
C8.2: Stochastic analysis and PDEs

Solutions to Problem sheet 2

The questions on this sheet are divided into two sections. Those in the first section are compulsory and
should be handed in for marking. Those in the second are extra practice questions and should not be
handed in.

Section 1 (Compulsory)

1. Show that a Markov pregenerator has the property that for f ∈ D(A), λ ≥ 0 and f − λAf = g,
then ∥f∥ ≤ ∥g∥. Deduce that, in particular, g determines f uniquely.

By definition of Markov pregenerator, if f ∈ D(A), λ ≥ 0 and f − λAf = g, then

min
ζ∈E

f(ζ) ≥ min
ζ∈E

g(ζ).

Apply this to both f and −f we obtain

−min f ≤ −min g

and
max f = −min(−f) ≤ −min(−g) = max g,

so that ∥f∥ ≤ ∥g∥.
For uniqueness, suppose that f1 and f2 both solve f − λAf = g, then f1 − f2 solves the same
equation with g = 0, and by the first part of the question ∥f1 − f2∥ ≤ 0.

2. Calculate the infinitesimal generator of the pure jump process Xt modelling the motion of a
particle which, if it is currently at location x, it will wait an exponentially distributed amount of
time with parameter α(x) before jumping to a new location determined by the probability measure
µ(x, dy). You may assume that α(x) is uniformly bounded.

The result is easy, but the idea is to illustrate a method. We are going to condition on what
happens to the process in a small time increment of length h. With probability 1 − e−α(x)h =
α(x)h + O(h2) it jumps to a new position. The probability that it jumps twice is O(h2). The
new position is determined by µ(x, dy). Thus

Ex[f(Xh)] = α(x)h

∫
f(y)µ(x, dy) + (1− α(x)h)f(x) +O(h2).

Now subtract f(x) from both sides, divide by h and let h→ 0, to obtain

Af(x) = α(x)

∫
(f(y)− f(x))µ(x, dy),

where we have used that
∫
µ(x, dy) = 1.
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3. Check that each of the following is a Markov generator:

(a) A = G− I where G is a positive operator defined on all of C(E) such that G1 = 1.

(b) E = [0, 1] and Af(η) = 1
2f

′′(η) with

D(A) = {f ∈ C(E) : f ′′ ∈ C(E), f ′(0) = 0 = f ′(1)}.

(c) E = [0, 1] and Af(η) = 1
2f

′′(η) with

D(A) = {f ∈ C(E) : f ′′ ∈ C(E), f ′′(0) = 0 = f ′′(1)}.

(To check that the operator is closed in the second two cases, use that differentiation is a closed
(unbounded) operator, so f ′′ is the composition of closed operators and therefore closed.) Or
write fn(x) = fn(0)+xf

′
n(0)+

∫ x
0

∫ y
0 f

′′
n(z)dzdy where (fnAfn) → (f, g) and deduce that Af = g.

That we have a Markov pre-generator in each case is easy. The only condition to check is that
if f ∈ D(A), λ ≥ 0 and f − λAf = g then min f(ζ) ≥ min g(ζ). For the second two cases,
this is just elementary calculus. For the first, it is enough to check that if f ∈ D(A) and
f(η) = min f(ζ), then Af(η) ≥ 0. Now f −min f ≥ 0 and G is a positive operator with G1 = 1,
so G(f − min f) = Gf − min f ≥ 0 and so Gf ≥ min f which proves that (G − I)f(η) ≥ 0 as
required.

The more challenging task is to show that the range R(I − λA) = C(E) for sufficiently small
λ. For the first case this is straightforward: since G is bounded, choose λ such that λ∥G∥ < 1,
say. Then (I − λ(G − I))f = g becomes ((1 + λ)I − λG)f = g which can be solved as f =∑∞

n=0 λ
nGng/(1 + λ)n+1.

For the other two cases, we must solve a differential equation of the form

f − λ

2
f ′′ = g (1)

on [0, 1] with appropriate boundary conditions. This is standard: Set α2 = 2/λ, then the ho-
mogeneous equation has independent solutions u(x) = eαx, v(x) = e−αx and the corresponding
Wronskian uv′ − u′v = −2α. We seek a solution of the form f = ϕu + ψv and make the ansatz
that ϕ′u + ψ′v = 0. Substituting into the original equation, we find ourselves with a pair of
simultaneous equations for ϕ′ and ψ′:

ϕ′u+ ψ′v = 0

(our ansatz) and
ϕ′u′ + ψ′v′ = −α2g.

Solving

ϕ′ =
−α2gv

uv′ − u′v
= −αgv

2
; ψ′ =

α2gu

u′v − uv′
=
αgu

2
.

The general solution to (1) is then of the form

f(x) = eαx
∫ 1

x

α

2
g(y)e−αydy + e−αx

∫ x

0

α

2
g(y)eαydy +Aeαx +Be−αx,

and evidently we can choose A and B in such a way that the boundary conditions are satisfied.
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4. Let E = [0, 1] and consider the operator L defined by Lf(x) = f ′(0) with

D(L) = {f ∈ C([0, 1]) : f ′(0) exists}.

Show that the closure of the graph of L does not correspond to the graph of a linear operator.

The point is that we obtain a ‘multivalued’ operator in the limit. For example, if we take the
functions fn,k with fn,k(x) = 0 for x ∈ [1/n, 1], fn,k(0) = k/n and fn,k(x) linear on [0, 1/n], then
each of the sequences fn,k (with k fixed) converges to the (same) zero function as n→ 0, but the
operator returns the value −k for the kth sequence.

5. (Discrete time martingale problem, Ethier & Kurtz, Chapter 4, Exercise 16)

(a) Let E be a compact (or locally compact) space and B(E) the bounded Borel measurable
functions on E. Let µ(x,Γ) be a transition function on E × B(E) and let {X(n)}n∈N be a
sequence of E-valued random variables. Define A : B(E) → B(E) by

Af(x) =

∫
E
f(y)µ(x, dy)− f(x),

and suppose that, for each f ∈ B(E),

f(X(n))−
n−1∑
k=0

Af(X(k))

is a martingale with respect to the natural filtration generated by X. Show that X is a
Markov chain with transition function µ(x,Γ).

Let Fn denote the natural filtration. Then, by the martingale property,

E

[
f(Xn+1)−

n∑
k=0

Af(Xk)

∣∣∣∣∣Fn

]
= f(Xn)−

n−1∑
k=0

Af(Xk),

and so, rearranging,

E [f(Xn+1)| Fn] = f(Xn) +Af(Xn) =

∫
f(y)µ(Xn, dy).

Since this holds for all f , the result follows.

(b) Let X(n), n = 0.1. . . . , be a sequence of Z-valued random variables such that for each n ≥ 0,
|X(n+ 1)−X(n)| = 1. Let g : Z → [−1, 1] and suppose that

X(n)−
n−1∑
k=0

g(X(k))

is a martingale with respect to the natural filtration generated by X. Show that X is a
Markov chain and calculate its transition probabilities in terms of g.

Using the martingale property,

E [X(n+ 1)| Fn] = X(n) + g(X(n)),

and since we know that |X(n+ 1)−X(n)| = 1, this says that

P [X(n+ 1)−X(n) = 1| Fn]− P [X(n+ 1)−X(n) = −1| Fn] = g(X(n)).
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Thus

P [X(n+ 1)−X(n) = 1| Fn] =
g(X(n)) + 1

2
,

and the result follows.

6. Recall that the Wright-Fisher diffusion, which takes values in [0, 1] has generator

Af(x) =
1

2
x(1− x)f ′′(x),

when restricted to an appropriate subset of the twice continuously differentiable functions on [0, 1].
By considering the martingale problem with suitable functions x:

(a) Show that X∞ = limt→∞Xt exists and find its expectation;

Since f(x) = x has Af = 0, Xt is a bounded martingale and X∞ exists by martingale
convergence and E[X∞] = x.

(b) Show that P[X∞ ∈ {0, 1}] = 1 and (using your previous calculation) find P[X∞ = 1];

Note that setting f(x) = x(1− x), Af(x) = −x(1− x) and so

Xt(1−Xt) +

∫ t

0
Xs(1−Xs)ds

is a positive martingale. As such it converges to a bounded limit, but this is only possible
if P[X∞ ∈ {0, 1}] = 1.

(c) Find E[
∫∞
0 Xs(1 − Xs)ds]. As a corollary of the previous part, Ex[

∫∞
0 Xs(1 − Xs)ds] =

x(1− x).

Now take f(x) = 2x log x+ 2(1− x) log(1− x). Although f isn’t in the domain of the generator,
we can find a twice continuously differentiable function which equals f on [ϵ, 1− ϵ] and is in the
domain. Taking this on trust, find an expression for the expected hitting time of {ϵ, 1 − ϵ} and
hence of {0, 1}.
For this choice of function, Af(x) ≡ 1 and so

f(Xt)−
∫ t

0
1ds

is a martingale. Setting τϵ to be the first hitting time of {ϵ, 1− ϵ},

Ex[f(Xτϵ)− τϵ] = f(x),

or

Ex[τϵ] = −2x log x− 2(1− x) log(1− x) + 2ϵ log ϵ+ 2(1− ϵ) log(1− ϵ)

→ −2x log x− 2(1− x) log(1− x) as ϵ→ 0.

Section 2 (Extra practice questions, not for hand-in)
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A. Show that if a Markov pregenerator is everywhere defined and is a bounded operator, then it is
automatically a Markov generator. [Hint: A bounded operator is automatically closed. To check
that R(I − λA) = C(E) for sufficiently small λ, it suffices to solve f − λAf = g, for which you
can try a ‘geometric series’ f =

∑∞
n=0 λ

nAng, just as we did on the previous problem sheet.]

The hint says it all really. Since A is bounded, choose λ so that ∥λA∥ < 1 and then (I−λA)f = g
is solved by

f =

∞∑
n=0

(λA)ng

(which is well defined).

B. (Brownian Motion with sticky boundary.) Show that Af = 1
2f

′′ on

D(A) = {f ∈ C([0,∞)) : f ′, f ′′ ∈ C([0,∞)), f ′(0) = cf ′′(0)}

for a fixed c > 0 defines a Markov pregenerator.

This is just a question of fitting another set of boundary conditions for equation (1).

The corresponding stochastic process is called sticky Brownian motion. It interpolates between ab-
sorbing and reflecting Brownian motion on the half line. In particular, unlike reflecting Brownian
motion, the Lebesgue measure of {t : Xt = 0} is positive. Indeed one can check that

E0

[∫ ∞

0
αe−αt1Xt>0dt

]
=

1

1 + c
√
2α
. (2)

If you want to try to show this, use the fact that since the semigroups are known explicitly in the
absorbing and reflecting cases, in an obvious notation we can solve the equations

fa − λAafa = g, fr − λArfr = g

explicitly. Since the form of the generators is the same (only the domains differ), one can solve
f − λAf = g by taking f to be a constant multiple of f ′′r (0)fa(x) + cf ′a(0)fr(x). That provides an
expression for

E
[∫ ∞

0
αe−αtg(Xt)dt

]
.

C. Let X be a strong Markov process with Markov generator A on a compact set E. Let P λ
t f(x) =

Ex exp(−λt)f(Xt).

(a) Show by the strong Markov property that for a stopping time τ we have

P λ
τ P

λ
t = P λ

τ+t,

and hence that we have Dynkin’s formula for the resolvent Rλ =
∫∞
0 e−λtPtdt; for g ∈

C(E), λ > 0, x ∈ E that

Rλg(x) = Ex

∫ τ

0
e−λtg(Xt)dt+ P λ

τ Rλg(x).
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(b) Apply this to g = (λ−A)f , for f ∈ D(A), to obtain

Exe−λτf(Xτ )− f(x) = Ex

∫ τ

0
e−λs(A− λ)f(Xs)ds. (3)

Now let λ→ 0 to obtain for x such that Exτ <∞,

Exf(Xτ )− f(x) = Ex

∫ τ

0
Af(Xs)ds.

(c) Let X be a Brownian motion and define Ta = inf{t : Xt = a} to be the first hitting time of
the point a > 0. Working over C0(R) and applying formula (3) to f(x) = exp(θx)Ix≤a for
a suitably chosen θ show that

Exe−λTa = e−a
√
2λ, ∀λ ≥ 0.

(a) This is a simple application of the strong Markov property

P λ
τ+tf(x) = Exe−λ(τ+t)f(Xτ+t)

= Exe−λτE(e−λtf(Xτ+t)|Fτ )

= Exe−λτEXτ (e−λtf(Xt))

= Exe−λτP λ
t f(Xτ

= P λ
τ P

λ
t f(x)

Using this we have

Rλg(x) =

∫ ∞

0
P λ
t f(x)dt

= Ex

∫ ∞

0
e−λtg(Xt)dt

= Ex

∫ τ

0
e−λtg(Xt)dt+

∫ ∞

τ
e−λtg(Xt)dt

= Ex

∫ τ

0
e−λtg(Xt)dt+

∫ ∞

0
e−λ(s+τ)g(Xs+τ )dt

= Ex

∫ τ

0
e−λtg(Xt)dt+

∫ ∞

τ
P λ
τ+sg(x)dt

= Ex

∫ τ

0
e−λtg(Xt)dt+

∫ ∞

τ
P λ
τ P

λ
s g(x)dt

= Ex

∫ τ

0
e−λtg(Xt)dt+ P λ

τ Rλg(x).

(b) This is straightforward as Rλ(λ−A)f(x) = f(x), so

f(x) = Ex

∫ τ

0
e−λt(λ−A)f(Xt)dt+ Exe−λτf(Xτ ).

Rearranging gives the result.

Now as Ex|
∫ τ
0 e

−λt(λ−A)f(Xt)dt| ≤ Exτ∥f∥ <∞ we can apply DOM to take λ→ 0 to get
the result.
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(c) Applying this in the case where τ = Ta and X is Brownian motion with generator Af = 1
2f

′′

we get setting θ =
√
2λ that

E0e−λTa+
√
2λXTa − 1 = 0,

and rearranging gives the result.

D. Show that almost sure convergence implies convergence in distribution.

Recall that Xn → X in distribution if for all bounded continuous functions g : E → R,

lim
n→∞

E[g(Xn)] = E[g(X)].

Suppose that Xn → X almost surely, and that g is bounded and continuous, then g(Xn) →
g(X) almost surely and since g is bounded, the Dominated Convergence Theorem tells us that
E[g(Xn)] → E[g(X)] as required.

E. Prove the Portmanteau Theorem:

Theorem 0.1 (Portmanteau Theorem). Let (Xn)n≥1 be a sequence of random variables taking
values in S. The following are equivalent.

(i) Xn → X in distribution.

(ii) For any closed set K ⊆ S, lim supn→∞ P[Xn ∈ K] ≤ P[X ∈ K].

(iii) For any open set O ⊆ S, lim infn→∞ P[Xn ∈ O] ≥ P[X ∈ O].

(iv) For all Borel sets A ⊆ S such that P[X ∈ ∂A] = 0, limn→∞ P[Xn ∈ A] = P[X ∈ A].

(v) For any bounded function f , denote by Df the set of discontinuities of f . Then for any f
such that P[X ∈ Df ] = 0, E[f(Xn)] → E[f(X)] as n→ ∞.

(i) =⇒ (ii) Let gn(x) = 1 − (nd(x,K) ∧ 1), which is continuous and bounded, is 1 on K and
converges pointwise to 1K . Then, for every n,

lim sup
k→∞

P[Xk ∈ K] ≤ lim sup
k→∞

E[gn(Xk)] = E[gn(X)].

Now let n→ ∞ and use that the gn(X) ≤ 1 and converges pointwise to 1K(X) plus the Dominated
Convergence Theorem.

(ii) =⇒ (iii) Set K = Gc, which is closed, and use complements.

(iii) =⇒ (iv) Let G be the interior of A and K the closure. Then, by assumption, P[X ∈ G] =
P[X ∈ K] = P[X ∈ A] and so we may use (iii) (and (ii) which follows immediately from (iii)) to
obtain

lim sup
n→∞

P[Xn ∈ A] ≤ lim sup
n→∞

P[Xn ∈ K] ≤ P[Xn ∈ K] = P[X ∈ A],

and
lim inf
n→∞

P[Xn ∈ A] ≥ lim inf
n→∞

P[Xn ∈ G] ≥ P[Xn ∈ G] = P[X ∈ A],

and the result follows.

(iv) =⇒ (v) From (iv) we have convergence for g of the form g(x) =
∑N

n=1 an1An where An

satisfies P[X ∈ ∂An] = 0. We call such functions elementary. Given g as in (v), observe that for
every a < b, with possibly a countable number of exceptions,

P
[
X ∈ ∂{x : g(x) ∈ (a, b]}

]
= 0.
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Indeed, if X ∈ ∂{x : g(x) ∈ (a, b]} then either g is discontinuous in X or g(X) = a or g(X) = b.
The first event has probability zero and so have the last two except for possibly at a countable
set of values of a, b. By decomposing the real axis in suitable small intervals, we thus obtain an
increasing sequence gk and a decreasing sequence hk of elementary functions, both converging
pointwise to g. Now, for all k,

lim sup
n→∞

E[g(Xn)] ≤ lim sup
n→∞

E[hk(Xn)] = E[hk(X)],

and
lim inf
n→∞

E[g(Xn)] ≥ lim inf
n→∞

E[gk(Xn)] = E[gk(X)],

and the right hand sides of both converge as k → ∞ (by bounded convergence) to E[g(X)].

(v) =⇒ (i) This is trivial.
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