
C3.11 Riemannian Geometry

Sheet 2 — HT24

Solutions

This problem sheet is based on Sections 2.3 and 3 of the lecture notes. This version contains

the solutions to all of the questions.

Section A

1. Let (M, g) be an oriented Riemannian manifold. Show that parallel transport along any

curve in M is orientation preserving.

Solution: Let α : [0, L] → M be a curve and let τt : Tα(0) → Tα(t)M be the parallel

transport along α|[0,t] for each t ∈ [0, L]. Then τ1 = τα is the parallel transport along α.

Choose an oriented orthonormal basis {E1(0), . . . , En(0)} for Tα(0)M . Since τt is an

isometry for all t, if we define Ei(t) = τt(Ei(0)), then {E1(t), . . . , En(t)} is an orthonor-

mal basis for Tα(t)M .

If we use the basis {E1(t), . . . , En(t)} as the basis for Tα(t)M , the map f : [0, L] → R
given by

f(t) = det(τt)

is then well-defined and continuous (in fact, smooth). Moreover, f(t) ∈ {±1} for all t

since {E1(t), . . . , En(t)} is orthonormal for all t.

As [0, L] is connected and f(0) = 1, we deduce that f(t) = 1 for all t. Hence τt is

orientation preserving for all t, and so τα = τ1 is orientation preserving.
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2. Let (M, g) be an n-dimensional Riemannian manifold. Let p ∈M and let U be a normal

neighbourhood of p.

Let {E1, . . . , En} be an orthonormal basis for TpM , let ψ : TpM → Rn be given by

ψ(
∑n

i=1 xiEi) = (x1, . . . , xn) and let φ = ψ ◦ exp−1
p : U → Rn.

(a) Let γ(t) be a geodesic through p in U in M . Show that

φ ◦ γ(t) = (a1t, . . . , ant)

for (a1, . . . , an) ∈ Rn.

(b) Show that in (U,φ), we have gij(p) = δij and Γk
ij(p) = 0.

(c) Hence, or otherwise, show that there is open set V ∋ p and orthonormal vector

fields E1, . . . , En on V such that

∇Ei
Ej(p) = 0.

Solution:

(a) Geodesics through p in U are given by γ(t) = expp(tX) for some X in TpM since

U is a normal neighbourhood (which means exp : V → U is a diffeomorphism for

some V ⊆ TpM). Thus

φ ◦ γ(t) = ψ ◦ exp−1
p (expp(tX)) = ψ(tX).

As {E1, . . . , En} is a basis, we can write any X ∈ TpM uniquely as X =
∑n

i=1 aiEi

for some (a1, . . . , an) ∈ Rn. Hence,

φ ◦ γ(t) = ψ(tX) = ψ(
n∑

i=1

taiEi) = (a1t, . . . , ant)

by definition, as we wanted to show.

(b) We see that φ(p) = 0 and ψ(Ei) = ei (the unit vector with 1 in the ith place and 0

everywhere else). Therefore, dψ0(Ei) = ∂i. Hence, taking the inverse (as ψ is a local

diffeomorphism at 0, its differential at 0 is invertible), we have d(ψ−1)0(∂i) = Ei.

Since φ = ψ ◦ exp−1
p we have φ−1 = expp ◦ψ−1 so, by the Chain rule, we have

d(φ−1)φ(p)(∂i) = d(expp)0 ◦ d(ψ−1)0(∂i) = d(expp)0(Ei) = Ei

since d(expp)0 = id. Thus

gij(p) = gp(d(φ
−1)φ(p)(∂i), d(φ

−1)φ(p)(∂j)) = gp(Ei, Ej) = δij.
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Finally, the geodesic equations in U for γ(t) = (x1(t), . . . , xn(t)) are

x′′k(t) +
n∑

i,j=1

Γk
ijx

′
i(t)x

′
j(t) = 0.

However, as we know that geodesics through p are given by straight lines xi(t) = ait,

we see that x′′k = 0 and x′i(t) = ai, therefore

n∑
i,j=1

Γk
ij(p)aiaj = 0

for all (a1, . . . , an) ∈ Rn. We deduce that Γk
ij(p) = 0.

[Note: The chart (U,φ) is called geodesic normal coordinates at p. These coordi-

nates are very useful for calculations and say that there are no zero or first order

invariants of a Riemannian metric at a given point.]

(c) Take V to be a geodesic ball Bϵ(p) contained in U . For every point q in V there

exists a unique radial geodesic γq from p to q. Let τq : TpM → TqM be the parallel

transport along γq. We then define, for all q ∈ V ,

Ei(q) = τq(Ei(p))

where {E1(p), . . . , En(p)} is an orthonormal basis for TpM .

Since τq is an isometry for all q and depends smoothly on q, we deduce that

E1, . . . , En are orthonormal vector fields on V .

Since the integral curve α of Ei with α(0) = p is a radial geodesic, and Ej is

parallel along radial geodesics, so τ−1
t (Ej(α(t)) = Ej(p) for all t (in the notation of

Question 1) we deduce from Question 1 that

∇Ei
Ej(p) = 0.

[Note: The frame {E1, . . . , En} is a geodesic frame on V or near p. This is very

useful for computations.]
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Section B

3. Let X, Y be vector fields on (M, g). Let p ∈M and let α : (−ϵ, ϵ) →M be the integral

curve of X with α(0) = p. For all t ∈ (−ϵ, ϵ) let τt : TpM → Tα(t)M be parallel transport

along α|[0,t]. Show that

∇XY (p) =
d

dt

(
τ−1
t

(
Y (α(t))

))
|t=0.

Solution: Choose a chart (U,φ) with p ∈ U so that φ(p) = 0 and let {X1, . . . , Xn}
be the coordinate frame field on U . Suppose, by making ϵ smaller if necessary, that

α(−ϵ, ϵ) ⊆ U .

Let E1(t), . . . , En(t) be parallel vector fields along α so that Ei(0) = Xi(p) for i =

1, . . . , n, i.e. Ei(t) = τt(Xi(p)) for all t. Since τt is an isomorphism for all t, we have

that {E1(t), . . . , En(t)} is a basis for Tα(t)M for all t.

Hence, we can write Y along α as

Y (α(t)) =
n∑

i=1

bi(t)Ei(t)

for some smooth functions bi : (−ϵ, ϵ) → R. Since α is an integral curve of X, X = α′

along α, and therefore

∇XY (p) = ∇α′Y (p) = ∇α′Y (α(t))|t=0 = ∇α′

n∑
i=1

bi(t)Ei(t)|t=0 =
n∑

i=1

b′i(0)Ei(0)

since ∇α′Ei = 0.

On the other hand, we see that

τ−1
t

(
Y (α(t))

)
= τ−1

t

(
n∑

i=1

bi(t)Ei(t)

)
=

n∑
i=1

bi(t)Ei(0)

and therefore

d

dt

(
τ−1
t

(
Y (α(t))

))
|t=0 =

d

dt

(
n∑

i=1

bi(t)Ei(0)

)
|t=0 =

n∑
i=1

b′i(0)Ei(0) = ∇XY (p)

as claimed.

[Note: This question says that you can recover the Levi-Civita connection from the

parallel transport maps. Hence, parallel transport (which allows us to “connect” tangent

spaces) is equivalent to the Levi-Civita connection.]

Mathematical Institute, University of Oxford

Prof Jason D. Lotay: jason.lotay@maths.ox.ac.uk

Page 4 of 12



C3.11 Riemannian Geometry: Sheet 2 — HT24

4. Let (M, g) be a Riemannian manifold. Recall that a Killing field on M is a vector field

X such that LXg = 0 or, equivalently, that the flow of X near any point consists of

local isometries.

(a) Let p ∈M and let U be a normal neighbourhood of p. Suppose that X is a Killing

field on (M, g) so that X(p) = 0 and X(q) ̸= 0 for all q ∈ U \ {p}.
By using the First variation formula, or otherwise, show that X is tangent to all

sufficiently small geodesic spheres centred at p.

(b) Show that X is a Killing field on (M, g) if and only if, for all vector fields Y, Z on

M ,

g(∇YX,Z) + g(∇ZX, Y ) = 0.

Solution:

(a) By making U smaller if necessary we can assume that p is still an isolated zero of

X in U and that the flow of X {ϕX
t : U →M : t ∈ (−ϵ, ϵ)} is defined on U .

Let Sδ(p) be any geodesic sphere contained in U and let q ∈ Sδ(p). Let α :

[0, δ] → U be the normalized radial geodesic from p to q. We define a variation

f : (−ϵ, ϵ)× [0, δ] →M of α by

f(s, t) = ϕX
s

(
α(t)

)
.

Notice that since ϕX
0 = id, and the maps ϕX

s depend smoothly on s, f is indeed a

variation of f . Moreover, the variation field Vf of f is given by

Vf (t) =
∂f

∂s
(0, t) =

d

ds
ϕX
s |s=0(α(t)) = X(α(t))

since ϕX
s is the flow of X. Hence,

Vf (0) = X(p) = 0 and Vf (δ) = X(q).

We now notice that

|∂f
∂t

(s, t)|2 = |d(ϕX
s )α(t)(α

′(t))|2 = |α′(t)|2

since X is Killing and so its flow consists of local isometries. Therefore, the energy

of the variation f of α

Ef (s) =

∫ δ

0

|α′(t)|2dt

is independent of s. (More geometrically, since X is Killing with X(p) = 0 it will

map radial geodesics to radial geodesics and preserve their length, and hence their

energy as they are geodesics.)
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We deduce from the First variation formula that

0 =
1

2
E ′

f (0) = −
∫ δ

0

g(Vf ,∇α′α′)dt− g(Vf (0), α
′(0)) + g(Vf (δ), α

′(δ)

= g(X(q), α′(δ)).

Here we used that ∇α′α′ = 0 as α is a geodesic and that Vf (0) = 0, Vf (δ) = X(q).

Now, by the Gauss Lemma, as α is a normalized radial geodesic, we have that α′(δ)

is normal to Sδ(p) at q, and is non-zero, and hence X(q) must be tangent to Sδ(p)

at q.

Since q and δ are arbitrary, the result follows.

(b) We note that the given equation is called the Killing equation: for all Y, Z in M

g(∇YX,Z) + g(∇ZX, Y ) = 0.

The slick way to do the question is:(
LXg

)
(Y, Z) = LX(g(Y, Z))− g(LXY, Z)− g(Y,LXZ)

= X(g(Y, Z))− g([X, Y ], Z)− g(Y, [X,Z])

= X(g(Y, Z))− g(∇XY, Z)− g(Y,∇XZ) + g(∇YX,Z) + g(Y,∇ZX)

= g(∇YX,Z) + g(Y,∇ZX).

Using properties (iv)-(v) of the Levi-Civita connection (metric compatibility and

torsion-free). Hence LXg = 0 (i.e. X is a Killing field) if and only if the Killing

equation holds for all Y, Z in M .
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5. Let (M, g) be a Riemannian manifold, let f : M → R be a smooth function and let X

be a vector field on M .

(a) Note that we have a linear map from vector fields to vector fields given by Y 7→
∇YX. We define the divergence of X to be the smooth function

divX = tr(Y 7→ ∇YX).

Show that if X is a Killing field then divX = 0.

(b) Recall that Y 7→ g(Y, .) defines an isomorphism between vector fields and 1-forms

on M . We define the gradient of f to be the vector field ∇f given by

g(∇f, .) = df.

We define the Laplacian of f to be the smooth function

∆f = div∇f.

Show that

∆(f 2) = 2f∆f + 2|∇f |2.

Now suppose further that M is compact, connected and oriented with Riemannian

volume form Ω.

(c) Show that

LXΩ = (divX)Ω.

Relate this to the result about Killing fields from (a).

(d) Show that if ∆f ≥ 0 on M then f is constant.

Solution:

(a) By the Killing equation (Question 4(b)), if X is Killing then

g(∇YX,Z) + g(∇ZX, Y ) = 0

for all vector fields Y, Z, i.e. the map Y 7→ ∇YX is skew-symmetric, so divX = 0.

Explicitly, if we choose a geodesic frame {E1, . . . , En} on V ∋ p in (M, g) as in

Question 3(c) then

0 = 2
n∑

i=1

g(∇Ei
X,Ei) = 2 tr(Y 7→ ∇YX) = 2 divX

on V . Since p is arbitrary, divX = 0 everywhere.
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(b) We see from our solution to (a) that if we choose p ∈ (M, g) and a geodesic frame

{E1, . . . , En} on V ∋ p then

divX =
n∑

i=1

g(∇Ei
X,Ei).

We further see that

g(∇f, Ei) = df(Ei) = Ei(f)

and hence

∇f =
n∑

i=1

Ei(f)Ei.

Notice that

|∇f |2 =
n∑

i=1

|Ei(f)|2.

We deduce that

∆f =
n∑

i=1

g
(
∇Ei

n∑
j=1

Ej(f)Ej, Ei

)
=

n∑
i,j=1

Ei(Ej(f))g(Ej, Ei) + Ej(f)g(∇Ei
Ej, Ei).

Evaluating this at p, and remembering that g(Ei, Ej) = δij and ∇Ei
Ej(p) = 0, we

see that

∆f(p) =
n∑

i=1

Ei(Ei(f))(p).

Applying this formula with f replaced by f 2 we get, at p,

∆f 2 =
n∑

i=1

Ei(Ei(f
2)) =

n∑
i=1

Ei(2fEi(f))

=
n∑

i=1

2f(Ei(Ei(f)) + 2(Ei(f))
2 = 2f∆f + 2|∇f |2

as required since p is arbitrary.

(c) We first notice by Cartan’s formula that

LXΩ = d(iXΩ)

since dΩ = 0.

Let p ∈M and take a positively oriented geodesic frame {E1, . . . , En} in V ∋ p as

in 3(c). Let {ξ1, . . . , ξn} be the dual coframe, i.e. 1-forms on V such that

ξi(Ej) = δij,

Mathematical Institute, University of Oxford

Prof Jason D. Lotay: jason.lotay@maths.ox.ac.uk

Page 8 of 12



C3.11 Riemannian Geometry: Sheet 2 — HT24

which means that

ξi(Y ) = g(Ei, Y )

for all vector fields Y . Then, clearly,

ξ1 ∧ . . . ∧ ξn = Ω

on V , since both sides are unit length n-forms and we have chosen the geodesic

frame to be positively oriented. We then see that

iXΩ =
n∑

i=1

(−1)(i−1)ξi(X)ξ1 ∧ . . . ∧ ξ̂i ∧ . . . ∧ ξn

where the ξ̂i denotes that the term is omitted. Hence,

d(iXΩ) =
n∑

i=1

Ei(ξi(X))ξ1 ∧ . . . ∧ ξn =
n∑

i=1

Ei(g(Ei, X)))Ω.

We finally notice that, at p,

n∑
i=1

Ei(g(Ei, X))(p) =
n∑

i=1

g(∇Ei
Ei, X)(p) + g(Ei,∇Ei

X)(p) = divX(p),

since ∇Ei
Ej(p) = 0 in a geodesic frame, and we use the formula for divX from our

solution to (a). Since p was arbitrary, we obtain the claimed result.

(d) We see from (c) that∫
M

(divX)Ω =

∫
M

LXΩ =

∫
M

d(iXΩ) = 0

by Stokes Theorem.

[Note: This is the Divergence Theorem in the case when ∂M = ∅.]

Therefore, ∫
M

∆fΩ = 0 and

∫
M

∆(f 2)Ω = 0

as ∆ = div∇. Since ∆f ≥ 0 onM we deduce from the first equation we must have

that

∆f = 0

(i.e. f is harmonic). (Note that clearly the same argument would have worked if

∆f ≤ 0 on M .) Now using (b) we see that

0 =

∫
M

∆(f 2)Ω = 2

∫
M

f∆fΩ + 2

∫
M

|∇f |2Ω = 2

∫
M

|∇f |2Ω.
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Since we obviously have |∇f |2 ≥ 0, we must have ∇f = 0 on M . Hence df = 0

and thus, since M is connected, f is constant.

[Note: This result can be interpreted as a version of the maximum principle, since

in this instance it says that a function which is subharmonic (∆f ≥ 0) which has

a local interior maximum (this will necessary exist since f is a continuous function

on a compact manifold) must in fact be constant.]
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Section C

6. The Euclidean Schwarzschild metric (of massm > 0) is defined for (cos t
4m
, sin t

4m
) ∈ S1,

r > 2m, θ ∈ (0, π) and (cosϕ, sinϕ) ∈ S1 by

g =

(
1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2dθ2 + r2 sin2 θdϕ2

and extends smoothly to θ = 0, π.

(a) Show that there are no geodesics in this metric with r constant.

(b) Show that, given any point p with r > 2m there exists a finite length geodesic γ

starting at p ending at a point q with r = 2m.

Solution:

(a) We see that any geodesic will satisfy

d

ds

∂L

∂r′
− ∂L

∂r
=

d

ds

((
1− 2m

r

)−1

r′

)

−

(
m

r2
(t′)2 − m

r2

(
1− 2m

r

)−2

(r′)2 + r(θ′)2 + r sin2 θ(ϕ′)2

)
= 0.

If r is constant then r′ = r′′ = 0 so we have that

m

r2
(t′)2 + r(θ′)2 + r sin2 θ(ϕ′)2 = 0.

All the terms in this expression are non-negative (since r > 2m > 0) hence t′ =

θ′ = ϕ′ = 0, which mean that the geodesic is just a point, which is not a curve.

[Note: The Euclidean Schwarzschild metric is a Euclidean black hole, with horizon

at r = 2m. This result says that there are no geodesic orbits of the black hole,

unlike the usual Schwarzschild metric from General Relativity.]

(b) We give two different methods for solving this question.

Method 1: We can find normalized curves (i.e. curves parametrised by arclength)

with t, θ, ϕ all constant by solving the equation(
1− 2m

r

)−1

(r′)2 = 1

and assuming r′ < 0, i.e.

r′ = −
(
1− 2m

r

) 1
2

.
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One may easily check by substituting r′ in the geodesic equation

d

ds

∂L

∂r′
− ∂L

∂r
=

d

ds

((
1− 2m

r

)−1

r′

)
− m

r2

(
1− 2m

r

)−2

(r′)2

that we get zero, and hence it does in fact define a geodesic.

Such a geodesic γ : [0, L] → (M, g) will start at a point p with r = r0 > 2m and

end at some point q with the same values for t, θ, ϕ and r = 2m+ ϵ < r0 say.

We want to show that the length of the geodesic is finite as we send ϵ → 0. We

calculate (remembering that r′ < 0)

L(γ) =

∫ L

0

|γ′(s)|ds =
∫ 0

L

r′
(
1− 2m

r

)− 1
2

ds =

∫ r0

2m+ϵ

(
1− 2m

r

)− 1
2

dr.

Since (
1− 2m

r

)− 1
2

=
r

1
2

(r − 2m)
1
2

is integrable on (2m, r0) we deduce that L(γ) remains finite as ϵ→ 0 as claimed.

Method 2: Take the obvious line from p with r = r0 > 2m to q with r = 2m with

the same values of t, θ, ϕ given by α(s) = (t, r0 + s(2m− r0), θ, ϕ). Then

L(α) =

∫ 1

0

|α′|ds =
∫ 1

0

(
1− 2m

r0 + s(2m− r0)

)− 1
2

ds =

∫ 1

0

(r0 − (r0 − 2m)s)
1
2

(r0 − 2m)
1
2 (1− s)

1
2

ds

which is finite. Reparametrizing α be arc-length gives a curve γ with the same

length which now satisfies (
1− 2m

r

)−1

(r′)2 = 1.

As before, we have that γ satisfies the geodesic equations and so is a geodesic.

[Note: This result implies that we can reach the horizon of the Euclidean black

hole in finite time (as measured along the curve). In fact, our choice of periodicity

for t means we can smoothly extend the metric to r = 2m to obtain a metric

on a 4-manifold which it is interesting to ask what its topology is: it’s a 2-plane

bundle over S2, but one has to check whether it is trivial or not. This metric is

also interesting as it is an example of a metric which is Ricci-flat but not flat. The

holonomy group of the metric (the group generated by parallel transport) is all

of SO(4) – it is a major open question whether there are any compact Ricci-flat

manifolds with holonomy equal to all of SO(4).]
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