C3.11 Riemannian Geometry
 Sheet 2 - HT24

 Solutions

 Solutions}

This problem sheet is based on Sections 2.3 and 3 of the lecture notes. This version contains the solutions to all of the questions.

Section A

1. Let (M, g) be an oriented Riemannian manifold. Show that parallel transport along any curve in M is orientation preserving.

Solution: Let $\alpha:[0, L] \rightarrow M$ be a curve and let $\tau_{t}: T_{\alpha(0)} \rightarrow T_{\alpha(t)} M$ be the parallel transport along $\left.\alpha\right|_{[0, t]}$ for each $t \in[0, L]$. Then $\tau_{1}=\tau_{\alpha}$ is the parallel transport along α. Choose an oriented orthonormal basis $\left\{E_{1}(0), \ldots, E_{n}(0)\right\}$ for $T_{\alpha(0)} M$. Since τ_{t} is an isometry for all t, if we define $E_{i}(t)=\tau_{t}\left(E_{i}(0)\right)$, then $\left\{E_{1}(t), \ldots, E_{n}(t)\right\}$ is an orthonormal basis for $T_{\alpha(t)} M$.
If we use the basis $\left\{E_{1}(t), \ldots, E_{n}(t)\right\}$ as the basis for $T_{\alpha(t)} M$, the map $f:[0, L] \rightarrow \mathbb{R}$ given by

$$
f(t)=\operatorname{det}\left(\tau_{t}\right)
$$

is then well-defined and continuous (in fact, smooth). Moreover, $f(t) \in\{ \pm 1\}$ for all t since $\left\{E_{1}(t), \ldots, E_{n}(t)\right\}$ is orthonormal for all t.
As $[0, L]$ is connected and $f(0)=1$, we deduce that $f(t)=1$ for all t. Hence τ_{t} is orientation preserving for all t, and so $\tau_{\alpha}=\tau_{1}$ is orientation preserving.
2. Let (M, g) be an n-dimensional Riemannian manifold. Let $p \in M$ and let U be a normal neighbourhood of p.

Let $\left\{E_{1}, \ldots, E_{n}\right\}$ be an orthonormal basis for $T_{p} M$, let $\psi: T_{p} M \rightarrow \mathbb{R}^{n}$ be given by $\psi\left(\sum_{i=1}^{n} x_{i} E_{i}\right)=\left(x_{1}, \ldots, x_{n}\right)$ and let $\varphi=\psi \circ \exp _{p}^{-1}: U \rightarrow \mathbb{R}^{n}$.
(a) Let $\gamma(t)$ be a geodesic through p in U in M. Show that

$$
\varphi \circ \gamma(t)=\left(a_{1} t, \ldots, a_{n} t\right)
$$

for $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$.
(b) Show that in (U, φ), we have $g_{i j}(p)=\delta_{i j}$ and $\Gamma_{i j}^{k}(p)=0$.
(c) Hence, or otherwise, show that there is open set $V \ni p$ and orthonormal vector fields E_{1}, \ldots, E_{n} on V such that

$$
\nabla_{E_{i}} E_{j}(p)=0
$$

Solution:

(a) Geodesics through p in U are given by $\gamma(t)=\exp _{p}(t X)$ for some X in $T_{p} M$ since U is a normal neighbourhood (which means exp : $V \rightarrow U$ is a diffeomorphism for some $\left.V \subseteq T_{p} M\right)$. Thus

$$
\varphi \circ \gamma(t)=\psi \circ \exp _{p}^{-1}\left(\exp _{p}(t X)\right)=\psi(t X)
$$

As $\left\{E_{1}, \ldots, E_{n}\right\}$ is a basis, we can write any $X \in T_{p} M$ uniquely as $X=\sum_{i=1}^{n} a_{i} E_{i}$ for some $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$. Hence,

$$
\varphi \circ \gamma(t)=\psi(t X)=\psi\left(\sum_{i=1}^{n} t a_{i} E_{i}\right)=\left(a_{1} t, \ldots, a_{n} t\right)
$$

by definition, as we wanted to show.
(b) We see that $\varphi(p)=0$ and $\psi\left(E_{i}\right)=\mathbf{e}_{i}$ (the unit vector with 1 in the i th place and 0 everywhere else). Therefore, $\mathrm{d} \psi_{0}\left(E_{i}\right)=\partial_{i}$. Hence, taking the inverse (as ψ is a local diffeomorphism at 0 , its differential at 0 is invertible), we have $\mathrm{d}\left(\psi^{-1}\right)_{0}\left(\partial_{i}\right)=E_{i}$. Since $\varphi=\psi \circ \exp _{p}^{-1}$ we have $\varphi^{-1}=\exp _{p} \circ \psi^{-1}$ so, by the Chain rule, we have

$$
\mathrm{d}\left(\varphi^{-1}\right)_{\varphi(p)}\left(\partial_{i}\right)=\mathrm{d}\left(\exp _{p}\right)_{0} \circ \mathrm{~d}\left(\psi^{-1}\right)_{0}\left(\partial_{i}\right)=\mathrm{d}\left(\exp _{p}\right)_{0}\left(E_{i}\right)=E_{i}
$$

since $\mathrm{d}\left(\exp _{p}\right)_{0}=\mathrm{id}$. Thus

$$
g_{i j}(p)=g_{p}\left(\mathrm{~d}\left(\varphi^{-1}\right)_{\varphi(p)}\left(\partial_{i}\right), \mathrm{d}\left(\varphi^{-1}\right)_{\varphi(p)}\left(\partial_{j}\right)\right)=g_{p}\left(E_{i}, E_{j}\right)=\delta_{i j} .
$$

Finally, the geodesic equations in U for $\gamma(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)$ are

$$
x_{k}^{\prime \prime}(t)+\sum_{i, j=1}^{n} \Gamma_{i j}^{k} x_{i}^{\prime}(t) x_{j}^{\prime}(t)=0 .
$$

However, as we know that geodesics through p are given by straight lines $x_{i}(t)=a_{i} t$, we see that $x_{k}^{\prime \prime}=0$ and $x_{i}^{\prime}(t)=a_{i}$, therefore

$$
\sum_{i, j=1}^{n} \Gamma_{i j}^{k}(p) a_{i} a_{j}=0
$$

for all $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$. We deduce that $\Gamma_{i j}^{k}(p)=0$.
[Note: The chart (U, φ) is called geodesic normal coordinates at p. These coordinates are very useful for calculations and say that there are no zero or first order invariants of a Riemannian metric at a given point.]
(c) Take V to be a geodesic ball $B_{\epsilon}(p)$ contained in U. For every point q in V there exists a unique radial geodesic γ_{q} from p to q. Let $\tau_{q}: T_{p} M \rightarrow T_{q} M$ be the parallel transport along γ_{q}. We then define, for all $q \in V$,

$$
E_{i}(q)=\tau_{q}\left(E_{i}(p)\right)
$$

where $\left\{E_{1}(p), \ldots, E_{n}(p)\right\}$ is an orthonormal basis for $T_{p} M$.
Since τ_{q} is an isometry for all q and depends smoothly on q, we deduce that E_{1}, \ldots, E_{n} are orthonormal vector fields on V.

Since the integral curve α of E_{i} with $\alpha(0)=p$ is a radial geodesic, and E_{j} is parallel along radial geodesics, so $\tau_{t}^{-1}\left(E_{j}(\alpha(t))=E_{j}(p)\right.$ for all t (in the notation of Question 1) we deduce from Question 1 that

$$
\nabla_{E_{i}} E_{j}(p)=0
$$

[Note: The frame $\left\{E_{1}, \ldots, E_{n}\right\}$ is a geodesic frame on V or near p. This is very useful for computations.]

Section B

3. Let X, Y be vector fields on (M, g). Let $p \in M$ and let $\alpha:(-\epsilon, \epsilon) \rightarrow M$ be the integral curve of X with $\alpha(0)=p$. For all $t \in(-\epsilon, \epsilon)$ let $\tau_{t}: T_{p} M \rightarrow T_{\alpha(t)} M$ be parallel transport along $\left.\alpha\right|_{[0, t]}$. Show that

$$
\nabla_{X} Y(p)=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left(\tau_{t}^{-1}(Y(\alpha(t)))\right)\right|_{t=0}
$$

Solution: Choose a chart (U, φ) with $p \in U$ so that $\varphi(p)=0$ and let $\left\{X_{1}, \ldots, X_{n}\right\}$ be the coordinate frame field on U. Suppose, by making ϵ smaller if necessary, that $\alpha(-\epsilon, \epsilon) \subseteq U$.

Let $E_{1}(t), \ldots, E_{n}(t)$ be parallel vector fields along α so that $E_{i}(0)=X_{i}(p)$ for $i=$ $1, \ldots, n$, i.e. $E_{i}(t)=\tau_{t}\left(X_{i}(p)\right)$ for all t. Since τ_{t} is an isomorphism for all t, we have that $\left\{E_{1}(t), \ldots, E_{n}(t)\right\}$ is a basis for $T_{\alpha(t)} M$ for all t.
Hence, we can write Y along α as

$$
Y(\alpha(t))=\sum_{i=1}^{n} b_{i}(t) E_{i}(t)
$$

for some smooth functions $b_{i}:(-\epsilon, \epsilon) \rightarrow \mathbb{R}$. Since α is an integral curve of $X, X=\alpha^{\prime}$ along α, and therefore

$$
\nabla_{X} Y(p)=\nabla_{\alpha^{\prime}} Y(p)=\left.\nabla_{\alpha^{\prime}} Y(\alpha(t))\right|_{t=0}=\left.\nabla_{\alpha^{\prime}} \sum_{i=1}^{n} b_{i}(t) E_{i}(t)\right|_{t=0}=\sum_{i=1}^{n} b_{i}^{\prime}(0) E_{i}(0)
$$

since $\nabla_{\alpha^{\prime}} E_{i}=0$.
On the other hand, we see that

$$
\tau_{t}^{-1}(Y(\alpha(t)))=\tau_{t}^{-1}\left(\sum_{i=1}^{n} b_{i}(t) E_{i}(t)\right)=\sum_{i=1}^{n} b_{i}(t) E_{i}(0)
$$

and therefore

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left(\tau_{t}^{-1}(Y(\alpha(t)))\right)\right|_{t=0}=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left(\sum_{i=1}^{n} b_{i}(t) E_{i}(0)\right)\right|_{t=0}=\sum_{i=1}^{n} b_{i}^{\prime}(0) E_{i}(0)=\nabla_{X} Y(p)
$$

as claimed.
[Note: This question says that you can recover the Levi-Civita connection from the parallel transport maps. Hence, parallel transport (which allows us to "connect" tangent spaces) is equivalent to the Levi-Civita connection.]
4. Let (M, g) be a Riemannian manifold. Recall that a Killing field on M is a vector field X such that $\mathcal{L}_{X} g=0$ or, equivalently, that the flow of X near any point consists of local isometries.
(a) Let $p \in M$ and let U be a normal neighbourhood of p. Suppose that X is a Killing field on (M, g) so that $X(p)=0$ and $X(q) \neq 0$ for all $q \in U \backslash\{p\}$.
By using the First variation formula, or otherwise, show that X is tangent to all sufficiently small geodesic spheres centred at p.
(b) Show that X is a Killing field on (M, g) if and only if, for all vector fields Y, Z on M,

$$
g\left(\nabla_{Y} X, Z\right)+g\left(\nabla_{Z} X, Y\right)=0 .
$$

Solution:

(a) By making U smaller if necessary we can assume that p is still an isolated zero of X in U and that the flow of $X\left\{\phi_{t}^{X}: U \rightarrow M: t \in(-\epsilon, \epsilon)\right\}$ is defined on U.

Let $\mathcal{S}_{\delta}(p)$ be any geodesic sphere contained in U and let $q \in \mathcal{S}_{\delta}(p)$. Let α : $[0, \delta] \rightarrow U$ be the normalized radial geodesic from p to q. We define a variation $f:(-\epsilon, \epsilon) \times[0, \delta] \rightarrow M$ of α by

$$
f(s, t)=\phi_{s}^{X}(\alpha(t)) .
$$

Notice that since $\phi_{0}^{X}=\mathrm{id}$, and the maps ϕ_{s}^{X} depend smoothly on s, f is indeed a variation of f. Moreover, the variation field V_{f} of f is given by

$$
V_{f}(t)=\frac{\partial f}{\partial s}(0, t)=\left.\frac{\mathrm{d}}{\mathrm{~d} s} \phi_{s}^{X}\right|_{s=0}(\alpha(t))=X(\alpha(t))
$$

since ϕ_{s}^{X} is the flow of X. Hence,

$$
V_{f}(0)=X(p)=0 \quad \text { and } \quad V_{f}(\delta)=X(q) .
$$

We now notice that

$$
\left|\frac{\partial f}{\partial t}(s, t)\right|^{2}=\left|\mathrm{d}\left(\phi_{s}^{X}\right)_{\alpha(t)}\left(\alpha^{\prime}(t)\right)\right|^{2}=\left|\alpha^{\prime}(t)\right|^{2}
$$

since X is Killing and so its flow consists of local isometries. Therefore, the energy of the variation f of α

$$
E_{f}(s)=\int_{0}^{\delta}\left|\alpha^{\prime}(t)\right|^{2} \mathrm{~d} t
$$

is independent of s. (More geometrically, since X is Killing with $X(p)=0$ it will map radial geodesics to radial geodesics and preserve their length, and hence their energy as they are geodesics.)

We deduce from the First variation formula that

$$
\begin{aligned}
0 & =\frac{1}{2} E_{f}^{\prime}(0)=-\int_{0}^{\delta} g\left(V_{f}, \nabla_{\alpha^{\prime}} \alpha^{\prime}\right) \mathrm{d} t-g\left(V_{f}(0), \alpha^{\prime}(0)\right)+g\left(V_{f}(\delta), \alpha^{\prime}(\delta)\right. \\
& =g\left(X(q), \alpha^{\prime}(\delta)\right) .
\end{aligned}
$$

Here we used that $\nabla_{\alpha^{\prime}} \alpha^{\prime}=0$ as α is a geodesic and that $V_{f}(0)=0, V_{f}(\delta)=X(q)$. Now, by the Gauss Lemma, as α is a normalized radial geodesic, we have that $\alpha^{\prime}(\delta)$ is normal to $\mathcal{S}_{\delta}(p)$ at q, and is non-zero, and hence $X(q)$ must be tangent to $\mathcal{S}_{\delta}(p)$ at q.

Since q and δ are arbitrary, the result follows.
(b) We note that the given equation is called the Killing equation: for all Y, Z in M

$$
g\left(\nabla_{Y} X, Z\right)+g\left(\nabla_{Z} X, Y\right)=0
$$

The slick way to do the question is:

$$
\begin{aligned}
\left(\mathcal{L}_{X} g\right)(Y, Z) & =\mathcal{L}_{X}(g(Y, Z))-g\left(\mathcal{L}_{X} Y, Z\right)-g\left(Y, \mathcal{L}_{X} Z\right) \\
& =X(g(Y, Z))-g([X, Y], Z)-g(Y,[X, Z]) \\
& =X(g(Y, Z))-g\left(\nabla_{X} Y, Z\right)-g\left(Y, \nabla_{X} Z\right)+g\left(\nabla_{Y} X, Z\right)+g\left(Y, \nabla_{Z} X\right) \\
& =g\left(\nabla_{Y} X, Z\right)+g\left(Y, \nabla_{Z} X\right)
\end{aligned}
$$

Using properties (iv)-(v) of the Levi-Civita connection (metric compatibility and torsion-free). Hence $\mathcal{L}_{X} g=0$ (i.e. X is a Killing field) if and only if the Killing equation holds for all Y, Z in M.
5. Let (M, g) be a Riemannian manifold, let $f: M \rightarrow \mathbb{R}$ be a smooth function and let X be a vector field on M.
(a) Note that we have a linear map from vector fields to vector fields given by $Y \mapsto$ $\nabla_{Y} X$. We define the divergence of X to be the smooth function

$$
\operatorname{div} X=\operatorname{tr}\left(Y \mapsto \nabla_{Y} X\right)
$$

Show that if X is a Killing field then $\operatorname{div} X=0$.
(b) Recall that $Y \mapsto g(Y,$.$) defines an isomorphism between vector fields and 1-forms$ on M. We define the gradient of f to be the vector field ∇f given by

$$
g(\nabla f, .)=\mathrm{d} f
$$

We define the Laplacian of f to be the smooth function

$$
\Delta f=\operatorname{div} \nabla f
$$

Show that

$$
\Delta\left(f^{2}\right)=2 f \Delta f+2|\nabla f|^{2}
$$

Now suppose further that M is compact, connected and oriented with Riemannian volume form Ω.
(c) Show that

$$
\mathcal{L}_{X} \Omega=(\operatorname{div} X) \Omega
$$

Relate this to the result about Killing fields from (a).
(d) Show that if $\Delta f \geq 0$ on M then f is constant.

Solution:

(a) By the Killing equation (Question 4(b)), if X is Killing then

$$
g\left(\nabla_{Y} X, Z\right)+g\left(\nabla_{Z} X, Y\right)=0
$$

for all vector fields Y, Z, i.e. the map $Y \mapsto \nabla_{Y} X$ is skew-symmetric, so $\operatorname{div} X=0$. Explicitly, if we choose a geodesic frame $\left\{E_{1}, \ldots, E_{n}\right\}$ on $V \ni p$ in (M, g) as in Question 3(c) then

$$
0=2 \sum_{i=1}^{n} g\left(\nabla_{E_{i}} X, E_{i}\right)=2 \operatorname{tr}\left(Y \mapsto \nabla_{Y} X\right)=2 \operatorname{div} X
$$

on V. Since p is arbitrary, $\operatorname{div} X=0$ everywhere.
(b) We see from our solution to (a) that if we choose $p \in(M, g)$ and a geodesic frame $\left\{E_{1}, \ldots, E_{n}\right\}$ on $V \ni p$ then

$$
\operatorname{div} X=\sum_{i=1}^{n} g\left(\nabla_{E_{i}} X, E_{i}\right) .
$$

We further see that

$$
g\left(\nabla f, E_{i}\right)=\mathrm{d} f\left(E_{i}\right)=E_{i}(f)
$$

and hence

$$
\nabla f=\sum_{i=1}^{n} E_{i}(f) E_{i}
$$

Notice that

$$
|\nabla f|^{2}=\sum_{i=1}^{n}\left|E_{i}(f)\right|^{2}
$$

We deduce that

$$
\Delta f=\sum_{i=1}^{n} g\left(\nabla_{E_{i}} \sum_{j=1}^{n} E_{j}(f) E_{j}, E_{i}\right)=\sum_{i, j=1}^{n} E_{i}\left(E_{j}(f)\right) g\left(E_{j}, E_{i}\right)+E_{j}(f) g\left(\nabla_{E_{i}} E_{j}, E_{i}\right)
$$

Evaluating this at p, and remembering that $g\left(E_{i}, E_{j}\right)=\delta_{i j}$ and $\nabla_{E_{i}} E_{j}(p)=0$, we see that

$$
\Delta f(p)=\sum_{i=1}^{n} E_{i}\left(E_{i}(f)\right)(p)
$$

Applying this formula with f replaced by f^{2} we get, at p,

$$
\begin{aligned}
\Delta f^{2} & =\sum_{i=1}^{n} E_{i}\left(E_{i}\left(f^{2}\right)\right)=\sum_{i=1}^{n} E_{i}\left(2 f E_{i}(f)\right) \\
& =\sum_{i=1}^{n} 2 f\left(E_{i}\left(E_{i}(f)\right)+2\left(E_{i}(f)\right)^{2}=2 f \Delta f+2|\nabla f|^{2}\right.
\end{aligned}
$$

as required since p is arbitrary.
(c) We first notice by Cartan's formula that

$$
\mathcal{L}_{X} \Omega=\mathrm{d}\left(i_{X} \Omega\right)
$$

since $\mathrm{d} \Omega=0$.
Let $p \in M$ and take a positively oriented geodesic frame $\left\{E_{1}, \ldots, E_{n}\right\}$ in $V \ni p$ as in 3(c). Let $\left\{\xi_{1}, \ldots, \xi_{n}\right\}$ be the dual coframe, i.e. 1-forms on V such that

$$
\xi_{i}\left(E_{j}\right)=\delta_{i j},
$$

which means that

$$
\xi_{i}(Y)=g\left(E_{i}, Y\right)
$$

for all vector fields Y. Then, clearly,

$$
\xi_{1} \wedge \ldots \wedge \xi_{n}=\Omega
$$

on V, since both sides are unit length n-forms and we have chosen the geodesic frame to be positively oriented. We then see that

$$
i_{X} \Omega=\sum_{i=1}^{n}(-1)^{(i-1)} \xi_{i}(X) \xi_{1} \wedge \ldots \wedge \widehat{\xi}_{i} \wedge \ldots \wedge \xi_{n}
$$

where the $\widehat{\xi}_{i}$ denotes that the term is omitted. Hence,

$$
\left.\mathrm{d}\left(i_{X} \Omega\right)=\sum_{i=1}^{n} E_{i}\left(\xi_{i}(X)\right) \xi_{1} \wedge \ldots \wedge \xi_{n}=\sum_{i=1}^{n} E_{i}\left(g\left(E_{i}, X\right)\right)\right) \Omega
$$

We finally notice that, at p,

$$
\sum_{i=1}^{n} E_{i}\left(g\left(E_{i}, X\right)\right)(p)=\sum_{i=1}^{n} g\left(\nabla_{E_{i}} E_{i}, X\right)(p)+g\left(E_{i}, \nabla_{E_{i}} X\right)(p)=\operatorname{div} X(p)
$$

since $\nabla_{E_{i}} E_{j}(p)=0$ in a geodesic frame, and we use the formula for div X from our solution to (a). Since p was arbitrary, we obtain the claimed result.
(d) We see from (c) that

$$
\int_{M}(\operatorname{div} X) \Omega=\int_{M} \mathcal{L}_{X} \Omega=\int_{M} \mathrm{~d}\left(i_{X} \Omega\right)=0
$$

by Stokes Theorem.
[Note: This is the Divergence Theorem in the case when $\partial M=\emptyset$.]
Therefore,

$$
\int_{M} \Delta f \Omega=0 \quad \text { and } \quad \int_{M} \Delta\left(f^{2}\right) \Omega=0
$$

as $\Delta=\operatorname{div} \nabla$. Since $\Delta f \geq 0$ on M we deduce from the first equation we must have that

$$
\Delta f=0
$$

(i.e. f is harmonic). (Note that clearly the same argument would have worked if $\Delta f \leq 0$ on M.) Now using (b) we see that

$$
0=\int_{M} \Delta\left(f^{2}\right) \Omega=2 \int_{M} f \Delta f \Omega+2 \int_{M}|\nabla f|^{2} \Omega=2 \int_{M}|\nabla f|^{2} \Omega
$$

Since we obviously have $|\nabla f|^{2} \geq 0$, we must have $\nabla f=0$ on M. Hence $\mathrm{d} f=0$ and thus, since M is connected, f is constant.
[Note: This result can be interpreted as a version of the maximum principle, since in this instance it says that a function which is subharmonic $(\Delta f \geq 0)$ which has a local interior maximum (this will necessary exist since f is a continuous function on a compact manifold) must in fact be constant.]

Section C

6. The Euclidean Schwarzschild metric (of mass $m>0$) is defined for $\left(\cos \frac{t}{4 m}, \sin \frac{t}{4 m}\right) \in \mathcal{S}^{1}$, $r>2 m, \theta \in(0, \pi)$ and $(\cos \phi, \sin \phi) \in \mathcal{S}^{1}$ by

$$
g=\left(1-\frac{2 m}{r}\right) \mathrm{d} t^{2}+\left(1-\frac{2 m}{r}\right)^{-1} \mathrm{~d} r^{2}+r^{2} \mathrm{~d} \theta^{2}+r^{2} \sin ^{2} \theta \mathrm{~d} \phi^{2}
$$

and extends smoothly to $\theta=0, \pi$.
(a) Show that there are no geodesics in this metric with r constant.
(b) Show that, given any point p with $r>2 m$ there exists a finite length geodesic γ starting at p ending at a point q with $r=2 m$.

Solution:

(a) We see that any geodesic will satisfy

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} s} \frac{\partial L}{\partial r^{\prime}}-\frac{\partial L}{\partial r}= & \frac{\mathrm{d}}{\mathrm{~d} s}\left(\left(1-\frac{2 m}{r}\right)^{-1} r^{\prime}\right) \\
& -\left(\frac{m}{r^{2}}\left(t^{\prime}\right)^{2}-\frac{m}{r^{2}}\left(1-\frac{2 m}{r}\right)^{-2}\left(r^{\prime}\right)^{2}+r\left(\theta^{\prime}\right)^{2}+r \sin ^{2} \theta\left(\phi^{\prime}\right)^{2}\right)=0
\end{aligned}
$$

If r is constant then $r^{\prime}=r^{\prime \prime}=0$ so we have that

$$
\frac{m}{r^{2}}\left(t^{\prime}\right)^{2}+r\left(\theta^{\prime}\right)^{2}+r \sin ^{2} \theta\left(\phi^{\prime}\right)^{2}=0
$$

All the terms in this expression are non-negative (since $r>2 m>0$) hence $t^{\prime}=$ $\theta^{\prime}=\phi^{\prime}=0$, which mean that the geodesic is just a point, which is not a curve.
[Note: The Euclidean Schwarzschild metric is a Euclidean black hole, with horizon at $r=2 m$. This result says that there are no geodesic orbits of the black hole, unlike the usual Schwarzschild metric from General Relativity.]
(b) We give two different methods for solving this question.

Method 1: We can find normalized curves (i.e. curves parametrised by arclength) with t, θ, ϕ all constant by solving the equation

$$
\left(1-\frac{2 m}{r}\right)^{-1}\left(r^{\prime}\right)^{2}=1
$$

and assuming $r^{\prime}<0$, i.e.

$$
r^{\prime}=-\left(1-\frac{2 m}{r}\right)^{\frac{1}{2}}
$$

One may easily check by substituting r^{\prime} in the geodesic equation

$$
\frac{\mathrm{d}}{\mathrm{~d} s} \frac{\partial L}{\partial r^{\prime}}-\frac{\partial L}{\partial r}=\frac{\mathrm{d}}{\mathrm{~d} s}\left(\left(1-\frac{2 m}{r}\right)^{-1} r^{\prime}\right)-\frac{m}{r^{2}}\left(1-\frac{2 m}{r}\right)^{-2}\left(r^{\prime}\right)^{2}
$$

that we get zero, and hence it does in fact define a geodesic.
Such a geodesic $\gamma:[0, L] \rightarrow(M, g)$ will start at a point p with $r=r_{0}>2 m$ and end at some point q with the same values for t, θ, ϕ and $r=2 m+\epsilon<r_{0}$ say.

We want to show that the length of the geodesic is finite as we send $\epsilon \rightarrow 0$. We calculate (remembering that $r^{\prime}<0$)

$$
L(\gamma)=\int_{0}^{L}\left|\gamma^{\prime}(s)\right| \mathrm{d} s=\int_{L}^{0} r^{\prime}\left(1-\frac{2 m}{r}\right)^{-\frac{1}{2}} \mathrm{~d} s=\int_{2 m+\epsilon}^{r_{0}}\left(1-\frac{2 m}{r}\right)^{-\frac{1}{2}} \mathrm{~d} r .
$$

Since

$$
\left(1-\frac{2 m}{r}\right)^{-\frac{1}{2}}=\frac{r^{\frac{1}{2}}}{(r-2 m)^{\frac{1}{2}}}
$$

is integrable on $\left(2 m, r_{0}\right)$ we deduce that $L(\gamma)$ remains finite as $\epsilon \rightarrow 0$ as claimed.
Method 2: Take the obvious line from p with $r=r_{0}>2 m$ to q with $r=2 m$ with the same values of t, θ, ϕ given by $\alpha(s)=\left(t, r_{0}+s\left(2 m-r_{0}\right), \theta, \phi\right)$. Then

$$
L(\alpha)=\int_{0}^{1}\left|\alpha^{\prime}\right| \mathrm{d} s=\int_{0}^{1}\left(1-\frac{2 m}{r_{0}+s\left(2 m-r_{0}\right)}\right)^{-\frac{1}{2}} \mathrm{~d} s=\int_{0}^{1} \frac{\left(r_{0}-\left(r_{0}-2 m\right) s\right)^{\frac{1}{2}}}{\left(r_{0}-2 m\right)^{\frac{1}{2}}(1-s)^{\frac{1}{2}}} \mathrm{~d} s
$$

which is finite. Reparametrizing α be arc-length gives a curve γ with the same length which now satisfies

$$
\left(1-\frac{2 m}{r}\right)^{-1}\left(r^{\prime}\right)^{2}=1
$$

As before, we have that γ satisfies the geodesic equations and so is a geodesic.
[Note: This result implies that we can reach the horizon of the Euclidean black hole in finite time (as measured along the curve). In fact, our choice of periodicity for t means we can smoothly extend the metric to $r=2 m$ to obtain a metric on a 4-manifold which it is interesting to ask what its topology is: it's a 2 -plane bundle over \mathcal{S}^{2}, but one has to check whether it is trivial or not. This metric is also interesting as it is an example of a metric which is Ricci-flat but not flat. The holonomy group of the metric (the group generated by parallel transport) is all of $\mathrm{SO}(4)$ - it is a major open question whether there are any compact Ricci-flat manifolds with holonomy equal to all of $\mathrm{SO}(4)$.]

