

A finitely generated residually finite group is Hopf.

The assumption finitely generated cannot be dropped from the theorem.

Example

- Consider X, Y countable.
- There exists $f : X \rightarrow Y$ onto and not injective.
- f extends uniquely to an onto group homomorphism $F(X) \rightarrow F(Y)$.

At the other extreme, we have simple groups.

Definition

G is simple if the only normal subgroups are $\{1\}$ and G.

Simple groups

Example

 $\mathbb{Z}/p\mathbb{Z}$, A_n , A_∞ , $PSL(n, \mathbb{Q})$, infinite f.g. due to Higman, Thompson, Olshanskii, Burger-Mozes.

Theorem

A finitely presented simple group has solvable word problem.

Proof.

Let $w \in F(S)$. Since G is simple, if $w \neq 1$ in G then $G = \langle \langle w \rangle \rangle$ and hence $\langle \langle \{w\} \cup R \rangle \rangle = F(S)$.

Two procedures:

- Enumerate $\langle \langle R \rangle \rangle$. Check if *w* appears.
- **2** Enumerate $\langle \langle \{w\} \cup R \rangle \rangle$. Check if every $s \in S$ appears.

A main method of investigation is to endow an infinite group with a geometry compatible with its algebraic structure, i.e. invariant by multiplication. This can easily be done for finitely generated groups via Cayley graphs.

Given a countable group G and a subset S such that $S^{-1} = S$, the Cayley graph of G with respect to S, denoted $\Gamma(S, G)$, is a directed/oriented graph with

- set of vertices *G*;
- set of oriented edges $\{(g,gs): g \in G, s \in S\};$

We denote an edge [g, gs]. The underlying non-oriented graph is denoted $\hat{\Gamma}(S, G)$.