C3.11 Riemannian Geometry Sheet 2 — HT24 Solutions

This problem sheet is based on Sections 2.3 and 3 of the lecture notes. This version contains the solutions to all of the questions.

Section A

1. Let (M, g) be an oriented Riemannian manifold. Show that parallel transport along any curve in M is orientation preserving.

Solution: Let $\alpha : [0, L] \to M$ be a curve and let $\tau_t : T_{\alpha(0)} \to T_{\alpha(t)}M$ be the parallel transport along $\alpha|_{[0,t]}$ for each $t \in [0, L]$. Then $\tau_1 = \tau_\alpha$ is the parallel transport along α . Choose an oriented orthonormal basis $\{E_1(0), \ldots, E_n(0)\}$ for $T_{\alpha(0)}M$. Since τ_t is an isometry for all t, if we define $E_i(t) = \tau_t(E_i(0))$, then $\{E_1(t), \ldots, E_n(t)\}$ is an orthonormal basis for $T_{\alpha(t)}M$.

If we use the basis $\{E_1(t), \ldots, E_n(t)\}$ as the basis for $T_{\alpha(t)}M$, the map $f : [0, L] \to \mathbb{R}$ given by

$$f(t) = \det(\tau_t)$$

is then well-defined and continuous (in fact, smooth). Moreover, $f(t) \in \{\pm 1\}$ for all t since $\{E_1(t), \ldots, E_n(t)\}$ is orthonormal for all t.

As [0, L] is connected and f(0) = 1, we deduce that f(t) = 1 for all t. Hence τ_t is orientation preserving for all t, and so $\tau_{\alpha} = \tau_1$ is orientation preserving.

2. Let (M, g) be an *n*-dimensional Riemannian manifold. Let $p \in M$ and let U be a normal neighbourhood of p.

Let $\{E_1, \ldots, E_n\}$ be an orthonormal basis for T_pM , let $\psi : T_pM \to \mathbb{R}^n$ be given by $\psi(\sum_{i=1}^n x_i E_i) = (x_1, \ldots, x_n)$ and let $\varphi = \psi \circ \exp_p^{-1} : U \to \mathbb{R}^n$.

(a) Let $\gamma(t)$ be a geodesic through p in U in M. Show that

$$\varphi \circ \gamma(t) = (a_1 t, \dots, a_n t)$$

for $(a_1,\ldots,a_n) \in \mathbb{R}^n$.

- (b) Show that in (U, φ) , we have $g_{ij}(p) = \delta_{ij}$ and $\Gamma_{ij}^k(p) = 0$.
- (c) Hence, or otherwise, show that there is open set $V \ni p$ and orthonormal vector fields E_1, \ldots, E_n on V such that

$$\nabla_{E_i} E_j(p) = 0.$$

Solution:

(a) Geodesics through p in U are given by $\gamma(t) = \exp_p(tX)$ for some X in T_pM since U is a normal neighbourhood (which means $\exp: V \to U$ is a diffeomorphism for some $V \subseteq T_pM$). Thus

$$\varphi \circ \gamma(t) = \psi \circ \exp_p^{-1}(\exp_p(tX)) = \psi(tX).$$

As $\{E_1, \ldots, E_n\}$ is a basis, we can write any $X \in T_p M$ uniquely as $X = \sum_{i=1}^n a_i E_i$ for some $(a_1, \ldots, a_n) \in \mathbb{R}^n$. Hence,

$$\varphi \circ \gamma(t) = \psi(tX) = \psi(\sum_{i=1}^n ta_i E_i) = (a_1 t, \dots, a_n t)$$

by definition, as we wanted to show.

(b) We see that $\varphi(p) = 0$ and $\psi(E_i) = \mathbf{e}_i$ (the unit vector with 1 in the *i*th place and 0 everywhere else). Therefore, $d\psi_0(E_i) = \partial_i$. Hence, taking the inverse (as ψ is a local diffeomorphism at 0, its differential at 0 is invertible), we have $d(\psi^{-1})_0(\partial_i) = E_i$. Since $\varphi = \psi \circ \exp_p^{-1}$ we have $\varphi^{-1} = \exp_p \circ \psi^{-1}$ so, by the Chain rule, we have

$$d(\varphi^{-1})_{\varphi(p)}(\partial_i) = d(\exp_p)_0 \circ d(\psi^{-1})_0(\partial_i) = d(\exp_p)_0(E_i) = E_i$$

since $d(\exp_p)_0 = id$. Thus

$$g_{ij}(p) = g_p(\mathrm{d}(\varphi^{-1})_{\varphi(p)}(\partial_i), \mathrm{d}(\varphi^{-1})_{\varphi(p)}(\partial_j)) = g_p(E_i, E_j) = \delta_{ij}.$$

Finally, the geodesic equations in U for $\gamma(t) = (x_1(t), \dots, x_n(t))$ are

$$x_k''(t) + \sum_{i,j=1}^n \Gamma_{ij}^k x_i'(t) x_j'(t) = 0.$$

However, as we know that geodesics through p are given by straight lines $x_i(t) = a_i t$, we see that $x''_k = 0$ and $x'_i(t) = a_i$, therefore

$$\sum_{i,j=1}^{n} \Gamma_{ij}^{k}(p) a_{i} a_{j} = 0$$

for all $(a_1, \ldots, a_n) \in \mathbb{R}^n$. We deduce that $\Gamma_{ij}^k(p) = 0$.

[Note: The chart (U, φ) is called *geodesic normal coordinates* at p. These coordinates are very useful for calculations and say that there are no zero or first order invariants of a Riemannian metric at a given point.]

(c) Take V to be a geodesic ball $B_{\epsilon}(p)$ contained in U. For every point q in V there exists a unique radial geodesic γ_q from p to q. Let $\tau_q : T_p M \to T_q M$ be the parallel transport along γ_q . We then define, for all $q \in V$,

$$E_i(q) = \tau_q(E_i(p))$$

where $\{E_1(p), \ldots, E_n(p)\}$ is an orthonormal basis for T_pM .

Since τ_q is an isometry for all q and depends smoothly on q, we deduce that E_1, \ldots, E_n are orthonormal vector fields on V.

Since the integral curve α of E_i with $\alpha(0) = p$ is a radial geodesic, and E_j is parallel along radial geodesics, so $\tau_t^{-1}(E_j(\alpha(t)) = E_j(p))$ for all t (in the notation of Question 1) we deduce from Question 1 that

$$\nabla_{E_i} E_j(p) = 0.$$

[Note: The frame $\{E_1, \ldots, E_n\}$ is a *geodesic frame* on V or near p. This is very useful for computations.]

Section B

3. Let X, Y be vector fields on (M, g). Let $p \in M$ and let $\alpha : (-\epsilon, \epsilon) \to M$ be the integral curve of X with $\alpha(0) = p$. For all $t \in (-\epsilon, \epsilon)$ let $\tau_t : T_p M \to T_{\alpha(t)} M$ be parallel transport along $\alpha|_{[0,t]}$. Show that

$$\nabla_X Y(p) = \frac{\mathrm{d}}{\mathrm{d}t} \Big(\tau_t^{-1} \big(Y(\alpha(t)) \big) \Big)|_{t=0}.$$

Solution: Choose a chart (U, φ) with $p \in U$ so that $\varphi(p) = 0$ and let $\{X_1, \ldots, X_n\}$ be the coordinate frame field on U. Suppose, by making ϵ smaller if necessary, that $\alpha(-\epsilon, \epsilon) \subseteq U$.

Let $E_1(t), \ldots, E_n(t)$ be parallel vector fields along α so that $E_i(0) = X_i(p)$ for $i = 1, \ldots, n$, i.e. $E_i(t) = \tau_t(X_i(p))$ for all t. Since τ_t is an isomorphism for all t, we have that $\{E_1(t), \ldots, E_n(t)\}$ is a basis for $T_{\alpha(t)}M$ for all t.

Hence, we can write Y along α as

$$Y(\alpha(t)) = \sum_{i=1}^{n} b_i(t) E_i(t)$$

for some smooth functions $b_i : (-\epsilon, \epsilon) \to \mathbb{R}$. Since α is an integral curve of $X, X = \alpha'$ along α , and therefore

$$\nabla_X Y(p) = \nabla_{\alpha'} Y(p) = \nabla_{\alpha'} Y(\alpha(t))|_{t=0} = \nabla_{\alpha'} \sum_{i=1}^n b_i(t) E_i(t)|_{t=0} = \sum_{i=1}^n b_i'(0) E_i(0)$$

since $\nabla_{\alpha'} E_i = 0$.

On the other hand, we see that

$$\tau_t^{-1}(Y(\alpha(t))) = \tau_t^{-1}\left(\sum_{i=1}^n b_i(t)E_i(t)\right) = \sum_{i=1}^n b_i(t)E_i(0)$$

and therefore

$$\frac{\mathrm{d}}{\mathrm{d}t} \Big(\tau_t^{-1} \big(Y(\alpha(t)) \big) \Big)|_{t=0} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\sum_{i=1}^n b_i(t) E_i(0) \right)|_{t=0} = \sum_{i=1}^n b_i'(0) E_i(0) = \nabla_X Y(p)$$

as claimed.

[Note: This question says that you can recover the Levi-Civita connection from the parallel transport maps. Hence, parallel transport (which allows us to "connect" tangent spaces) is equivalent to the Levi-Civita connection.]

- 4. Let (M, g) be a Riemannian manifold. Recall that a *Killing field* on M is a vector field X such that $\mathcal{L}_X g = 0$ or, equivalently, that the flow of X near any point consists of local isometries.
 - (a) Let $p \in M$ and let U be a normal neighbourhood of p. Suppose that X is a Killing field on (M, g) so that X(p) = 0 and $X(q) \neq 0$ for all $q \in U \setminus \{p\}$.

By using the First variation formula, or otherwise, show that X is tangent to all sufficiently small geodesic spheres centred at p.

(b) Show that X is a Killing field on (M, g) if and only if, for all vector fields Y, Z on M,

$$g(\nabla_Y X, Z) + g(\nabla_Z X, Y) = 0.$$

Solution:

(a) By making U smaller if necessary we can assume that p is still an isolated zero of X in U and that the flow of X $\{\phi_t^X : U \to M : t \in (-\epsilon, \epsilon)\}$ is defined on U.

Let $\mathcal{S}_{\delta}(p)$ be any geodesic sphere contained in U and let $q \in \mathcal{S}_{\delta}(p)$. Let α : $[0, \delta] \to U$ be the normalized radial geodesic from p to q. We define a variation $f: (-\epsilon, \epsilon) \times [0, \delta] \to M$ of α by

$$f(s,t) = \phi_s^X(\alpha(t)).$$

Notice that since $\phi_0^X = id$, and the maps ϕ_s^X depend smoothly on s, f is indeed a variation of f. Moreover, the variation field V_f of f is given by

$$V_f(t) = \frac{\partial f}{\partial s}(0, t) = \frac{\mathrm{d}}{\mathrm{d}s}\phi_s^X|_{s=0}(\alpha(t)) = X(\alpha(t))$$

since ϕ_s^X is the flow of X. Hence,

$$V_f(0) = X(p) = 0$$
 and $V_f(\delta) = X(q)$.

We now notice that

$$|\frac{\partial f}{\partial t}(s,t)|^2 = |\mathbf{d}(\phi^X_s)_{\alpha(t)}(\alpha'(t))|^2 = |\alpha'(t)|^2$$

since X is Killing and so its flow consists of local isometries. Therefore, the energy of the variation f of α

$$E_f(s) = \int_0^\delta |\alpha'(t)|^2 \mathrm{d}t$$

is independent of s. (More geometrically, since X is Killing with X(p) = 0 it will map radial geodesics to radial geodesics and preserve their length, and hence their energy as they are geodesics.) We deduce from the First variation formula that

$$0 = \frac{1}{2} E'_f(0) = -\int_0^{\delta} g(V_f, \nabla_{\alpha'} \alpha') dt - g(V_f(0), \alpha'(0)) + g(V_f(\delta), \alpha'(\delta))$$

= $g(X(q), \alpha'(\delta)).$

Here we used that $\nabla_{\alpha'}\alpha' = 0$ as α is a geodesic and that $V_f(0) = 0$, $V_f(\delta) = X(q)$. Now, by the Gauss Lemma, as α is a normalized radial geodesic, we have that $\alpha'(\delta)$ is normal to $\mathcal{S}_{\delta}(p)$ at q, and is non-zero, and hence X(q) must be tangent to $\mathcal{S}_{\delta}(p)$ at q.

Since q and δ are arbitrary, the result follows.

(b) We note that the given equation is called the *Killing equation*: for all Y, Z in M

$$g(\nabla_Y X, Z) + g(\nabla_Z X, Y) = 0.$$

The slick way to do the question is:

$$\begin{aligned} \left(\mathcal{L}_X g\right)(Y,Z) &= \mathcal{L}_X(g(Y,Z)) - g(\mathcal{L}_X Y,Z) - g(Y,\mathcal{L}_X Z) \\ &= X(g(Y,Z)) - g([X,Y],Z) - g(Y,[X,Z]) \\ &= X(g(Y,Z)) - g(\nabla_X Y,Z) - g(Y,\nabla_X Z) + g(\nabla_Y X,Z) + g(Y,\nabla_Z X) \\ &= g(\nabla_Y X,Z) + g(Y,\nabla_Z X). \end{aligned}$$

Using properties (iv)-(v) of the Levi-Civita connection (metric compatibility and torsion-free). Hence $\mathcal{L}_X g = 0$ (i.e. X is a Killing field) if and only if the Killing equation holds for all Y, Z in M.

- 5. Let (M, g) be a Riemannian manifold, let $f : M \to \mathbb{R}$ be a smooth function and let X be a vector field on M.
 - (a) Note that we have a linear map from vector fields to vector fields given by $Y \mapsto \nabla_Y X$. We define the *divergence* of X to be the smooth function

$$\operatorname{div} X = \operatorname{tr}(Y \mapsto \nabla_Y X).$$

Show that if X is a Killing field then $\operatorname{div} X = 0$.

(b) Recall that $Y \mapsto g(Y, .)$ defines an isomorphism between vector fields and 1-forms on M. We define the *gradient* of f to be the vector field ∇f given by

$$g(\nabla f, .) = \mathrm{d}f.$$

We define the Laplacian of f to be the smooth function

$$\Delta f = \operatorname{div} \nabla f.$$

Show that

$$\Delta(f^2) = 2f\Delta f + 2|\nabla f|^2.$$

Now suppose further that M is compact, connected and oriented with Riemannian volume form Ω .

(c) Show that

$$\mathcal{L}_X \Omega = (\operatorname{div} X) \Omega.$$

Relate this to the result about Killing fields from (a).

(d) Show that if $\Delta f \ge 0$ on M then f is constant.

Solution:

(a) By the Killing equation (Question 4(b)), if X is Killing then

$$g(\nabla_Y X, Z) + g(\nabla_Z X, Y) = 0$$

for all vector fields Y, Z, i.e. the map $Y \mapsto \nabla_Y X$ is skew-symmetric, so div X = 0. Explicitly, if we choose a geodesic frame $\{E_1, \ldots, E_n\}$ on $V \ni p$ in (M, g) as in Question 3(c) then

$$0 = 2\sum_{i=1}^{n} g(\nabla_{E_i} X, E_i) = 2\operatorname{tr}(Y \mapsto \nabla_Y X) = 2\operatorname{div} X$$

on V. Since p is arbitrary, $\operatorname{div} X = 0$ everywhere.

(b) We see from our solution to (a) that if we choose $p \in (M, g)$ and a geodesic frame $\{E_1, \ldots, E_n\}$ on $V \ni p$ then

$$\operatorname{div} X = \sum_{i=1}^{n} g(\nabla_{E_i} X, E_i).$$

We further see that

$$g(\nabla f, E_i) = \mathrm{d}f(E_i) = E_i(f)$$

and hence

$$\nabla f = \sum_{i=1}^{n} E_i(f) E_i.$$

Notice that

$$|\nabla f|^2 = \sum_{i=1}^n |E_i(f)|^2.$$

We deduce that

$$\Delta f = \sum_{i=1}^{n} g \left(\nabla_{E_i} \sum_{j=1}^{n} E_j(f) E_j, E_i \right) = \sum_{i,j=1}^{n} E_i(E_j(f)) g(E_j, E_i) + E_j(f) g(\nabla_{E_i} E_j, E_i).$$

Evaluating this at p, and remembering that $g(E_i, E_j) = \delta_{ij}$ and $\nabla_{E_i} E_j(p) = 0$, we see that

$$\Delta f(p) = \sum_{i=1}^{n} E_i(E_i(f))(p).$$

Applying this formula with f replaced by f^2 we get, at p,

$$\Delta f^2 = \sum_{i=1}^n E_i(E_i(f^2)) = \sum_{i=1}^n E_i(2fE_i(f))$$
$$= \sum_{i=1}^n 2f(E_i(E_i(f)) + 2(E_i(f))^2) = 2f\Delta f + 2|\nabla f|^2$$

as required since p is arbitrary.

(c) We first notice by Cartan's formula that

$$\mathcal{L}_X \Omega = \mathrm{d}(i_X \Omega)$$

since $d\Omega = 0$.

Let $p \in M$ and take a positively oriented geodesic frame $\{E_1, \ldots, E_n\}$ in $V \ni p$ as in 3(c). Let $\{\xi_1, \ldots, \xi_n\}$ be the dual coframe, i.e. 1-forms on V such that

$$\xi_i(E_j) = \delta_{ij},$$

which means that

$$\xi_i(Y) = g(E_i, Y)$$

for all vector fields Y. Then, clearly,

$$\xi_1 \wedge \ldots \wedge \xi_n = \Omega$$

on V, since both sides are unit length n-forms and we have chosen the geodesic frame to be positively oriented. We then see that

$$i_X \Omega = \sum_{i=1}^n (-1)^{(i-1)} \xi_i(X) \xi_1 \wedge \ldots \wedge \widehat{\xi_i} \wedge \ldots \wedge \xi_n$$

where the $\widehat{\xi_i}$ denotes that the term is omitted. Hence,

$$d(i_X\Omega) = \sum_{i=1}^n E_i(\xi_i(X))\xi_1 \wedge \ldots \wedge \xi_n = \sum_{i=1}^n E_i(g(E_i,X)))\Omega.$$

We finally notice that, at p,

$$\sum_{i=1}^{n} E_i(g(E_i, X))(p) = \sum_{i=1}^{n} g(\nabla_{E_i} E_i, X)(p) + g(E_i, \nabla_{E_i} X)(p) = \operatorname{div} X(p),$$

since $\nabla_{E_i} E_j(p) = 0$ in a geodesic frame, and we use the formula for div X from our solution to (a). Since p was arbitrary, we obtain the claimed result.

(d) We see from (c) that

$$\int_{M} (\operatorname{div} X) \Omega = \int_{M} \mathcal{L}_{X} \Omega = \int_{M} \operatorname{d}(i_{X} \Omega) = 0$$

by Stokes Theorem.

[Note: This is the *Divergence Theorem* in the case when $\partial M = \emptyset$.]

Therefore,

$$\int_{M} \Delta f \Omega = 0$$
 and $\int_{M} \Delta (f^2) \Omega = 0$

as $\Delta = \operatorname{div} \nabla$. Since $\Delta f \ge 0$ on M we deduce from the first equation we must have that

$$\Delta f = 0$$

(i.e. f is harmonic). (Note that clearly the same argument would have worked if $\Delta f \leq 0$ on M.) Now using (b) we see that

$$0 = \int_M \Delta(f^2)\Omega = 2\int_M f\Delta f\Omega + 2\int_M |\nabla f|^2\Omega = 2\int_M |\nabla f|^2\Omega.$$

Since we obviously have $|\nabla f|^2 \ge 0$, we must have $\nabla f = 0$ on M. Hence df = 0 and thus, since M is connected, f is constant.

[Note: This result can be interpreted as a version of the maximum principle, since in this instance it says that a function which is subharmonic ($\Delta f \ge 0$) which has a local interior maximum (this will necessary exist since f is a continuous function on a compact manifold) must in fact be constant.]

Section C

6. The Euclidean Schwarzschild metric (of mass m > 0) is defined for $(\cos \frac{t}{4m}, \sin \frac{t}{4m}) \in S^1$, $r > 2m, \theta \in (0, \pi)$ and $(\cos \phi, \sin \phi) \in S^1$ by

$$g = \left(1 - \frac{2m}{r}\right) dt^{2} + \left(1 - \frac{2m}{r}\right)^{-1} dr^{2} + r^{2} d\theta^{2} + r^{2} \sin^{2} \theta d\phi^{2}$$

and extends smoothly to $\theta = 0, \pi$.

- (a) Show that there are no geodesics in this metric with r constant.
- (b) Show that, given any point p with r > 2m there exists a finite length geodesic γ starting at p ending at a point q with r = 2m.

Solution:

(a) We see that any geodesic will satisfy

$$\frac{\mathrm{d}}{\mathrm{d}s}\frac{\partial L}{\partial r'} - \frac{\partial L}{\partial r} = \frac{\mathrm{d}}{\mathrm{d}s}\left(\left(1 - \frac{2m}{r}\right)^{-1}r'\right) - \left(\frac{m}{r^2}(t')^2 - \frac{m}{r^2}\left(1 - \frac{2m}{r}\right)^{-2}(r')^2 + r(\theta')^2 + r\sin^2\theta(\phi')^2\right) = 0.$$

If r is constant then r' = r'' = 0 so we have that

$$\frac{m}{r^2}(t')^2 + r(\theta')^2 + r\sin^2\theta(\phi')^2 = 0.$$

All the terms in this expression are non-negative (since r > 2m > 0) hence $t' = \theta' = \phi' = 0$, which mean that the geodesic is just a point, which is not a curve.

[Note: The Euclidean Schwarzschild metric is a Euclidean black hole, with horizon at r = 2m. This result says that there are no geodesic orbits of the black hole, unlike the usual Schwarzschild metric from General Relativity.]

(b) We give two different methods for solving this question.

Method 1: We can find normalized curves (i.e. curves parametrised by arclength) with t, θ, ϕ all constant by solving the equation

$$\left(1 - \frac{2m}{r}\right)^{-1} (r')^2 = 1$$

and assuming r' < 0, i.e.

$$r' = -\left(1 - \frac{2m}{r}\right)^{\frac{1}{2}}.$$

One may easily check by substituting r' in the geodesic equation

$$\frac{\mathrm{d}}{\mathrm{d}s}\frac{\partial L}{\partial r'} - \frac{\partial L}{\partial r} = \frac{\mathrm{d}}{\mathrm{d}s}\left(\left(1 - \frac{2m}{r}\right)^{-1}r'\right) - \frac{m}{r^2}\left(1 - \frac{2m}{r}\right)^{-2}(r')^2$$

that we get zero, and hence it does in fact define a geodesic.

Such a geodesic $\gamma : [0, L] \to (M, g)$ will start at a point p with $r = r_0 > 2m$ and end at some point q with the same values for t, θ, ϕ and $r = 2m + \epsilon < r_0$ say.

We want to show that the length of the geodesic is finite as we send $\epsilon \to 0$. We calculate (remembering that r' < 0)

$$L(\gamma) = \int_0^L |\gamma'(s)| \mathrm{d}s = \int_L^0 r' \left(1 - \frac{2m}{r}\right)^{-\frac{1}{2}} \mathrm{d}s = \int_{2m+\epsilon}^{r_0} \left(1 - \frac{2m}{r}\right)^{-\frac{1}{2}} \mathrm{d}r.$$

Since

$$\left(1 - \frac{2m}{r}\right)^{-\frac{1}{2}} = \frac{r^{\frac{1}{2}}}{(r - 2m)^{\frac{1}{2}}}$$

is integrable on $(2m, r_0)$ we deduce that $L(\gamma)$ remains finite as $\epsilon \to 0$ as claimed.

Method 2: Take the obvious line from p with $r = r_0 > 2m$ to q with r = 2m with the same values of t, θ, ϕ given by $\alpha(s) = (t, r_0 + s(2m - r_0), \theta, \phi)$. Then

$$L(\alpha) = \int_0^1 |\alpha'| \mathrm{d}s = \int_0^1 \left(1 - \frac{2m}{r_0 + s(2m - r_0)} \right)^{-\frac{1}{2}} \mathrm{d}s = \int_0^1 \frac{(r_0 - (r_0 - 2m)s)^{\frac{1}{2}}}{(r_0 - 2m)^{\frac{1}{2}}(1 - s)^{\frac{1}{2}}} \mathrm{d}s$$

which is finite. Reparametrizing α be arc-length gives a curve γ with the same length which now satisfies

$$\left(1 - \frac{2m}{r}\right)^{-1} (r')^2 = 1.$$

As before, we have that γ satisfies the geodesic equations and so is a geodesic.

[Note: This result implies that we can reach the horizon of the Euclidean black hole in finite time (as measured along the curve). In fact, our choice of periodicity for t means we can smoothly extend the metric to r = 2m to obtain a metric on a 4-manifold which it is interesting to ask what its topology is: it's a 2-plane bundle over S^2 , but one has to check whether it is trivial or not. This metric is also interesting as it is an example of a metric which is Ricci-flat but not flat. The holonomy group of the metric (the group generated by parallel transport) is all of SO(4) – it is a major open question whether there are *any compact* Ricci-flat manifolds with holonomy equal to all of SO(4).]