# Geometric Group Theory 

# Cornelia Druțu 

University of Oxford
Part C course HT 2024

## Cayley graphs

A finitely generated group can be endowed with a geometry compatible with its algebraic structure, i.e. invariant by multiplication via a Cayley graph.
Given a countable group $G$ and a subset $S$ such that $S^{-1}=S$, the Cayley graph of $G$ with respect to $S$, denoted $\Gamma(S, G)$, is a directed/oriented graph with

- set of vertices $G$;
- set of oriented edges $\{(g, g s): g \in G, s \in S\}$;

We denote an edge $[g, g s]$. The underlying non-oriented graph is denoted $\hat{\Gamma}(S, G)$.

## Examples of Cayley graphs

(1) $\mathbb{Z}^{2}$ with $S=\{( \pm 1,0),(0, \pm 1)\}$


## Examples of Cayley graphs

(2) $\mathbb{Z}^{2}$ with $S=\{( \pm 1,0), \pm(1,1)\}$

## Examples of Cayley graphs

- $F_{2}=F(\{a, b\})$ with $S=\left\{a^{ \pm 1}, b^{ \pm 1}\right\}$



## Examples of Cayley graphs: the integer Heisenberg group

The Integer Heisenberg group:

$$
\begin{gathered}
H_{2 n+1}(\mathbb{Z}):=\left\langle x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, z ;\right. \\
\left.\left[x_{i}, z\right]=1,\left[y_{j}, z\right]=1,\left[x_{i}, x_{j}\right]=1,\left[y_{i}, y_{j}\right]=1,\left[x_{i}, y_{j}\right]=z^{\delta_{i j}}, 1 \leqslant i, j \leqslant n\right\rangle . \\
\left.H_{2 n+1}(\mathbb{Z})=\left\{\begin{array}{ccccccc}
1 & x_{1} & x_{2} & \ldots & \ldots & x_{n} & z \\
0 & 1 & 0 & \ldots & \ldots & 0 & y_{n} \\
0 & 0 & 1 & \ldots & \ldots & 0 & y_{n-1} \\
\vdots & \vdots & \ddots & \ddots & & \vdots & \vdots \\
0 & 0 & \ldots & \ldots & 1 & 0 & y_{2} \\
0 & 0 & \ldots & \ldots & 0 & 1 & y_{1} \\
0 & 0 & \ldots & \ldots & \ldots & 0 & 1
\end{array}\right) ; x_{i}, y_{j}, z \in \mathbb{Z}\right\}
\end{gathered}
$$

## Examples of Cayley graphs: the Integer Heisenberg group

(1) $H_{3}(\mathbb{Z}):=\langle x, y, z \mid[x, z]=1,[y, z]=1,[x, y]=z\rangle$.


## Particular features of Cayley graphs

(1) No monogons (edges of the form $[g, g])$ if $1 \notin S$.

(2) No digons if, when $s=s^{-1}$, we do not list both $s$ and $s^{-1}$ in $S$ (i.e. no repetitions in $S$ ).


In other words, this is a simplicial graph.
(3) $\Gamma(S, G)$ is connected (i.e. any two vertices can be connected by an edge path) if and only if $G=\langle S\rangle$.
(9) $\Gamma(S, G)$ is regular: the valency/degree of every vertex is $|S|$.
(1) $\Gamma(S, G)$ is moreover locally finite if and only if $|S|<\infty$.

## Particular features of Cayley graphs

(5) If $\Gamma(S, G)$ is infinite then it always contains a bi-infinite geodesic.
(0 $\Gamma(S, G)$ always contains a cycle (in fact plenty) with one exception:
$\Gamma(S, G)$ does not contain a cycle (i.e. it is a simplicial tree) $\qquad$ $S=X \sqcup X^{-1}$ and $G=F(X)$.

## Cayley Graphs

From now on, assume that $S$ is a finite generating set (with no repetitions), $1 \notin S, S=S^{-1}$. We endow $\Gamma(S, G)$ with a metric $d_{S}$ :

- each edge has length 1 ;
- $d_{S}(x, g)$ is the length of a shortest path from $x$ to $g$.


## Proposition

The action of $G$ on its Cayley graph is an action by isometries. The action is free on the vertices. It is free on the whole Cayley graph if and only if no $s \in S$ is of order 2 .

Proof.
We have a map

$$
G \rightarrow \operatorname{Isom}(\Gamma(S, G)) \quad g \mapsto L_{g}
$$

where $L_{g} \in \operatorname{Isom}(\Gamma(S, G))$ extends $L_{g}: G \rightarrow G, L_{g}(x)=g x$ to edges.

## Cayley Graphs

## Definition

The restriction of $d_{S}$ to $G \times G$ is called the word metric associated to $S$.

## Exercises

- $|g|_{S}:=d_{S}(1, g)$ is the minimum length of a word $w$ in $S$ such that $g=G W$.
- $d_{S}(g, h)$ is the minimum length of a word $w$ in $S$ such that $g w={ }_{G} h$.


## Proposition

If $G=\langle S\rangle=\langle\bar{S}\rangle$ then $d_{S}$ and $d_{\bar{S}}$ are bi-Lipschitz equivalent. That is, there exists $L>0$ such that

$$
\frac{1}{L} d_{S}(g, h) \leq d_{\bar{S}}(g, h) \leq L d_{S}(g, h)
$$

for every $g, h \in G$.

## Cayley Graphs. Actions on simplicial trees

A simplicial tree is a connected graph with no monogons, digons or cycles.

## Theorem

$\hat{\Gamma}(S, G)$ is a simplicial tree on which $G$ acts freely $\Longleftrightarrow S=X \sqcup X^{-1}$, $G=F(X)$.

Proof.
Oriented paths in $\Gamma(S, G)$ without spikes correspond to pairs $(g, w)$, wa reduced word in $S$.
$(\Leftarrow)$ : A cycle would correspond to a reduced word $w=1$ in $F(X)$.
$(\Rightarrow): G$ acts freely $\Longrightarrow \forall s \in S,\left|\left\{s, s^{-1}\right\}\right|=2$. For every such pair, pick one and together let these form $X$. $X$ generates $G$ and so there exists an onto homomorphism $\varphi: F(X) \rightarrow G$. Suppose $w \in F(X), w \in \operatorname{ker} \varphi$. Since $w$ is reduced as a word in $X$, it is also reduced as a word in $S$. So if $w \neq w_{\emptyset}$ then $w$ gives a cycle in $\hat{\Gamma}(S, G)$. So $\operatorname{ker} \varphi=\left\{w_{\emptyset}\right\}$.

## Actions on simplicial trees

General theorem: $G$ is free if and only if $G$ acts freely by isometries on a simplicial tree $T$. The $(\Rightarrow)$ direction is given by the previous theorem. For the $(\Leftarrow)$ direction, we use the following lemma.

Lemma
There exists $X \subseteq T, X$ a tree, such that $X$ contains exactly one vertex from each orbit.

