C3.11 Riemannian Geometry
Sheet 2 — HT24

Solutions

This problem sheet is based on Sections 2.3 and 3 of the lecture notes. This version contains

the solutions to all of the questions.

Section A

1. Let (M, g) be an oriented Riemannian manifold. Show that parallel transport along any

curve in M is orientation preserving.

Solution: Let a : [0,L] — M be a curve and let 7 : To) — Ta@M be the parallel

transport along a4 for each t € [0, L]. Then 71 = 7, is the parallel transport along a.

Choose an oriented orthonormal basis {£1(0),..., E,(0)} for TM. Since 7 is an
isometry for all ¢, if we define E;(t) = 7(E;(0)), then {E,(t),..., E,(t)} is an orthonor-
mal basis for T, M.

If we use the basis {F1(t),..., En(t)} as the basis for Ty M, the map f: [0,L] = R
given by

f(t) = det(r)
is then well-defined and continuous (in fact, smooth). Moreover, f(t) € {£1} for all ¢
since {E4(t), ..., E,(t)} is orthonormal for all ¢.

As [0, L] is connected and f(0) = 1, we deduce that f(t) = 1 for all ¢. Hence 7 is

orientation preserving for all ¢, and so 7, = 7 is orientation preserving.
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2. Let (M, g) be an n-dimensional Riemannian manifold. Let p € M and let U be a normal
neighbourhood of p.

Let {Ei,...,E,} be an orthonormal basis for T,M, let ¢ : T,M — R™ be given by
V(i ziE;) = (z1,...,2,) and let ¢ = poexp,’ : U — R™

=1

(a) Let v(t) be a geodesic through p in U in M. Show that

@ o ’}/(t) = (alta cee 7ant)

for (ai,...,a,) € R™
(b) Show that in (U, ¢), we have g;;(p) = d;; and T'f;(p) = 0.

(c) Hence, or otherwise, show that there is open set V' > p and orthonormal vector
fields E1,..., E, on V such that

Vi, Ej(p) = 0.

Solution:

(a) Geodesics through p in U are given by «(t) = exp,(tX) for some X in T, M since
U is a normal neighbourhood (which means exp : V' — U is a diffeomorphism for
some V C T,M). Thus

po(t) =1 oexp, (exp,(tX)) = ¢ (tX).
As{Ey,...,E,} is a basis, we can write any X € T, M uniquely as X =" | a;E;
for some (ay,...,a,) € R". Hence,

pony(t) = Y(tX) = w(Z ta; E;) = (ait, . . ., ant)

by definition, as we wanted to show.

(b) We see that ¢(p) = 0 and ¢(E;) = e; (the unit vector with 1 in the ith place and 0
everywhere else). Therefore, di)y(E;) = 0;. Hence, taking the inverse (as 1 is a local
diffeomorphism at 0, its differential at 0 is invertible), we have d(¢~1)o(;) = E;.

Since ¢ = ¢ o exp, ! we have ¢! = exp, 0¢)~! so, by the Chain rule, we have
d(9™ e (i) = d(exp,)o 0 d(¥71)o(0;) = d(exp,)o(E;) = E;

since d(exp,,)o = id. Thus

9ii(P) = gp(d(0™ ")) (8), d(0™ ")) (8;)) = gp(Ei, Ej) = 655
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Finally, the geodesic equations in U for y(t) = (z1(t),...,z,(t)) are
wi(t) + > Thaj(t)a(t) = 0.
ij=1

However, as we know that geodesics through p are given by straight lines z;(t) = at,

we see that ) = 0 and «(t) = a;, therefore

Z Ffj(p)aiaj =0

ij=1
for all (as,...,a,) € R". We deduce that T'};(p) = 0.

[Note: The chart (U, ¢) is called geodesic normal coordinates at p. These coordi-
nates are very useful for calculations and say that there are no zero or first order

invariants of a Riemannian metric at a given point. |

(c) Take V' to be a geodesic ball B(p) contained in U. For every point ¢ in V' there
exists a unique radial geodesic 7, from p to q. Let 7, : T,M — T, M be the parallel
transport along 7,. We then define, for all ¢ € V/,

where {E;(p), ..., E,(p)} is an orthonormal basis for T,,M.

Since 7, is an isometry for all ¢ and depends smoothly on ¢, we deduce that

Fy, ..., E, are orthonormal vector fields on V.

Since the integral curve « of E; with a(0) = p is a radial geodesic, and Ej is
parallel along radial geodesics, so 7, ' (E;(a(t)) = E;(p) for all ¢ (in the notation of

Question 1) we deduce from Question 1 that

\Y% E; Ej (p) = 0.
[Note: The frame {Ei,..., E,} is a geodesic frame on V or near p. This is very
useful for computations.]
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Section B

3. Let X,Y be vector fields on (M, g). Let p € M and let « : (—e¢,€) — M be the integral
curve of X with a(0) = p. For allt € (—¢,¢€) let 7 : T,M — T, M be parallel transport
along alp . Show that

VY () = 5 (7 (V (0(6)) ) imo

Solution: Choose a chart (U, ) with p € U so that ¢(p) = 0 and let {X3,..., X, }
be the coordinate frame field on U. Suppose, by making e smaller if necessary, that
a(—ee) CU.

Let Ei(t),..., E,(t) be parallel vector fields along « so that E;(0) = X;(p) for i =
L,...,n, ie E;(t) = 7(X;(p)) for all t. Since 7; is an isomorphism for all ¢, we have
that {E1(t),..., E,(t)} is a basis for T, M for all t.

Hence, we can write Y along « as

for some smooth functions b; : (—e¢,€) — R. Since « is an integral curve of X, X = o/

along «, and therefore

VxY(p) = VY (p) = VaY(a(t))]i=o = va/Zb ()li=o = Zb’

since Vo E; = 0.

On the other hand, we see that

and therefore

jt< T (Y (@(8) ) limo = % (Z bi(t)Ei(0)> =0 = Y H(O0)E(0) = V¥ (7)

as claimed.

[Note: This question says that you can recover the Levi-Civita connection from the
parallel transport maps. Hence, parallel transport (which allows us to “connect” tangent

spaces) is equivalent to the Levi-Civita connection.]
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4. Let (M, g) be a Riemannian manifold. Recall that a Killing field on M is a vector field
X such that Lxg = 0 or, equivalently, that the flow of X near any point consists of

local isometries.

(a) Let p € M and let U be a normal neighbourhood of p. Suppose that X is a Killing
field on (M, g) so that X (p) =0 and X(q) # 0 for all ¢ € U \ {p}.
By using the First variation formula, or otherwise, show that X is tangent to all

sufficiently small geodesic spheres centred at p.

(b) Show that X is a Killing field on (M, g) if and only if, for all vector fields Y, Z on
M

Y

9g(VyX,2)+9(VzX,Y)=0.

Solution:

(a) By making U smaller if necessary we can assume that p is still an isolated zero of
X in U and that the flow of X {¢X : U — M : t € (—e¢,€)} is defined on U.

Let Ss(p) be any geodesic sphere contained in U and let ¢ € Ss(p). Let « :
[0,6] — U be the normalized radial geodesic from p to q. We define a variation
f:(—€€) x[0,6] = M of a by

f(s,t) = &7 (alt)).

Notice that since ¢ = id, and the maps ¢X depend smoothly on s, f is indeed a

variation of f. Moreover, the variation field V; of f is given by

of d

Vit) = ZL(0,1) = —-0¥o(al®) = X(a(t)

since ¢ is the flow of X. Hence,

Vi(0) =X(p) =0 and V() = X(q).

We now notice that

g_{(s,t)\z = [d(¢3 ) (@' )" = |o/ (1)

since X is Killing and so its flow consists of local isometries. Therefore, the energy

of the variation f of «
0
B(s) = [l
0

is independent of s. (More geometrically, since X is Killing with X (p) = 0 it will
map radial geodesics to radial geodesics and preserve their length, and hence their

energy as they are geodesics.)
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We deduce from the First variation formula that

1

)
0=ZE0) = —/0 9(Vy, Vo )dt — g(V(0),/(0)) + g(V¢(0), &/ (6)

= 9(X(q), /().

Here we used that Vo' = 0 as « is a geodesic and that V;(0) = 0, V;(6) = X(q).
/

Now, by the Gauss Lemma, as « is a normalized radial geodesic, we have that o/(9)
(

is normal to Ss(p) at ¢, and is non-zero, and hence X (¢) must be tangent to Ss(p)

at q.

Since ¢ and ¢ are arbitrary, the result follows.

(b) We note that the given equation is called the Killing equation: for all Y, Z in M

The slick way to do the question is:

(Lxg) (Y, Z) = Lx(9(Y, Z)) — 9(LxY, Z) — g(Y, LxZ)
= X(9(Y,2)) — 9([X,Y],Z2) — g(Y. [X, Z])
=X(g(Y,2)) —9(VxY,Z) = g(Y,VxZ) + g(Vy X, Z) + g(Y,V 2 X)
=g(Vy X, Z) +g(Y,V2X).

Using properties (iv)-(v) of the Levi-Civita connection (metric compatibility and
torsion-free). Hence Lxg = 0 (i.e. X is a Killing field) if and only if the Killing
equation holds for all Y, Z in M.
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5. Let (M, g) be a Riemannian manifold, let f : M — R be a smooth function and let X
be a vector field on M.

(a) Note that we have a linear map from vector fields to vector fields given by Y +—
Vy X. We define the divergence of X to be the smooth function

divX =tr(Y — VyX).

Show that if X is a Killing field then div X = 0.

(b) Recall that Y + ¢(Y,.) defines an isomorphism between vector fields and 1-forms
on M. We define the gradient of f to be the vector field V f given by

g(Vf,.)=df.
We define the Laplacian of f to be the smooth function
Af =divVf.

Show that
A(f2) = 2fAf + 2V f ]2

Now suppose further that M is compact, connected and oriented with Riemannian
volume form €2.
(c¢) Show that
Relate this to the result about Killing fields from (a).
(d) Show that if Af >0 on M then f is constant.

Solution:

(a) By the Killing equation (Question 4(b)), if X is Killing then
9(Vy X, Z) +9(VzX,Y) =0

for all vector fields Y, 7, i.e. the map Y +— Vy X is skew-symmetric, so div X = 0.
Explicitly, if we choose a geodesic frame {FE1,...,E,} on V 3 pin (M,g) as in
Question 3(c) then

0=2> g(VeX E)=2tr(Y = VyX) =2divX

=1

on V. Since p is arbitrary, div X = 0 everywhere.
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(b) We see from our solution to (a) that if we choose p € (M, g) and a geodesic frame
{F1,...,E,} on V > p then

divX =Y g(Ve X, E).

i=1

We further see that

and hence

Notice that .
VP =B
i=1

We deduce that

Af = Zg(in Z Ej(f)Ej’ E@) = Z Ei(Ej(f))g(Eja Ez) + Ej(f)g(inEj} Ez)

ij=1

Evaluating this at p, and remembering that ¢g(E;, E;) = ¢;; and Vg, E;(p) = 0, we
see that

Af(p) = Z Ei(Ei(f))(p)-

Applying this formula with f replaced by f? we get, at p,

n

Af2 = ZEZ(E’L(JCZ)) = ZE’L(QfE’L(f))
=Y 2f(Ei(Ei(f) + 2Ei(f))® = 2fAf + 2|V f[?

as required since p is arbitrary.
(c) We first notice by Cartan’s formula that
LxQ=d(ixQ)

since d2 = 0.

Let p € M and take a positively oriented geodesic frame {Ej, ..., E,} in V 3 p as
in 3(c). Let {&,...,&.} be the dual coframe, i.e. 1-forms on V such that

&i(Ej) = 0y,

Mathematical Institute, University of Oxford Page 8 of 12

Prof Jason D. Lotay: jason.lotay@maths.ox.ac.uk



C3.11 Riemannian Geometry: Sheet 2 — HT24

which means that
&Y) =g(E,Y)

for all vector fields Y. Then, clearly,
N NE =1

on V', since both sides are unit length n-forms and we have chosen the geodesic

frame to be positively oriented. We then see that
ixQ = Z DEVEXG A AEGN A

where the @ denotes that the term is omitted. Hence,

d(ixQ) = ZE &(X ZE (E;, X))

We finally notice that, at p,
ZE (B X)) = 9(V i, e, X)(p) + 9(Fe, Vi, X) (p) = div X (p),
i=1

since Vg, E;(p) = 0 in a geodesic frame, and we use the formula for div X from our

solution to (a). Since p was arbitrary, we obtain the claimed result.

(d) We see from (c) that

/M(divX)Q:/MLXQZ/Md(iXQ)zo

by Stokes Theorem.

[Note: This is the Divergence Theorem in the case when OM = ()]

/MAfQ:O and /MA(fm_

as A = div V. Since Af > 0 on M we deduce from the first equation we must have
that

Therefore,

Af=0

(i.e. f is harmonic). (Note that clearly the same argument would have worked if
Af <0on M.) Now using (b) we see that

O:/MA(fQ)Q:Q/MfAfQJrZ/MWfFQ:2/M|Vf|2§2.
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Since we obviously have |V f|? > 0, we must have Vf = 0 on M. Hence df = 0

and thus, since M is connected, f is constant.

[Note: This result can be interpreted as a version of the mazimum principle, since
in this instance it says that a function which is subharmonic (Af > 0) which has
a local interior maximum (this will necessary exist since f is a continuous function

on a compact manifold) must in fact be constant.]
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Section C

6. The Euclidean Schwarzschild metric (of mass m > 0) is defined for (cos £, sin =) € S,
r>2m, 0 € (0,7) and (cos ¢,sin¢) € S* by

2 om\ !
g= <1 . —m> de? + (1 ~ —m> dr? + r2d6? + 12 sin? Od¢?
T

r

and extends smoothly to 6 = 0, 7.
(a) Show that there are no geodesics in this metric with r constant.

(b) Show that, given any point p with r > 2m there exists a finite length geodesic
starting at p ending at a point ¢ with r = 2m.

Solution:

(a) We see that any geodesic will satisfy

doL oL _d (¢ 2m\7",
dsar’  or ds r "
m m om\
— (—(t’)2 - — (1 - —) (r')? + r(0')* + r sin? 6((/5’)2) = 0.
If r is constant then 7’ = r” = 0 so we have that

m .

ﬁ(t/)2 +7(0)? +rsin?0(¢')* = 0.

All the terms in this expression are non-negative (since r > 2m > 0) hence ' =
0’ = ¢ = 0, which mean that the geodesic is just a point, which is not a curve.

[Note: The Euclidean Schwarzschild metric is a Euclidean black hole, with horizon
at 7 = 2m. This result says that there are no geodesic orbits of the black hole,
unlike the usual Schwarzschild metric from General Relativity.]

(b) We give two different methods for solving this question.

Method 1: We can find normalized curves (i.e. curves parametrised by arclength)

with ¢, 60, ¢ all constant by solving the equation

(1 — QTm) B (r)? =1

and assuming ' < 0, i.e.
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One may easily check by substituting »" in the geodesic equation

doL oL d om\ ', m om\ 7,
@%—5—5«“7ﬁr>7¥“70<”

that we get zero, and hence it does in fact define a geodesic.

Such a geodesic 7 : [0, L] — (M, g) will start at a point p with r = ry > 2m and

end at some point ¢ with the same values for ¢,60, ¢ and r = 2m + € < ry say.

We want to show that the length of the geodesic is finite as we send ¢ — 0. We

calculate (remembering that 7’ < 0)

L 0 2 _% 70 2 —%
uw:/|wﬂm=/r(ynﬁ) an= | <L“ﬁ) ar
0 L r 2m-+te r

is integrable on (2m,ry) we deduce that L(vy) remains finite as € — 0 as claimed.

Method 2: Take the obvious line from p with r = rq > 2m to ¢ with r = 2m with
the same values of ¢,0, ¢ given by a(s) = (¢,ro + s(2m — rg), 0, ¢). Then

L(a):/01|o/]ds:/01 (1—r0+5(22";_r0>)_ ds:/ol (TO_(TO_M)S)ids

(ro — 2m)2(1 — s)
which is finite. Reparametrizing o be arc-length gives a curve v with the same

(1 - sz)_l (r)? = 1.

As before, we have that ~ satisfies the geodesic equations and so is a geodesic.

N

length which now satisfies

[Note: This result implies that we can reach the horizon of the Euclidean black
hole in finite time (as measured along the curve). In fact, our choice of periodicity
for ¢ means we can smoothly extend the metric to r = 2m to obtain a metric
on a 4-manifold which it is interesting to ask what its topology is: it’s a 2-plane
bundle over 2, but one has to check whether it is trivial or not. This metric is
also interesting as it is an example of a metric which is Ricci-flat but not flat. The
holonomy group of the metric (the group generated by parallel transport) is all
of SO(4) — it is a major open question whether there are any compact Ricci-flat

manifolds with holonomy equal to all of SO(4).]
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