
C8.2: Stochastic analysis and PDEs

Part C Solutions to Problem sheet 1

Harald Oberhauser

A. Resolvent for Brownian motion ... First note

Rλf(x) =

∫ ∞

0
Ttf(x)dt =

∫ ∞

0

∫ ∞

−∞
(2πt)−0.5 exp(−(x− y)2/(2t))f(y)dydt

An application of Fubini shows this reduces to show that∫ ∞

0
(2πt)0.5 exp(−λt− (x− y)2/2t)dt = rλ(x, y)

The expression depends only on |x− y| so we can set y = 0 wlog. Hence, substituting y = 0 and
t = xs2/γ gives

γ2t+ x2/t = γxs2 + γx/s2 = γx(s− 1/s)2 + 2γx

Using this, the integral becomes

I =
2
√
x

2πγ
e−γx

∫ ∞

0
exp(−0.5γx(s− 1/s)2)dx

Now observe that u(s) = s− 1/s is one-to-one from (0,∞) to (−∞,∞) and s(u) = u+ s(−u) so
that in particular s′(u) + s′(−u) = 1. Thus

I =
2
√
x

2πγ
exp(−γx)

∫ ∞

0
exp(−0.5γxu2)du =

1

γ
exp(−γx)

B. Suppose that X is a continuous time Markov process on a discrete state space (so can be char-
acterised by a Q-matrix). Let fij(t) denote the density of the first hitting time of state j if the
chain starts in state i. Use the Markov property to find an integral equation which expresses the
transition densities pij(t) of the chain as a convolution of fij and pjj and hence find an expression
for the Laplace transform of the first hitting densities in terms of the resolvent of the chain.

Conditioning on the first hitting time of j, by the Partition Theorem we obtain

pij(t) =

∫ t

0
fij(s)pjj(t− s)ds.

Using the convolution theorem for Laplace transforms and rearranging,

f̂ij =
p̂ij
p̂jj

=
rij(λ)

rjj(λ)
.
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C. If X is a Feller process and f a non-negative function, check that

Y λ
t = e−λtRλf(Xt)i, t ≥ 0,

defines a supermartingale (with respect to distribution of X and the natural filtration), where Rλ

is the resolvent corresponding to X.

Let Ft denote the natural filtration.

E
[
Y λ
t+h

∣∣∣Ft

]
= E

[
e−λ(t+h)Rλf(X

λ
t+h

∣∣∣Ft

]
= e−λ(t+h)ThRλf(Xt)

= e−λ(t+h)RλThf(Xt)

= e−λ(t+h)

∫ ∞

0
e−λsTs+hf(Xt)

= e−λt

∫ ∞

h
e−λsTsf(Xt)

≤ Y λ
t ,

as required.

[This result provides a large supply of continuous supermartingales for any given Feller process.]

D. The Cauchy process, X, is the real-valued process for which Xs+t−Xs is distributed as a Cauchy
random variable with density

1

π

t

t2 + x2
,

and increments corresponding to disjoint time intervals are independent.

Suppose that ϕ is an odd function, which is twice continuously differentiable with compact support
and for which ϕ′(0) = 1. Let T (t) denote the expectation semigroup of X, that is T (t)f(x) =
E[f(Xt|X0 = x]. Suppose that f is twice continuously differentiable. Show that

T (t)f(x)− f(x)

t
=

1

π

∫ ∞

−∞

f(x+ y)− f(x)− f ′(x)ϕ(y)

t2 + y2
dy,

and hence find an expression for the infinitesimal generator of T (t).

Unlike the case of Brownian motion, the generator of the Cauchy process is not a local operator.
(An operator A is local if Af(x) depends on the values of f only in an infinitesimal neighbourhood
of x.) The Cauchy process does not have continuous paths, while Brownian motion does. In
general, continuity of paths corresponds to locality of A.

Since ϕ is odd and 1/(t2 + y2) is even, their product is odd and so, in particular, integrates to
zero and so the first claim is immediate. [The whole point of subtracting this zero term is that
it will allow us to take the limit as t ↓ 0.] Now

f(x+ y)− f(x)− f ′(x)ϕ(y) = f ′(x)
(
y − ϕ(y)

)
+O(y2),

and the error is uniform in x (since f is twice continuously differentiable with compact support).
Moreover, since ϕ is continuous and odd, ϕ(0) = 0 and we have assumed that ϕ′(0) = 1, so
expanding ϕ around zero gives y − ϕ(y) is also O(y2) and so taking the limit as t ↓ 0 yields a
well-defined expression:

Af(x) =
1

π

∫ ∞

−∞

f(x+ y)− f(x)− f ′(x)ϕ(y)

y2
dy.
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