C3.11 Riemannian Geometry
Sheet 1 — HT24

Solutions

This problem sheet is based on Sections 1 and 2 of the lecture notes. This version contains

solutions to Sections A and C.

Section A
1. Let
B? = {(y1,42) €R? : yi +y5 <1}
and define a Riemannian metric g on B? by

4dy? + 4dy?
(1—9f—13)*

Let
H? = {(z1,29) € R? : 3y > 0}

and define a Riemannian metric h on H? by

I da? + da3
=12
L3
(a) Define f: B> — H? by
Flansyn) = 2o i~ 3)

yi + (y2 + 1)
Show that f is a diffeomorphism.
[Hint: What is f o f?]

(b) Compute f,(01) and f.(0s).

(c) Hence (or otherwise) deduce that f*h = g.

Solution:

(a) Obviously f is smooth. One can see that if one writes f(y;,y2) = (21, 22) then

o _ i+ (1 —yi -y +ui + (12 +1)?)?
(y7 + (y2 +1)%)?
_ Ayt 4+ 1)?

Wi (e 1))
4

P+ (1)

I’%‘f’(l‘g—l— 1)

Mathematical Institute, University of Oxford Page 1 of 7

Prof Jason D. Lotay: jason.lotay@maths.ox.ac.uk



C3.11 Riemannian Geometry: Sheet 1 — HT24

Therefore,
21, B 4 yit+ (2 +1)°2
o+ (w2 + 1)y + (g2 +1)2 4 e
Similarly, one finds that

| oa? gt (y%+(yz+1)22)2—4y%—(1—1/%—1/%)2
(yi + (y2 +1)2)?
eyt 4 (2 +1)%)
(Wi (1 +1)2)
. 4yo
it (2 + 1)

SO ) )
22 + (19 + 1)2 >
Hence,

f(f(ylayQ)) = (yla y2)
so f is invertible with f~! = f.
As f is smooth and invertible and its own inverse, f is a diffeomorphism.

[Note: If we let z = y; — iy and w = x1 + iy then the map f is equivalent to the

Z > - ) ]
z—1
(b) We compute the differential of f as:

2 ( (2 + 1) —yi —2p(y2+1) ) _

Mobius transformation

dfy, =

Wi + (2 + 122\ —2p1(p2+1) 92— (y2+1)?
Therefore,

2((2/2 +1)* - y%)@l —4y1(y2 +1)0;
(Y7 + (2 +1)2)?

—4y1(y2 + 1)01 +2(y7 — (g2 + 1)) 02
(W + (12 + 1)2)?

f*(al) =

fo(09) =

(c) If we continue to write f(yi,y2) = (x1,22) then

J*h(01,01) = h([f.01, fO1)
14+ )2 =)+ 163 + 1)
3 (2 + (yo + 1)2)*
(7 + (12 + 1)°)? 4(y7 + (2 +1))?
(I—9?—93)% (y7 + (ya+1)2)4

B 4
(1—yf —y3)?
=g (817 al)
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By the formulae for f.(d;), we deduce that

4

N (e

(827 82)
as well. Finally,

[ h(0y,02) = h(f.01, f.02)
182+ 1) — gy + 1) — Sy + 1) (47 — (2 + 1))
73 (47 + (2 + 1))
=0=g(0h,0).

Overall, f*h = g, so f is an isometry.

2. Let (M, g) be a connected Riemannian manifold and let M be the universal cover of M.

(a) Show that there exists a unique Riemannian metric g on M such that the covering

map 7 : (M, g) — (M, g) is a local isometry.

(b) Show that the fundamental group of M acts on (M ,§) by isometries.

Solution:

(a) Since 7 : M — M is a local diffeomorphism, it is (in particular) an immersion and
so m*g = ¢ is a Riemannian metric on M. By construction, 7 : (ZT/[/, g) — (M,g) is
a local isometry.
If i were any other Riemannian metric on M so that x : (M,h) — (M, g) were a

local isometry, then for every point p € M there would exist open sets U> p and

U > 7(p) so that g = h on U, and so h = § at j. Hence, § is unique.

(b) By definition of the universal cover there is an action of the fundamental group
m1 (M) on M given by a € m(M) — f, € Diff(M) so that mo f, = 7 for all

a € m(M). Hence, 7* = f* o w* and so

g=r'g=fiom'g=f.7.

We deduce that f, € Isom(M, g) for all a € (M) as desired.
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Section B

3. Let

n
W= {(21,.. o) €ER™ 0 Y "a? —a) = —1, 20 > 0}
j=1

and let g be the restriction of
h=>) da?—dal,,
j=1

on R™"! to H".
(a) Show that g is a Riemannian metric on H".

b) Let f(x) = Az be a linear map on R""! given by A = (a;;) € M,,.1(R) and let
j

I
0 —1

where I, is the n x n identity matrix. Show that f defines an isometry on (H", g)
if and only if
ATGA =G and Apt1n41 > 0.

(c) Now let n =2, L > 0 and « : [0, L] — H? be given by «a(t) = (sinht,0,cosht). If
Ta : To(0)H? — Ty)H? is the parallel transport map, compute 7,(0;) and 7,(0-).

4. Let (M, ¢1) and (M, go) be Riemannian manifolds with Levi-Civita connections V; and
V3 respectively. Recall that T(y, ,,,) (M x M) = T, My x T, M, for all (py, p2) € Myx M.
Define g on M; x M, by

g(pl,pz)((leX2>v (Yh YZ)) = (gl)pl (X1> Yl) + (92);02(X27 Y2)

(a) Show that g is a Riemannian metric on M; X M.

(b) Show that the Levi-Civita connection V of g on M; x M satisfies

V(XLXQ)(}/]J }/2) = ((Vl)Xl}/la (V2)X2Y'2)

for all vector fields X7,Y; on M; and X5, Y5 on M.
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5. Let (H?,h) be the upper half-space with the hyperbolic metric

_ dﬁ + dx%

2
T3

h

(a) Calculate the Christoffel symbols of & in the coordinates (z;,xs) on H? using the

definition or formula for the Christoffel symbols.

Let a : [0, L] — (H?,h) be the curve a(t) = (t,1) and let 7, be the parallel transport

along .

(b) Let Xy = 0> € T(o1)H?. Calculate 7,(X,) and show that, viewed as a vector in

Euclidean R?, it makes an angle L with the vertical axis.
Let
G={u:R—=R:u(z,x)(t) = 1 + tag,x; € R, 29 > 0}

and define a manifold structure on G so that f : G — H? given by f(u(zy,x2)) = (21, x2)

is a diffeomorphism. Define a Riemannian metric g on G by g = f*h.

(c) Show that, for all v € G, the map L, : G — G given by L,(u) = vou is an isometry
of g.
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Section C

6. Let S? be the unit sphere in R?* endowed with the round metric g, let U = 82\ {(0,0,1)}
and let ¢ : U — R? be

o (xlaxQ)
gO(SC'l,Q:Q,.T:g) - 1 — 13
so that (2.2 ) ) D
1 Y1, 2Y2, Y1 + Y3 —
¥ \Y1,Y2) =
(912,92) yi+ys +1
(a) Show that

(L+ui +13)*
Let 3 : [0,27] — R? be given by ((t) = (cost,sint).
(b) Using the fact that ¢! : (8% \ {0,0,1},9) — (R? (p~1)*g) is an isometry or

otherwise, show that the restrictions of the vector fields
Y101 + 420, and  — y201 + 410,

to 3 are parallel along 3 with respect to the metric (o =1)*g.

Solution:

(a) We compute directly that

(e g=d(mop ) +d(zaop ) +d(zz0p)?

2 2 2 2 2+ 2_1 2
:d(—2 U ) +d(—2 v ) +d<—y; Y2 ) .
yr +ty; +1 yi ty; +1 yi tys +1

We see that
q ( 2y1 ) _ 2(yi +yp + Ddyn — 251d(yF +ys +1)
vi+yi+1 (¥ +y5 +1)2
_ 2(y3 — i + Dy — dy1yadys
(yf +y5+1)2
4 ( 2y> ) _ 2(yf +y3 +1)dys — 2ypd(yf +y5 + 1)
yvi+ys+1 (¥ +y3+1)2
_ —4dyryadyr + 2(yi — v3 + 1)dys
(v +y3 +1)? '
Therefore,

2 2 2 2
()~ )
yi +y; +1 yi +y; +1

A(y2 — y3 + 1)2dy? — 32y1adyrdys + 4(y7 — y2 + 1)2dy3
(yi+ys +1)* '
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We then compute

(354
yi ty; +1 yi +ys +1
_2d(yi +y3 +1)
Bty +1)?
_ Ayrdys + 4yadys
(W +yi+1)?

and hence

: (yi + y% = 1)2 _ 16(y7dyt + 2p1yedyidys + y3dy3)
vi+us+1 (Wi+ys+1)
Adding our results cancels the dy;dy, term and gives
(1) g = A(y7 + 5 1)*(dyf + dys)
(yi+ys+ 1)
_ A(dy? + dy3)
(i y+1)?

as required.
(b) If we choose coordinates
(1,9, z3) = (sinf cos ¢, sinfsin ¢, cos ) = f(0, @)
as usual, we see that
(1) = ¢ 0 B(t) = (costsint, 0) = f(5.1).

which is the equator in S%. Hence if we let X; = f.(9p) and Xy = f.(9,) then

along 3 we have
Yy = (0 1)u(Xo) = B = —sintd) + costdy = —y20, + y10s.

Hence Y, is parallel along 3 as X, is parallel along v = ¢! o 3 and ¢! is an

isometry by definition.

We also know that X; is parallel along v and X; is unit length and orthogonal
to Xs along 7, so any unit vector field along # which is orthogonal to Y5 must be

parallel (since it must be the pushforward of X up to sign). However, we see that
Y] = costd; +sintdy = £10; + 1909
along f is unit length and orthogonal to Y, since along (3
(0™")"gls = dyi + dy;

as 12 +y2 = 1 along 3. Thus Y] is also parallel along 3.
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