Geometric Group Theory

Cornelia Druțu

University of Oxford

Part C course HT 2024

Cornelia Druțu (University of Oxford)

Geometric Group Theory

Part C course HT 2024 1 / 10

We will describe the elements of an amalgamated product $A *_H B$ by words.

Simplified notation: we identify H with $\alpha(H)$ and $\beta(H)$, and we identify A with $i_A(A)$, B with $i_B(B)$.

Choose A_1 , a set of right coset representatives of H in A, and B_1 a set of right coset representatives of H in B, such that $1 \in A_1$, $1 \in B_1$.

Definition

A reduced word of the amalgam $A *_H B$ is a word of the form $(h, s_1, ..., s_n)$, $h \in H$, $s_i \in A_1 \cup B_1$, $s_i \neq 1$, s_i alternating from A_1 to B_1 . We associate to this the element $hs_1...s_n$ of $A *_H B$. The length of the reduced word is n.

Theorem

Each $g \in G = A *_H B$ is represented by a unique reduced word.

Theorem

Each $g \in G = A *_H B$ is represented by a unique reduced word.

Proof: For all $g \in G$, we can write $g = a_1b_1...a_mb_m$ for some $a_i \in A$, $b_i \in B$.

We claim that g can be represented by a reduced word $(h, s_1, ..., s_n)$.

$$m = 1$$
: $g = a_1b_1 = a_1\overline{h}b' = \underbrace{a_1h}_{\in A}b' = h'a'b'$, where $a' \in A_1$, $b' \in B_1$.

Inductive step: exercise.

Uniqueness: Let X be the set of all reduced words. We will define an action of G on X, i.e. a group homomorphism

$$G \rightarrow Symm(X) = Bij(X)$$

Cornelia Druţu (University of Oxford)

Geometric Group Theory

By the universal property, it suffices to define $\alpha_1 : A \to Symm(X)$, $\beta_1: B \to Symm(X)$ such that $\alpha_1(h) = \beta_1(\bar{h})$. Definition of α_1 : Consider $a \in A$. Case 1: $a = h_0 \in H$: $h_0 \cdot (h, s_1, \dots, s_n) = (h_0 h, s_1, \dots, s_n)$ Case 2: $a \in A \setminus H$. 2.a: $s_1 \in B$. $\forall h \in H$, write ah = h'a' where $a' \in A_1$, $a' \neq 1$. $a \cdot (h, s_1, ..., s_n) = (h', a', s_1, ..., s_n)$ 2.b: $s_1 \in A$, $s_2 \in B$. $\forall h \in H$, write $ahs_1 = h'a'$, $a' \in A_1$. $a \cdot (h, s_1, ..., s_n) = (h', a', s_2, ..., s_n)$ if $a' \neq 1$ $= (h', s_2, \dots, s_n)$ if a' = 1

Cornelia Druțu (University of Oxford)

Geometric Group Theory

This defines a map $\sigma_a : X \to X$. Exercise: Check that $\sigma_{a_1a_2} = \sigma_{a_1} \circ \sigma_{a_2}$. Therefore $\sigma_a \circ \sigma_{a^{-1}} = \text{id}$ and so σ_a is a bijection. So we have defined $\alpha_1 : A \to Symm(X), \alpha_1(a) = \sigma_a$. Likewise, we can define $\beta_1 : B \to Symm(X)$. We have that $\alpha_1(h) = \beta_1(h) = \sigma_h$, for every $h \in H$.

Therefore there exists a unique $\varphi : A *_H B \to Symm(X)$. Exercise: $\forall g \in G$, if $g = hs_1...s_n$, a reduced word, then

$$\varphi(g)(1)=(h,s_1,...,s_n).$$

Thus, the reduced word is unique.

Theorem

Each $g \in G = A *_H B$ is represented by a unique reduced word.

Corollary

 i_A and i_B are injective. Hence A, B can be seen as subgroups of $A *_H B$.

Corollary

If $(g_1, ..., g_n)$, $n \ge 2$, is such that $g_i \in A \cup B$, $g_i \notin H$, $\forall i \ge 2$, and g_i alternate between A and B, then $g_1...g_n \ne 1$ in $A *_H B$.

Proof.

Use induction to show that it can be represented by a reduced word of length n-1 if $g_1 \in H$ or of length n if $g_1 \notin H$.

Theorem

Each $g \in G = A *_H B$ is represented by a unique reduced word.

Corollary In $G, A \cap B = H$.

Definition

The reduced word $(h, s_1, ..., s_n)$ and the reduced element $hs_1...s_n \in A *_H B$ are cyclically reduced if $n \ge 2$ and s_1s_n is reduced.

Proposition

- Every g ∈ A *_H B is conjugate either to a cyclically reduced element or to some a ∈ A or to some b ∈ B.
- Every cyclically reduced element has infinite order.

Proposition

- Every g ∈ A *_H B is conjugate either to a cyclically reduced element or to some a ∈ A or to some b ∈ B.
- **2** Every cyclically reduced word has infinite order.

Proof: (1): If $g = hs_1...s_n$ is not cyclically reduced, i.e. s_1 , s_n are both in A or both in B, then $s_ngs_n^{-1}$ is represented by a word of length n - 1. Repeat until we have a cyclically reduced word or a word of length 1.

(2): If g is cyclically reduced of length n then g^k has length kn, so $g^k \neq 1$.

Corollary

Given any finite subgroup $F \le A *_H B$, F must be contained in a conjugate gAg^{-1} or gBg^{-1} .

Proof: exercise.

Cornelia Druțu (University of Oxford)

The unique root property

Proposition

Every $u \in F(X)$ is conjugate to a cyclically reduced word.

Corollary (unique root property)

If $g, h \in F(X)$ are such that $g^k = h^k$ for some k then g = h.

Question: Find *G* torsion-free group s.t. $\exists g \neq h$ with $g^k = h^k$ for some *k*. Take $G = \langle g, h | g^k = h^k \rangle$. It is an amalgamated product $G = A *_H B$, where $A = \langle g \rangle$, $B = \langle h \rangle$, and $H = \mathbb{Z} \simeq \langle g^k \rangle \simeq \langle h^k \rangle$. Exercise: If every pair of distinct elements have an equal power then G = Tor G. NB This does not mean that *G* is finite. See for instance https://en.wikipedia.org/wiki/Burnside_problem Example due to Olshanskii: There exist finitely generated, non-cyclic, torsion-free groups *G* where any two elements have equal powers, i.e., for any *g*, *h* there exist *m*, *n* such that $g^m = h^n$.

Cornelia Druțu (University of Oxford)

Geometric Group Theory

Amalgams and actions on trees

Definition

- Suppose G is a group acting on a graph X. We say that G acts on X without inversions if for every g ∈ G and [v, w] ∈ E(X) we have that g([v, w]) ≠ [w, v].
- A free action of G on X is an action that is free on the vertices and without inversions.

Suppose G is a group acting freely on a tree T.

A subtree $S \subseteq T$ is a fundamental domain if it intersects the orbit $G \cdot v$ of every vertex v of T, and it intersects the orbit of every edge exactly once.

Theorem

 $G = A *_H B$ acts on a tree T with fundamental domain an edge [P, Q] such that $\operatorname{Stab}(P) = A$, $\operatorname{Stab}(Q) = B$, $\operatorname{Stab}([P, Q]) = H$.