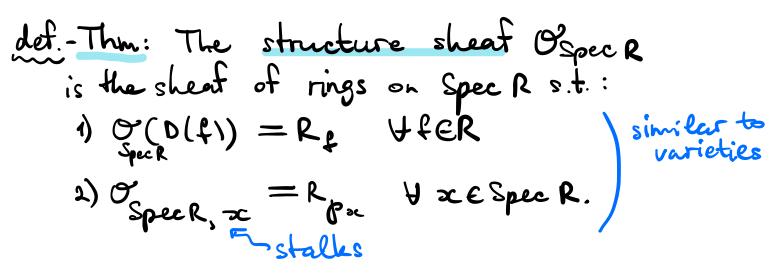
Chapter 4 Affine schemes Structure sheef

Reminder: A ring, SCA undiplicatively

$$S^{-1}A := \{(\alpha, s) \mid s \in S, \alpha \in A\}/_{S}$$

where $(\alpha, s) \sim (\alpha', s')$ iff $\exists s' : s'(\alpha s' - \alpha' s) = 0$ in A.
Ex: $i\} S = \{1, f, f^{2}, ...\},$ denoted Ap
 $2) S = A \setminus p$, p prime ideal, denoted Ap.



Moral recison.

1)
$$D(f) = \{x \in X \mid f(x) \neq 0\}$$
 ~>
 $O_X(D(f)) = R_f$
we allow to invert powers of f
because they do not vanish on $b(f)$

2)
$$O'_{x,x} = \begin{cases} (U,f) \mid z \in U \leq b \text{ open} \\ f \in O_{X}(u) \end{cases} \\ \\ O'_{X,x} = Rp_{x} \end{cases}$$

germs of functions encode local
behaviour around x , hence we
allow to invert all functions
that don't vanish at x , i.e. $R-p_{x}$.

Ex. 1)
$$X = \operatorname{Spec} \mathbb{Z}$$

 $\mathcal{O}_{X}(\mathcal{O}(p)) = \mathcal{O}_{X}(\operatorname{Spec} \mathbb{Z} - (p)) = \mathbb{Z}(\frac{h}{p}] = \{\frac{h}{p}\}$
 $\mathcal{O}_{X,(p)} = \mathbb{Z}_{(p)} = \{\frac{h}{c}, p \times l\}$
 $\mathcal{O}_{X,(p)} = \mathbb{Z}_{(p)} = \mathbb{Q}$
 $\mathcal{O}_{X,(p)} = \mathbb{Z}_{(p)} = \mathbb{Q}$

even have:

$$\mathcal{O}_{\chi}(\emptyset) = 0; \quad \mathcal{O}_{\chi}(\chi) = 0; \quad \mathcal{O}_{\chi}(\chi) = 0; \quad \mathcal{O}_{\chi}(\chi) = 0; \quad \mathcal{O}_{\chi}(\chi) = 0_{\chi} = K.$$

 $\mathcal{O}_{\chi,\chi} = 0_{(\xi)} = 0; \quad \mathcal{O}_{\chi,\chi} = 0_{(o_{\chi})} = K.$

Prizof " I define O' as a presheat on $\{D(f)\}_{f \in \mathbb{R}}$ given by $O'(D(f)) = R_{f}$. Since different fER may give the same D(f), you define $O'(D(f)) := S_{D(f)}^{-1} R$, where $S_{D(f)} := d SER | S G p U p E D(f) }$ and depends only and check that $R_f \leq S_{D(f)}^{-1} R$ is an ison. The restriction maps are localizations: $D(g) \leq D(f) \implies S_{D(f)} \subseteq S_{D(g)} \longrightarrow S_{D(f)}^{-1} R \xrightarrow{P} S_{D(g)}^{-1} R$ In check that O' sochistics sheaf basis conditions on the open sets $(D(f))_{f \in \mathbb{R}}^{r}$, this is called being a sheaf on a basis (instead of any opens 4, take only open sets from the basis). The sheat conditions on fD(f) and be algebraically reformulated as follows. Let D(f) = UD(f;) be any open cover. ieF There are localization maps Pi: Rt > Rti, Pij: Rti > Rtioti.

Then O being a sheaf on {O(f)} is equivalent to the following sequence being exact: O > R f ~ TR f; B TR f; f; , sheaf exact i, i R f; f; , sequence where $\mathcal{L}(a) = p_i(a)$ and $p_i(a_i)_{i,j} = (p_{i,j}(a_i) - p_{i,j}(a_j))$. That means, by definition, that: « is injective (locality) « sections agree locally => agree globally · Ker B = Im L (gluing) " sections agreeing on overlaps can be glued" Locality Want: $\lambda, \beta \in \mathbb{R}_{f}, \lambda| = \beta|$ $\forall i = \lambda = \beta$. By replacing X, R with ${}^{R}f_{i}$, R_{f} . Can assume $f=1, R_{f}=R, D(f)=X$. d-B=O ERT: => fini(K-B)=O for some NEW Nidepends on i, But Spec R is quasi-compact, so we can pick a finite subcover by P(fi) and let N: = mox Ni. We get: fi (1-B) =0 Hi => call $f_{i}^{N}>(x-\beta)=0$ => $1\cdot(x-\beta)=0$ =>x= β . R because Spec R = UD(fi) = UD(fi)

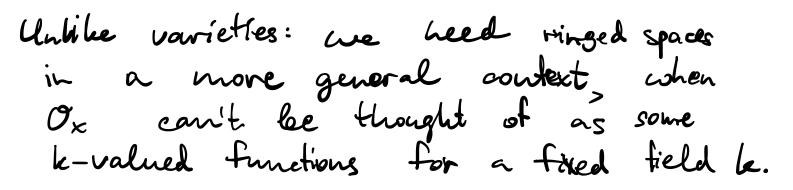
Gluing We have
$$S_i \in R_i$$
, st. $S_i|_{i} = S_i|_{i}$
(Dant: find $s \in R_i = R$ (con exame $f = i$)
 $s.t.$ $S_{i}|_{i} = S_i$ $\forall i$.
Can assume $X = \text{Spee } R = \bigcup D(f_i)$ finite cover,
 $S_i = \frac{g_i}{f_{i}}$ and we can assume $h_i = 1$
because $D(f_i) = D(f_i^{(n)})$.
 $S_i = S_i$ in R_i , $f_i = \sum (f_i, f_i)^{N} (f_i g_i - f_i g_i) = 0$.
 $for some N \in N$
(pick some big N for all
pairs $(i, j) - \text{finitely many})$
Rewrite: $(f_i^{N+1})(f_i^{N}, g_i) - (f_i^{N+1})(f_j^{N}, g_j) = 0$
 $g_i^{i} = a_i$
 $Motive S_i = \frac{a_i}{G_i}$, $D(f_i) = D(g_i)$ so
we can assume $N = 0$ and $f_i g_i = g_i f_i$.
Spec $R = \bigcup D(f_i) = 31 = \sum r_i f_i$ $= 3$
 $1:g_i = (2r_i f_i g_i) = \sum r_i f_i = 5$ we globalized
 $s_i \in R_i$ to $\sum r_i g_i \in R = O_X(X)$

(In) Define Ospeck to be the unique sheaf extending O from the basis {D(F)}fer: it's a general construction: deat on a basis no sheat on the whole space Spee R $D(f) \subseteq U$ $D(f) \subseteq U$ $D(f) \subseteq U$ ((sf) ∈ ∏ Rf |sf| = sg ∀ D(g) ED(F) EU} D(g) "compatible families of local sections on basic opens" In more detail : lecture notes by Aleo Riffer (e.g. uniqueness)

Intrition: "Lin generalizes A, colin generalizes T" to the situation when Rf & Rg are not injective (lim and colim are defined via universal properties)

IV. We compute the stalks by definition:
Spee R, $z = \operatorname{colim} \mathcal{O}(\mathcal{U}) = \operatorname{colim} \mathcal{O}(\mathcal{O}(f)) = \operatorname{colim} R_f = R_{\mathcal{P}}$ $\mathcal{U} = \mathcal{U} = \mathcal{U}$
-t-{(U, f)}/~
Rem. UUSpeck open,
Ospeck(U) is an R-algebra.
Indeed, for a ER we define
$[a]: R_{f} \xrightarrow{a} R_{f} on D(f),$
and that induces an R-module structure VU
which gives a map of sheaves
[a]: O'spec R -> O'spec R.

SAffine schemes



det. A ringed space is a pair (X, O'x) where X is a top. space and Ox a sheat of rings on X. A morphism of ringed spaces is a pair (f, f#) where $f: X \rightarrow Y$ is continuous and $f^{\#}: \mathcal{O}_Y \rightarrow f_* \mathcal{O}_X$ is a map of sheaves of rings on Y, or equivalently, $f^{\#}: f^{-1}\mathcal{O}_Y \rightarrow \mathcal{O}_X$.

That means, & USY open we have extra data of a ring hom $f^{-}(\mathcal{U}): \mathcal{O}_{y}(\mathcal{U}) \longrightarrow \mathcal{O}_{x}(f^{-}\mathcal{U}),$ s.t. for VEU ring hours ft (-) are compatible with restrictions pur: $\mathcal{O}_{4}(u) \xrightarrow{f^{\#}(u)} \mathcal{O}_{\infty}(f^{-1}(u))$ is commutative. $\begin{array}{c} \mathcal{P}_{w} \downarrow \\ \mathcal{O}_{y} (V) \xrightarrow{f^{\#}(V)} \mathcal{O}_{y} (f^{-1}V) \end{array}$

Since the definition of f# is more general, we have too much freedom on the choice of f# we'll introduce a restriction. 50

def: A locally-ringed space is a ringed space (x, o'_{x}) such that U point $x \in X$ the stalk $O'_{X, x}$ is a local ring. A morphism of locally-ringed spaces is a morphism of ringed spaces s.t. $\forall x \in X, y = f(x)$ the induced map $f_{x}^{*}: \mathcal{O}_{y,y} \rightarrow \mathcal{O}_{y,x}$ is a local hom, i.e. $f_{x}^{*}(m_{y}) \leq m_{x}$, or equivalently, $(f_{x}^{\#})^{-1}(m_{x}) = m_{y}$. For k-varieties, this condition was anto aparically satisfied, because $m_y = \{f \in \mathcal{O}_{y,y} \mid f(y) = 0\} \Longrightarrow f^*m_y \subseteq m_z$. Main Ex. (Spec R, Ospec R) is a locally ringed space. ken. fx local => induced how on regidue fields: $\kappa(f(z)) = O_{y,f(z)} / C_{y,z} / C$

1) on distinguished opens, UFER $R_f = O \sum_{\text{Spec } R} D(f) \xrightarrow{\varphi^{\#}(D(f))} O \sum_{\text{Spec } S} D(\varphi(f)) = S \varphi(f)$ is the localization of φ at $f: \frac{\alpha}{f^{\mu}} \mapsto \frac{\varphi(\alpha)}{\varphi(f)}$ 2) on stalks, Up E Spec S the induced map $\varphi^{\#}: R \xrightarrow{\phi^{-1}(p)} \xrightarrow{\mathcal{S}} \mathcal{P}$ is the localization of q. Proof sketch: define \$\$\$ on \$\$ D(f) as in 1\$)
check compatibility with pur
compute \$\$\$\$ on stalks as in 2\$\$) def. An affine scheme is a locally ringed space (X, Ox) is omorphic to (Spec R, Spec R). Affine schemes form a subcategory Aff Sch of locally ringed spaces. We get a functor Spec: Ringop -> AffSch. We also have a functor in the other direction, which sends (X, \mathcal{O}_X) to $\mathcal{O}_x(X) =: \Gamma(X, \mathcal{O}_x)$ global sections and $f: (X, \mathcal{O}_{x}) \rightarrow (Y, \mathcal{O}_{y})$ to $f^{*}(Y): \mathcal{O}_{y}(Y) \rightarrow \mathcal{O}_{x}(X)$.

Thm. The functor Spec: Ring P => AffSch is an equivalence, with inverse functor r. In particular, f: Spec S -> Spec R is an isom of locally ringed specces iff f# R=>S is an isom. Proof: enough to show that for X= Spec S, Y= Spec R, $f: X \rightarrow Y \subseteq AffSch \rightarrow Spec(\Gamma(f)) = f.$ Let $\varphi := \Gamma(f) = f^*(y): R \to S;$ let $x \in X \in \mathbb{Q} \in \mathbb{Q}$. Want: $f = Spec \varphi$ & $f^* = (Spec \varphi)^*$. We have a commutative d'agram: R P S Lelocali -Rp f Sq Hence $\varphi(R-p) \subseteq S-q$, so $\varphi^{-1}(q) \subseteq p$. $J \Rightarrow \varphi^{-1}(q) = p$. However $f_{\infty}^{#}$ is local, so $\varphi^{-1}(q) \ge p$. $J \Rightarrow \varphi^{-1}(q) = p$. so Spec $\varphi = f$ as maps of top. spaces. From the diagram we also get that V se the static map for equals the localitation of φ , i.e. $(Spec \varphi)_{x}^{\#}$, because the map $R \xrightarrow{\varphi} S \xrightarrow{\rightarrow} Sq$ factors iniquely through R_{φ} (Sunilowly f# (D(h)): RL - Sq(h) is the localization of q UhGR) Hence morps of sheaves spec of # and ft coincide.

Examples of some rings / affine schemes, which naturally occur in alg geom: 1) variéties le [x1...,xm]/I 2) hypersurfaces ZECoca..., xm]/(f) 3) invariant rings R^G or k[x₁... x_m]^G - these give quotients of varieties under group action 4) Artinian rings: L(t)/12 or k[t,s]/(ta,s), "thickenings", appear as deformations 5) monoid rings: Z(x,y], Z(x,', y^t] etc. fix the allocked powers, take a free abelian group on them