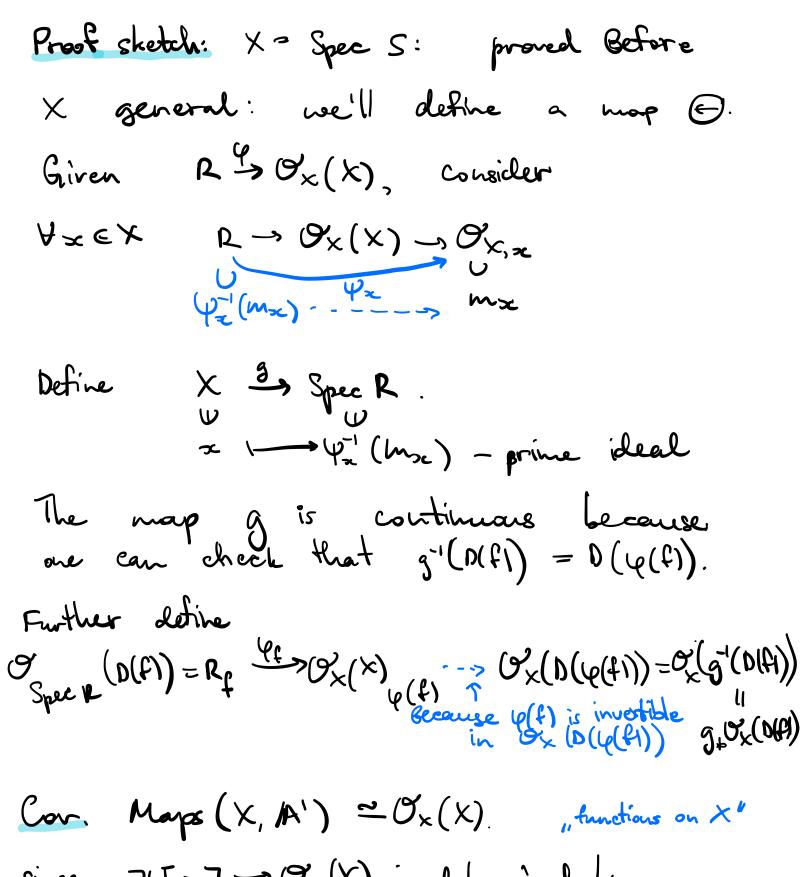
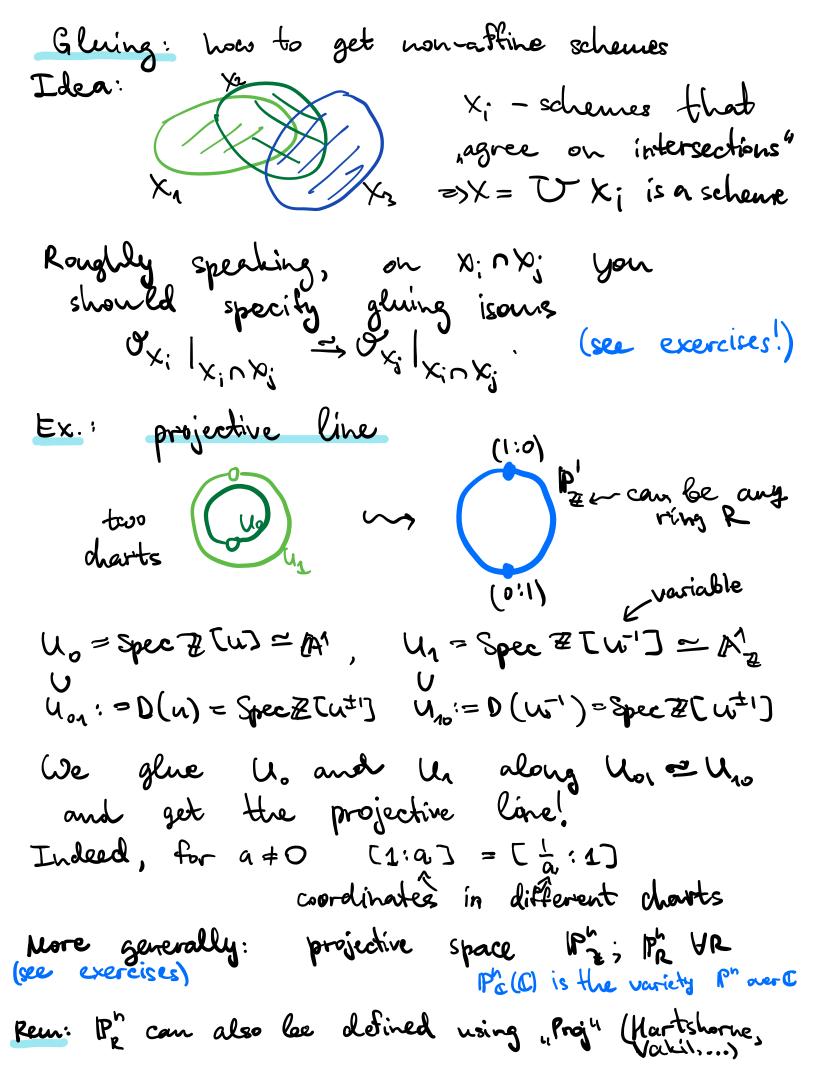
Chapter 5 Schemes def: A scheme is a locally ringed space (X, O_X) which is locally isomorphic to an office scheme, i.e. $X = UU_i$ open cover, s.t. iGI $\forall i \exists ring R_i^{i}$ $(U_i, O_X|_{U_i}) \stackrel{c}{=} (Spec R_i, O_{Spec R_i})$. x EX with stalk of x is the local ring at x. It rell=SpecREX open, then $\mathcal{O}_{X, pe} = \mathcal{O}_{U_{3}x} = R_{p}, p = px.$ Residue field at x: $m \in \mathcal{O}_{X,\infty} \longrightarrow k(\infty) := \mathcal{O}_{X,\infty}/m \cdot \mathcal{O}_{X,\infty} = \frac{kp}{p \cdot p}$ A morphism or a map of schemes is a mop (f,f*) of locally ringed spaces. Schemes form a category Sch > AffSch. F-valued points Schematic points: IF any field ~> ×(IF):={ Spec F -> ×}-set xGX ~> xGU C>X affine open ~> Spec u(x) -> U CX ^R / p. Kp Spec R Thin. It k scheme, R ring Maps Sch (X, Spec R) = Maps (R, $O_{X}(X)$). Hence giving a map X -> Spec R is equivalent to giving an R-algebra structure to Ox.



since $\# \mathbb{I} \times \mathbb{J} \to \mathcal{O}_{\infty}(\mathbb{X})$ is determined by the image of x.

Ex: open subschemes

$$(X, \Theta \times)$$
 scheme, $U \subseteq X$ open =>
 $(U, \Theta \times |)$ is also a scheme.
Because: $\forall u \in U$ has a distinguished open
 $U \ge U(x) \ni U$, so $(U(x), \Theta | (x))$ is
an affine scheme.
 $[elosed$ subschemes
 $[are more complicated - [ater!:)]$
EX: non-affine scheme
 $Cansider$ $U: = A^2 - f(0, 0) \le A^2 = Spec \neq (x, y).$
Exercise: $(\Theta_{A2}(A) \cong \Theta_U(U))$ is an isom.
 $Exercise: (\Theta_{A2}(A) \cong \Theta_U(U))$ is an isom.
 $Because = \Xi(x, y) = \emptyset$ in U
 $\pm \emptyset$ in A^2 ,
hence $U = A^2 - f(0, 0)$ cannot be affine.



& Integral schemes det. A scheme (K, Ox) is reduced if all local rings are reduced (no nilpotents). Exercise: Ox, x reduced Vx EX (=) Ox(U) reduced & (affine) open UEX. In particular, Spec R is reduced iff R is reduced. Associated reduced scheme: Spec Rred Spec R, where Rred: = R/NilR closed immersion same top. spaces, different structure sheaves! Ex: R=k[t]/th ~> Spec R red = Spec k ~> Spec R For any scheme x, one can glue Xreel -> X, and it is universal: for a reduced scheme I any map Y -> X factors Hurough X red. det. A scheme is integral if it is reduced and treducible. Prop: (X, Ox) is integral iff Ox(U) is an int. domain U (affine) open UEX. Proof for Spec R: Spec R integral (=> Nil R=(0) Nil R is prime (=> (0) is prime.

Structure sheat of an integral scheme

We can think of sections of Ox as of certain rational functions!

det
$$X$$
 integral scheme, $\eta \in X$ the generic pt.
The function field of X is because X
 $\kappa(X) := O_X, \gamma$.

It is a field because
$$\forall$$
 spech $\leq \times$ open
 $\heartsuit_{X,Y} = \heartsuit_{X,Y} = R_{(o)} = Frac R$
Spech, $\Upsilon_{(o)} = Frac R$
Spech, $\Upsilon_{(o)} = Frac R$

$$\mathcal{P}_{uv}: \mathcal{O}_{x}(u) \rightarrow \mathcal{O}_{x}(u) \subseteq \kappa(x)$$
 is injective

3)
$$\forall x \in X$$
 $\forall x, x \in K(X)$, and
 $u \ni \infty \Longrightarrow \forall x(u) \in \forall x, x$
4) $\forall x(u) = \bigcap_{x \in u} \forall x, x \in k(X)$
 $ff X = Spee R$, $\forall x(u) = \{f \in k(X) | \forall x \in U \}$
 $f = \Im_{x \in u} f = \Im_{x \in u} f$

Proof: 1) Let
$$f \in O_{\times}(U)$$
, assume $f(y) = 0$.
Then V affine open $V = \text{Spee } S \subseteq U$
we have $g_{uv}(f) = 0$, because
 $S \text{ is an integral domain => } S \subseteq \text{Frac}S = k(X)$
Take $U = U = U$; affine open cover =>
 $g_{uv}(f) = 0$ Vi => $f = 0$ because O_X is a sheaf.
2) The inclusions $O_X(U) \subseteq K(X)$
are compatible with restriction maps g_{uv} :
 $O_X(U) \xrightarrow{g_{uv}} O_X(V)$
 $S = O_X(V)$
 $S = O_X(V)$
 $S = O_X(U) \xrightarrow{g_{uv}} O_X(U)$
 $S = O_X(U) \xrightarrow{g_{uv}} O_X(U)$
 $S = O_X(U) \xrightarrow{g_{uv}} O_X(U)$
 $S = O_X(U) \xrightarrow{g_{uv}} O_X(U)$
The integral domain.
For $U \Rightarrow X$ the map $O_X(U) \hookrightarrow u(X)$
factors through $O_{X,x} = O_X(u) \hookrightarrow u(X)$

4) by 3), O_x(U) ⊆ ∩ O_{x,x}
Let fe ∩ O_{x,x} ⊆ K(X).
Then ∀x ∃ open holds x ∈ V(x) ⊆ U: f∈ O_x (V(x)).
Since U = V(x), we can glue a finition f∈ O_x(U) because the values agree on all V(x) ∧ V(x) since they coincide inside k(x).
The last equality follows because X = Spee K ~ O_{x,x} = Rp_x.