
C3.11 Riemannian Geometry

Sheet 1 — HT24

Solutions

This problem sheet is based on Sections 1 and 2 of the lecture notes. This version contains

solutions to Sections A and C.

Section A

1. Let

B2 = {(y1, y2) ∈ R2 : y21 + y22 < 1}

and define a Riemannian metric g on B2 by

g =
4dy21 + 4dy22

(1− y21 − y22)2
.

Let

H2 = {(x1, x2) ∈ R2 : x2 > 0}

and define a Riemannian metric h on H2 by

h =
dx21 + dx22

x22
.

(a) Define f : B2 → H2 by

f(y1, y2) =
(2y1, 1− y21 − y22)

y21 + (y2 + 1)2

Show that f is a diffeomorphism.

[Hint: What is f ◦ f? ]

(b) Compute f∗(∂1) and f∗(∂2).

(c) Hence (or otherwise) deduce that f ∗h = g.

Solution:

(a) Obviously f is smooth. One can see that if one writes f(y1, y2) = (x1, x2) then

x21 + (x2 + 1)2 =
4y21 + (1− y21 − y22 + y21 + (y2 + 1)2)2

(y21 + (y2 + 1)2)2

=
4y21 + 4(y2 + 1)2

(y21 + (y2 + 1)2)2

=
4

y21 + (y2 + 1)2
.
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Therefore,
2x1

x21 + (x2 + 1)2
=

4y1
y21 + (y2 + 1)2

y21 + (y2 + 1)2

4
= y1.

Similarly, one finds that

1− x21 − x22 =
(y21 + (y2 + 1)2)2 − 4y21 − (1− y21 − y22)2

(y21 + (y2 + 1)2)2

=
4y2(y

2
1 + (y2 + 1)2)

(y21 + (y2 + 1)2)2

=
4y2

y21 + (y2 + 1)2
,

so
1− x21 − x22
x21 + (x2 + 1)2

= y2.

Hence,

f(f(y1, y2)) = (y1, y2)

so f is invertible with f−1 = f .

As f is smooth and invertible and its own inverse, f is a diffeomorphism.

[Note: If we let z = y1 − iy2 and w = x1 + ix2 then the map f is equivalent to the

Möbius transformation

z 7→ i

(
1− z
z − i

)
.]

(b) We compute the differential of f as:

dfy =
2

(y21 + (y2 + 1)2)2

(
(y2 + 1)2 − y21 −2y1(y2 + 1)

−2y1(y2 + 1) y21 − (y2 + 1)2

)
.

Therefore,

f∗(∂1) =
2
(
(y2 + 1)2 − y21

)
∂1 − 4y1(y2 + 1)∂2

(y21 + (y2 + 1)2)2

f∗(∂2) =
−4y1(y2 + 1)∂1 + 2

(
y21 − (y2 + 1)2

)
∂2

(y21 + (y2 + 1)2)2

(c) If we continue to write f(y1, y2) = (x1, x2) then

f ∗h(∂1, ∂1) = h(f∗∂1, f∗∂1)

=
1

x22

4
(
(y2 + 1)2 − y21

)2
+ 16y21(y2 + 1)2

(y21 + (y2 + 1)2)4

=
(y21 + (y2 + 1)2)2

(1− y21 − y22)2
4(y21 + (y2 + 1)2)2

(y21 + (y2 + 1)2)4

=
4

(1− y21 − y22)2

= g(∂1, ∂1)

Mathematical Institute, University of Oxford

Prof Jason D. Lotay: jason.lotay@maths.ox.ac.uk

Page 2 of 7



C3.11 Riemannian Geometry: Sheet 1 — HT24

By the formulae for f∗(∂2), we deduce that

f ∗h(∂2, ∂2) =
4

(1− y21 − y22)2
= g(∂2, ∂2)

as well. Finally,

f ∗h(∂1, ∂2) = h(f∗∂1, f∗∂2)

=
1

x22

−8
(
(y2 + 1)2 − y21

)
y1(y2 + 1)− 8y1(y2 + 1)

(
y21 − (y2 + 1)2

)
(y21 + (y2 + 1)2)4

= 0 = g(∂1, ∂2).

Overall, f ∗h = g, so f is an isometry.

2. Let (M, g) be a connected Riemannian manifold and let M̃ be the universal cover of M .

(a) Show that there exists a unique Riemannian metric g̃ on M̃ such that the covering

map π : (M̃, g̃)→ (M, g) is a local isometry.

(b) Show that the fundamental group of M acts on (M̃, g̃) by isometries.

Solution:

(a) Since π : M̃ →M is a local diffeomorphism, it is (in particular) an immersion and

so π∗g = g̃ is a Riemannian metric on M̃ . By construction, π : (M̃, g̃)→ (M, g) is

a local isometry.

If h were any other Riemannian metric on M̃ so that π : (M̃, h) → (M, g) were a

local isometry, then for every point p̃ ∈ M̃ there would exist open sets Ũ 3 p̃ and

U 3 π(p̃) so that π∗g = h on Ũ , and so h = g̃ at p̃. Hence, g̃ is unique.

(b) By definition of the universal cover there is an action of the fundamental group

π1(M) on M̃ given by a ∈ π1(M) 7→ fa ∈ Diff(M̃) so that π ◦ fa = π for all

a ∈ π1(M). Hence, π∗ = f ∗a ◦ π∗ and so

g̃ = π∗g = f ∗a ◦ π∗g = f ∗a g̃.

We deduce that fa ∈ Isom(M̃, g̃) for all a ∈ π1(M) as desired.
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Section B

3. Let

Hn = {(x1, . . . , xn+1) ∈ Rn+1 :
n∑
j=1

x2j − x2n+1 = −1, xn+1 > 0}

and let g be the restriction of

h =
n∑
j=1

dx2j − dx2n+1

on Rn+1 to Hn.

(a) Show that g is a Riemannian metric on Hn.

(b) Let f(x) = Ax be a linear map on Rn+1 given by A = (aij) ∈Mn+1(R) and let

G =

(
In 0

0 −1

)

where In is the n× n identity matrix. Show that f defines an isometry on (Hn, g)

if and only if

ATGA = G and an+1,n+1 > 0.

(c) Now let n = 2, L > 0 and α : [0, L] → H2 be given by α(t) = (sinh t, 0, cosh t). If

τα : Tα(0)H2 → Tα(L)H2 is the parallel transport map, compute τα(∂1) and τα(∂2).

4. Let (M1, g1) and (M2, g2) be Riemannian manifolds with Levi-Civita connections∇1 and

∇2 respectively. Recall that T(p1,p2)(M1×M2) ∼= Tp1M1×Tp2M2 for all (p1, p2) ∈M1×M2.

Define g on M1 ×M2 by

g(p1,p2)((X1, X2), (Y1, Y2)) = (g1)p1(X1, Y1) + (g2)p2(X2, Y2).

(a) Show that g is a Riemannian metric on M1 ×M2.

(b) Show that the Levi-Civita connection ∇ of g on M1 ×M2 satisfies

∇(X1,X2)(Y1, Y2) =
(
(∇1)X1Y1, (∇2)X2Y2

)
for all vector fields X1, Y1 on M1 and X2, Y2 on M2.
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5. Let (H2, h) be the upper half-space with the hyperbolic metric

h =
dx21 + dx22

x22
.

(a) Calculate the Christoffel symbols of h in the coordinates (x1, x2) on H2 using the

definition or formula for the Christoffel symbols.

Let α : [0, L] → (H2, h) be the curve α(t) = (t, 1) and let τα be the parallel transport

along α.

(b) Let X0 = ∂2 ∈ T(0,1)H
2. Calculate τα(X0) and show that, viewed as a vector in

Euclidean R2, it makes an angle L with the vertical axis.

Let

G = {u : R→ R : u(x1, x2)(t) = x1 + tx2, x1 ∈ R, x2 > 0}

and define a manifold structure on G so that f : G→ H2 given by f(u(x1, x2)) = (x1, x2)

is a diffeomorphism. Define a Riemannian metric g on G by g = f ∗h.

(c) Show that, for all v ∈ G, the map Lv : G→ G given by Lv(u) = v◦u is an isometry

of g.
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Section C

6. Let S2 be the unit sphere in R3 endowed with the round metric g, let U = S2\{(0, 0, 1)}
and let ϕ : U → R2 be

ϕ(x1, x2, x3) =
(x1, x2)

1− x3
so that

ϕ−1(y1, y2) =
(2y1, 2y2, y

2
1 + y22 − 1)

y21 + y22 + 1

(a) Show that

(ϕ−1)∗g =
4(dy21 + dy22)

(1 + y21 + y22)2
.

Let β : [0, 2π]→ R2 be given by β(t) = (cos t, sin t).

(b) Using the fact that ϕ−1 : (S2 \ {0, 0, 1}, g) → (R2, (ϕ−1)∗g) is an isometry or

otherwise, show that the restrictions of the vector fields

y1∂1 + y2∂2 and − y2∂1 + y1∂2

to β are parallel along β with respect to the metric (ϕ−1)∗g.

Solution:

(a) We compute directly that

(ϕ−1)∗g = d(x1 ◦ ϕ−1)2 + d(x2 ◦ ϕ−1)2 + d(x3 ◦ ϕ−1)2

= d

(
2y1

y21 + y22 + 1

)2

+ d

(
2y2

y21 + y22 + 1

)2

+ d

(
y21 + y22 − 1

y21 + y22 + 1

)2

.

We see that

d

(
2y1

y21 + y22 + 1

)
=

2(y21 + y22 + 1)dy1 − 2y1d(y21 + y22 + 1)

(y21 + y22 + 1)2

=
2(y22 − y21 + 1)dy1 − 4y1y2dy2

(y21 + y22 + 1)2

d

(
2y2

y21 + y22 + 1

)
=

2(y21 + y22 + 1)dy2 − 2y2d(y21 + y22 + 1)

(y21 + y22 + 1)2

=
−4y1y2dy1 + 2(y21 − y22 + 1)dy2

(y21 + y22 + 1)2
.

Therefore,

d

(
2y1

y21 + y22 + 1

)2

+ d

(
2y2

y21 + y22 + 1

)2

=
4(y22 − y21 + 1)2dy21 − 32y1y2dy1dy2 + 4(y21 − y22 + 1)2dy22

(y21 + y22 + 1)4
.
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We then compute

d

(
y21 + y22 − 1

y21 + y22 + 1

)
= d

(
1− 2

y21 + y22 + 1

)
=

2d(y21 + y22 + 1)

(y21 + y22 + 1)2

=
4y1dy1 + 4y2dy2
(y21 + y22 + 1)2

and hence

d

(
y21 + y22 − 1

y21 + y22 + 1

)2

=
16(y21dy21 + 2y1y2dy1dy2 + y22dy22)

(y21 + y22 + 1)4

Adding our results cancels the dy1dy2 term and gives

(ϕ−1)∗g =
4(y21 + y+2 1)2(dy21 + dy22)

(y21 + y22 + 1)4

=
4(dy21 + dy22)

(y21 + y22 + 1)2

as required.

(b) If we choose coordinates

(x1, x2, x3) = (sin θ cosφ, sin θ sinφ, cos θ) = f(θ, φ)

as usual, we see that

γ(t) = ϕ−1 ◦ β(t) = (cos t, sin t, 0) = f(
π

2
, t),

which is the equator in S2. Hence if we let X1 = f∗(∂θ) and X2 = f∗(∂φ) then

along β we have

Y2 = (ϕ−1)∗(X2) = β′ = − sin t∂1 + cos t∂2 = −y2∂1 + y1∂2.

Hence Y2 is parallel along β as X2 is parallel along γ = ϕ−1 ◦ β and ϕ−1 is an

isometry by definition.

We also know that X1 is parallel along γ and X1 is unit length and orthogonal

to X2 along γ, so any unit vector field along β which is orthogonal to Y2 must be

parallel (since it must be the pushforward of X1 up to sign). However, we see that

Y1 = cos t∂1 + sin t∂2 = x1∂1 + x2∂2

along β is unit length and orthogonal to Y2 since along β

(ϕ−1)∗g|β = dy21 + dy22

as y21 + y22 = 1 along β. Thus Y1 is also parallel along β.
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