C3.11 Riemannian Geometry
 Sheet 1 - HT24

 Solutions

 Solutions}

This problem sheet is based on Sections 1 and 2 of the lecture notes. This version contains solutions to Sections A and C.

Section A

1. Let

$$
B^{2}=\left\{\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}: y_{1}^{2}+y_{2}^{2}<1\right\}
$$

and define a Riemannian metric g on B^{2} by

$$
g=\frac{4 \mathrm{~d} y_{1}^{2}+4 \mathrm{~d} y_{2}^{2}}{\left(1-y_{1}^{2}-y_{2}^{2}\right)^{2}}
$$

Let

$$
H^{2}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{2}>0\right\}
$$

and define a Riemannian metric h on H^{2} by

$$
h=\frac{\mathrm{d} x_{1}^{2}+\mathrm{d} x_{2}^{2}}{x_{2}^{2}} .
$$

(a) Define $f: B^{2} \rightarrow H^{2}$ by

$$
f\left(y_{1}, y_{2}\right)=\frac{\left(2 y_{1}, 1-y_{1}^{2}-y_{2}^{2}\right)}{y_{1}^{2}+\left(y_{2}+1\right)^{2}}
$$

Show that f is a diffeomorphism.
[Hint: What is $f \circ f$?]
(b) Compute $f_{*}\left(\partial_{1}\right)$ and $f_{*}\left(\partial_{2}\right)$.
(c) Hence (or otherwise) deduce that $f^{*} h=g$.

Solution:

(a) Obviously f is smooth. One can see that if one writes $f\left(y_{1}, y_{2}\right)=\left(x_{1}, x_{2}\right)$ then

$$
\begin{aligned}
x_{1}^{2}+\left(x_{2}+1\right)^{2} & =\frac{4 y_{1}^{2}+\left(1-y_{1}^{2}-y_{2}^{2}+y_{1}^{2}+\left(y_{2}+1\right)^{2}\right)^{2}}{\left(y_{1}^{2}+\left(y_{2}+1\right)^{2}\right)^{2}} \\
& =\frac{4 y_{1}^{2}+4\left(y_{2}+1\right)^{2}}{\left(y_{1}^{2}+\left(y_{2}+1\right)^{2}\right)^{2}} \\
& =\frac{4}{y_{1}^{2}+\left(y_{2}+1\right)^{2}} .
\end{aligned}
$$

Therefore,

$$
\frac{2 x_{1}}{x_{1}^{2}+\left(x_{2}+1\right)^{2}}=\frac{4 y_{1}}{y_{1}^{2}+\left(y_{2}+1\right)^{2}} \frac{y_{1}^{2}+\left(y_{2}+1\right)^{2}}{4}=y_{1} .
$$

Similarly, one finds that

$$
\begin{aligned}
1-x_{1}^{2}-x_{2}^{2} & =\frac{\left(y_{1}^{2}+\left(y_{2}+1\right)^{2}\right)^{2}-4 y_{1}^{2}-\left(1-y_{1}^{2}-y_{2}^{2}\right)^{2}}{\left(y_{1}^{2}+\left(y_{2}+1\right)^{2}\right)^{2}} \\
& =\frac{4 y_{2}\left(y_{1}^{2}+\left(y_{2}+1\right)^{2}\right)}{\left(y_{1}^{2}+\left(y_{2}+1\right)^{2}\right)^{2}} \\
& =\frac{4 y_{2}}{y_{1}^{2}+\left(y_{2}+1\right)^{2}},
\end{aligned}
$$

so

$$
\frac{1-x_{1}^{2}-x_{2}^{2}}{x_{1}^{2}+\left(x_{2}+1\right)^{2}}=y_{2}
$$

Hence,

$$
f\left(f\left(y_{1}, y_{2}\right)\right)=\left(y_{1}, y_{2}\right)
$$

so f is invertible with $f^{-1}=f$.
As f is smooth and invertible and its own inverse, f is a diffeomorphism.
[Note: If we let $z=y_{1}-i y_{2}$ and $w=x_{1}+i x_{2}$ then the map f is equivalent to the Möbius transformation

$$
\left.z \mapsto i\left(\frac{1-z}{z-i}\right) .\right]
$$

(b) We compute the differential of f as:

$$
\mathrm{d} f_{y}=\frac{2}{\left(y_{1}^{2}+\left(y_{2}+1\right)^{2}\right)^{2}}\left(\begin{array}{cc}
\left(y_{2}+1\right)^{2}-y_{1}^{2} & -2 y_{1}\left(y_{2}+1\right) \\
-2 y_{1}\left(y_{2}+1\right) & y_{1}^{2}-\left(y_{2}+1\right)^{2}
\end{array}\right) .
$$

Therefore,

$$
\begin{aligned}
& f_{*}\left(\partial_{1}\right)=\frac{2\left(\left(y_{2}+1\right)^{2}-y_{1}^{2}\right) \partial_{1}-4 y_{1}\left(y_{2}+1\right) \partial_{2}}{\left(y_{1}^{2}+\left(y_{2}+1\right)^{2}\right)^{2}} \\
& f_{*}\left(\partial_{2}\right)=\frac{-4 y_{1}\left(y_{2}+1\right) \partial_{1}+2\left(y_{1}^{2}-\left(y_{2}+1\right)^{2}\right) \partial_{2}}{\left(y_{1}^{2}+\left(y_{2}+1\right)^{2}\right)^{2}}
\end{aligned}
$$

(c) If we continue to write $f\left(y_{1}, y_{2}\right)=\left(x_{1}, x_{2}\right)$ then

$$
\begin{aligned}
f^{*} h\left(\partial_{1}, \partial_{1}\right) & =h\left(f_{*} \partial_{1}, f_{*} \partial_{1}\right) \\
& =\frac{1}{x_{2}^{2}} \frac{4\left(\left(y_{2}+1\right)^{2}-y_{1}^{2}\right)^{2}+16 y_{1}^{2}\left(y_{2}+1\right)^{2}}{\left(y_{1}^{2}+\left(y_{2}+1\right)^{2}\right)^{4}} \\
& =\frac{\left(y_{1}^{2}+\left(y_{2}+1\right)^{2}\right)^{2}}{\left(1-y_{1}^{2}-y_{2}^{2}\right)^{2}} \frac{4\left(y_{1}^{2}+\left(y_{2}+1\right)^{2}\right)^{2}}{\left(y_{1}^{2}+\left(y_{2}+1\right)^{2}\right)^{4}} \\
& =\frac{4}{\left(1-y_{1}^{2}-y_{2}^{2}\right)^{2}} \\
& =g\left(\partial_{1}, \partial_{1}\right)
\end{aligned}
$$

By the formulae for $f_{*}\left(\partial_{2}\right)$, we deduce that

$$
f^{*} h\left(\partial_{2}, \partial_{2}\right)=\frac{4}{\left(1-y_{1}^{2}-y_{2}^{2}\right)^{2}}=g\left(\partial_{2}, \partial_{2}\right)
$$

as well. Finally,

$$
\begin{aligned}
f^{*} h\left(\partial_{1}, \partial_{2}\right) & =h\left(f_{*} \partial_{1}, f_{*} \partial_{2}\right) \\
& =\frac{1}{x_{2}^{2}} \frac{-8\left(\left(y_{2}+1\right)^{2}-y_{1}^{2}\right) y_{1}\left(y_{2}+1\right)-8 y_{1}\left(y_{2}+1\right)\left(y_{1}^{2}-\left(y_{2}+1\right)^{2}\right)}{\left(y_{1}^{2}+\left(y_{2}+1\right)^{2}\right)^{4}} \\
& =0=g\left(\partial_{1}, \partial_{2}\right) .
\end{aligned}
$$

Overall, $f^{*} h=g$, so f is an isometry.
2. Let (M, g) be a connected Riemannian manifold and let \widetilde{M} be the universal cover of M.
(a) Show that there exists a unique Riemannian metric \tilde{g} on \widetilde{M} such that the covering $\operatorname{map} \pi:(\widetilde{M}, \tilde{g}) \rightarrow(M, g)$ is a local isometry.
(b) Show that the fundamental group of M acts on $(\widetilde{M}, \tilde{g})$ by isometries.

Solution:

(a) Since $\pi: \widetilde{M} \rightarrow M$ is a local diffeomorphism, it is (in particular) an immersion and so $\pi^{*} g=\tilde{g}$ is a Riemannian metric on \widetilde{M}. By construction, $\pi:(\widetilde{M}, \tilde{g}) \rightarrow(M, g)$ is a local isometry.
If h were any other Riemannian metric on \widetilde{M} so that $\pi:(\widetilde{M}, h) \rightarrow(M, g)$ were a local isometry, then for every point $\tilde{p} \in \widetilde{M}$ there would exist open sets $\widetilde{U} \ni \tilde{p}$ and $U \ni \pi(\tilde{p})$ so that $\pi^{*} g=h$ on \widetilde{U}, and so $h=\tilde{g}$ at \tilde{p}. Hence, \tilde{g} is unique.
(b) By definition of the universal cover there is an action of the fundamental group $\pi_{1}(M)$ on \widetilde{M} given by $a \in \pi_{1}(M) \mapsto f_{a} \in \operatorname{Diff}(\widetilde{M})$ so that $\pi \circ f_{a}=\pi$ for all $a \in \pi_{1}(M)$. Hence, $\pi^{*}=f_{a}^{*} \circ \pi^{*}$ and so

$$
\tilde{g}=\pi^{*} g=f_{a}^{*} \circ \pi^{*} g=f_{a}^{*} \tilde{g} .
$$

We deduce that $f_{a} \in \operatorname{Isom}(\widetilde{M}, \tilde{g})$ for all $a \in \pi_{1}(M)$ as desired.

Section B

3. Let

$$
\mathcal{H}^{n}=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1}: \sum_{j=1}^{n} x_{j}^{2}-x_{n+1}^{2}=-1, x_{n+1}>0\right\}
$$

and let g be the restriction of

$$
h=\sum_{j=1}^{n} \mathrm{~d} x_{j}^{2}-\mathrm{d} x_{n+1}^{2}
$$

on \mathbb{R}^{n+1} to \mathcal{H}^{n}.
(a) Show that g is a Riemannian metric on \mathcal{H}^{n}.
(b) Let $f(x)=A x$ be a linear map on \mathbb{R}^{n+1} given by $A=\left(a_{i j}\right) \in M_{n+1}(\mathbb{R})$ and let

$$
G=\left(\begin{array}{cc}
I_{n} & 0 \\
0 & -1
\end{array}\right)
$$

where I_{n} is the $n \times n$ identity matrix. Show that f defines an isometry on $\left(\mathcal{H}^{n}, g\right)$ if and only if

$$
A^{\mathrm{T}} G A=G \quad \text { and } \quad a_{n+1, n+1}>0
$$

(c) Now let $n=2, L>0$ and $\alpha:[0, L] \rightarrow \mathcal{H}^{2}$ be given by $\alpha(t)=(\sinh t, 0, \cosh t)$. If $\tau_{\alpha}: T_{\alpha}(0) \mathcal{H}^{2} \rightarrow T_{\alpha(L)} \mathcal{H}^{2}$ is the parallel transport map, compute $\tau_{\alpha}\left(\partial_{1}\right)$ and $\tau_{\alpha}\left(\partial_{2}\right)$.
4. Let $\left(M_{1}, g_{1}\right)$ and (M_{2}, g_{2}) be Riemannian manifolds with Levi-Civita connections ∇_{1} and ∇_{2} respectively. Recall that $T_{\left(p_{1}, p_{2}\right)}\left(M_{1} \times M_{2}\right) \cong T_{p_{1}} M_{1} \times T_{p_{2}} M_{2}$ for all $\left(p_{1}, p_{2}\right) \in M_{1} \times M_{2}$. Define g on $M_{1} \times M_{2}$ by

$$
g_{\left(p_{1}, p_{2}\right)}\left(\left(X_{1}, X_{2}\right),\left(Y_{1}, Y_{2}\right)\right)=\left(g_{1}\right)_{p_{1}}\left(X_{1}, Y_{1}\right)+\left(g_{2}\right)_{p_{2}}\left(X_{2}, Y_{2}\right)
$$

(a) Show that g is a Riemannian metric on $M_{1} \times M_{2}$.
(b) Show that the Levi-Civita connection ∇ of g on $M_{1} \times M_{2}$ satisfies

$$
\nabla_{\left(X_{1}, X_{2}\right)}\left(Y_{1}, Y_{2}\right)=\left(\left(\nabla_{1}\right)_{X_{1}} Y_{1},\left(\nabla_{2}\right)_{X_{2}} Y_{2}\right)
$$

for all vector fields X_{1}, Y_{1} on M_{1} and X_{2}, Y_{2} on M_{2}.
5. Let $\left(H^{2}, h\right)$ be the upper half-space with the hyperbolic metric

$$
h=\frac{\mathrm{d} x_{1}^{2}+\mathrm{d} x_{2}^{2}}{x_{2}^{2}} .
$$

(a) Calculate the Christoffel symbols of h in the coordinates $\left(x_{1}, x_{2}\right)$ on H^{2} using the definition or formula for the Christoffel symbols.

Let $\alpha:[0, L] \rightarrow\left(H^{2}, h\right)$ be the curve $\alpha(t)=(t, 1)$ and let τ_{α} be the parallel transport along α.
(b) Let $X_{0}=\partial_{2} \in T_{(0,1)} H^{2}$. Calculate $\tau_{\alpha}\left(X_{0}\right)$ and show that, viewed as a vector in Euclidean \mathbb{R}^{2}, it makes an angle L with the vertical axis.

Let

$$
G=\left\{u: \mathbb{R} \rightarrow \mathbb{R}: u\left(x_{1}, x_{2}\right)(t)=x_{1}+t x_{2}, x_{1} \in \mathbb{R}, x_{2}>0\right\}
$$

and define a manifold structure on G so that $f: G \rightarrow H^{2}$ given by $f\left(u\left(x_{1}, x_{2}\right)\right)=\left(x_{1}, x_{2}\right)$ is a diffeomorphism. Define a Riemannian metric g on G by $g=f^{*} h$.
(c) Show that, for all $v \in G$, the map $L_{v}: G \rightarrow G$ given by $L_{v}(u)=v \circ u$ is an isometry of g.

Section C

6. Let \mathcal{S}^{2} be the unit sphere in \mathbb{R}^{3} endowed with the round metric g, let $U=\mathcal{S}^{2} \backslash\{(0,0,1)\}$ and let $\varphi: U \rightarrow \mathbb{R}^{2}$ be

$$
\varphi\left(x_{1}, x_{2}, x_{3}\right)=\frac{\left(x_{1}, x_{2}\right)}{1-x_{3}}
$$

so that

$$
\varphi^{-1}\left(y_{1}, y_{2}\right)=\frac{\left(2 y_{1}, 2 y_{2}, y_{1}^{2}+y_{2}^{2}-1\right)}{y_{1}^{2}+y_{2}^{2}+1}
$$

(a) Show that

$$
\left(\varphi^{-1}\right)^{*} g=\frac{4\left(\mathrm{~d} y_{1}^{2}+\mathrm{d} y_{2}^{2}\right)}{\left(1+y_{1}^{2}+y_{2}^{2}\right)^{2}}
$$

Let $\beta:[0,2 \pi] \rightarrow \mathbb{R}^{2}$ be given by $\beta(t)=(\cos t, \sin t)$.
(b) Using the fact that $\varphi^{-1}:\left(\mathcal{S}^{2} \backslash\{0,0,1\}, g\right) \rightarrow\left(\mathbb{R}^{2},\left(\varphi^{-1}\right)^{*} g\right)$ is an isometry or otherwise, show that the restrictions of the vector fields

$$
y_{1} \partial_{1}+y_{2} \partial_{2} \quad \text { and } \quad-y_{2} \partial_{1}+y_{1} \partial_{2}
$$

to β are parallel along β with respect to the metric $\left(\varphi^{-1}\right)^{*} g$.

Solution:

(a) We compute directly that

$$
\begin{aligned}
\left(\varphi^{-1}\right)^{*} g & =\mathrm{d}\left(x_{1} \circ \varphi^{-1}\right)^{2}+\mathrm{d}\left(x_{2} \circ \varphi^{-1}\right)^{2}+\mathrm{d}\left(x_{3} \circ \varphi^{-1}\right)^{2} \\
& =\mathrm{d}\left(\frac{2 y_{1}}{y_{1}^{2}+y_{2}^{2}+1}\right)^{2}+\mathrm{d}\left(\frac{2 y_{2}}{y_{1}^{2}+y_{2}^{2}+1}\right)^{2}+\mathrm{d}\left(\frac{y_{1}^{2}+y_{2}^{2}-1}{y_{1}^{2}+y_{2}^{2}+1}\right)^{2}
\end{aligned}
$$

We see that

$$
\begin{aligned}
\mathrm{d}\left(\frac{2 y_{1}}{y_{1}^{2}+y_{2}^{2}+1}\right) & =\frac{2\left(y_{1}^{2}+y_{2}^{2}+1\right) \mathrm{d} y_{1}-2 y_{1} \mathrm{~d}\left(y_{1}^{2}+y_{2}^{2}+1\right)}{\left(y_{1}^{2}+y_{2}^{2}+1\right)^{2}} \\
& =\frac{2\left(y_{2}^{2}-y_{1}^{2}+1\right) \mathrm{d} y_{1}-4 y_{1} y_{2} \mathrm{~d} y_{2}}{\left(y_{1}^{2}+y_{2}^{2}+1\right)^{2}} \\
\mathrm{~d}\left(\frac{2 y_{2}}{y_{1}^{2}+y_{2}^{2}+1}\right) & =\frac{2\left(y_{1}^{2}+y_{2}^{2}+1\right) \mathrm{d} y_{2}-2 y_{2} \mathrm{~d}\left(y_{1}^{2}+y_{2}^{2}+1\right)}{\left(y_{1}^{2}+y_{2}^{2}+1\right)^{2}} \\
& =\frac{-4 y_{1} y_{2} \mathrm{~d} y_{1}+2\left(y_{1}^{2}-y_{2}^{2}+1\right) \mathrm{d} y_{2}}{\left(y_{1}^{2}+y_{2}^{2}+1\right)^{2}} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\mathrm{d}\left(\frac{2 y_{1}}{y_{1}^{2}+y_{2}^{2}+1}\right)^{2} & +\mathrm{d}\left(\frac{2 y_{2}}{y_{1}^{2}+y_{2}^{2}+1}\right)^{2} \\
& =\frac{4\left(y_{2}^{2}-y_{1}^{2}+1\right)^{2} \mathrm{~d} y_{1}^{2}-32 y_{1} y_{2} \mathrm{~d} y_{1} \mathrm{~d} y_{2}+4\left(y_{1}^{2}-y_{2}^{2}+1\right)^{2} \mathrm{~d} y_{2}^{2}}{\left(y_{1}^{2}+y_{2}^{2}+1\right)^{4}}
\end{aligned}
$$

We then compute

$$
\begin{aligned}
\mathrm{d}\left(\frac{y_{1}^{2}+y_{2}^{2}-1}{y_{1}^{2}+y_{2}^{2}+1}\right) & =\mathrm{d}\left(1-\frac{2}{y_{1}^{2}+y_{2}^{2}+1}\right) \\
& =\frac{2 \mathrm{~d}\left(y_{1}^{2}+y_{2}^{2}+1\right)}{\left(y_{1}^{2}+y_{2}^{2}+1\right)^{2}} \\
& =\frac{4 y_{1} \mathrm{~d} y_{1}+4 y_{2} \mathrm{~d} y_{2}}{\left(y_{1}^{2}+y_{2}^{2}+1\right)^{2}}
\end{aligned}
$$

and hence

$$
\mathrm{d}\left(\frac{y_{1}^{2}+y_{2}^{2}-1}{y_{1}^{2}+y_{2}^{2}+1}\right)^{2}=\frac{16\left(y_{1}^{2} \mathrm{~d} y_{1}^{2}+2 y_{1} y_{2} \mathrm{~d} y_{1} \mathrm{~d} y_{2}+y_{2}^{2} \mathrm{~d} y_{2}^{2}\right)}{\left(y_{1}^{2}+y_{2}^{2}+1\right)^{4}}
$$

Adding our results cancels the $\mathrm{d} y_{1} \mathrm{~d} y_{2}$ term and gives

$$
\begin{aligned}
\left(\varphi^{-1}\right)^{*} g & =\frac{4\left(y_{1}^{2}+y_{2}^{+} 1\right)^{2}\left(\mathrm{~d} y_{1}^{2}+\mathrm{d} y_{2}^{2}\right)}{\left(y_{1}^{2}+y_{2}^{2}+1\right)^{4}} \\
& =\frac{4\left(\mathrm{~d} y_{1}^{2}+\mathrm{d} y_{2}^{2}\right)}{\left(y_{1}^{2}+y_{2}^{2}+1\right)^{2}}
\end{aligned}
$$

as required.
(b) If we choose coordinates

$$
\left(x_{1}, x_{2}, x_{3}\right)=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)=f(\theta, \phi)
$$

as usual, we see that

$$
\gamma(t)=\varphi^{-1} \circ \beta(t)=(\cos t, \sin t, 0)=f\left(\frac{\pi}{2}, t\right)
$$

which is the equator in \mathcal{S}^{2}. Hence if we let $X_{1}=f_{*}\left(\partial_{\theta}\right)$ and $X_{2}=f_{*}\left(\partial_{\phi}\right)$ then along β we have

$$
Y_{2}=\left(\varphi^{-1}\right)_{*}\left(X_{2}\right)=\beta^{\prime}=-\sin t \partial_{1}+\cos t \partial_{2}=-y_{2} \partial_{1}+y_{1} \partial_{2}
$$

Hence Y_{2} is parallel along β as X_{2} is parallel along $\gamma=\varphi^{-1} \circ \beta$ and φ^{-1} is an isometry by definition.

We also know that X_{1} is parallel along γ and X_{1} is unit length and orthogonal to X_{2} along γ, so any unit vector field along β which is orthogonal to Y_{2} must be parallel (since it must be the pushforward of X_{1} up to sign). However, we see that

$$
Y_{1}=\cos t \partial_{1}+\sin t \partial_{2}=x_{1} \partial_{1}+x_{2} \partial_{2}
$$

along β is unit length and orthogonal to Y_{2} since along β

$$
\left.\left(\varphi^{-1}\right)^{*} g\right|_{\beta}=\mathrm{d} y_{1}^{2}+\mathrm{d} y_{2}^{2}
$$

as $y_{1}^{2}+y_{2}^{2}=1$ along β. Thus Y_{1} is also parallel along β.

