Geometric Group Theory J

Cornelia Drutu

University of Oxford

Part C course HT 2024

Cornelia Drutu (University of Oxford) Geometric Group Theory Part C course HT 2024 1/14



HNN extensions

Definition
Suppose we have A C G and 6 : A — G an injective homomorphism. The
HNN extension of G on A with respect to 0 is

Gxp = (G, t|tat™! = 0(a),Va € A)
— G (t) / (({tat 10(a)":a e A))

t is called the stable letter of the HNN extension.

The name comes from Graham Higman, Bernhard Neumann and Hanna

Neumann.
A definition with a Universal Property can be formulated using

Gxp = (G, t|tat™t = 0(a),Va € A).
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HNN extensions

Definition

Let AC G and 6 : A — G be injective homomorphism. The HNN
extension of G on A with respect to 6 is

Gxa = (G, ttat™! = 6(a),Va € A)

Remark

If G = (S|R) then Gxa = (SU{t}|RU {tat ! = 0(a) : a € A}).

Examples

e The Baumslag-Solitar groups BS(m, n) = (a, t|ta™t~! = a"), where
m,n € 7.

o When m = n =1, we have Z? (fundamental group of the torus.)

o When m=1, n= —1, the fundamental group of the Klein bottle.

o When m =1 (or n=1) the group is solvable.
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Reduced words of HNN extensions

Suppose Aj is a set of right coset representatives for A and A; is a set of
right coset representatives for §(A) such that 1 € A; N A.

A reduced word of Gxp4 is a sequence (go, t, g1, t, g2, ..., t", g,) such
that

0o e=+=1

0 g€eG

e gceAife=1 g €A ife=-1

0 gi#1lifeiy1 = —¢

A reduced element of Gx, is an element of the form got“gy...tg,.

Theorem
Each g € Gx, is represented by a unique reduced word. J

Cornelia Drutu (University of Oxford) Geometric Group Theory Part C course HT 2024 4 /14



Reduced words of HNN extensions

Theorem
Each g € Gx4 is represented by a unique reduced word. J

Proof:

Existence of a representation: We induct on the length of g as a reduced
word in G U {t,t1}. The length 1 case is obvious.

Assume true for n. Length n+ 1 means either g = ut™!, length(u) < n, or
g € {wth wt~1h}
where length(w) < n—1and h€ G. If g = ut™!, apply induction. If
g = wth = wtah; = wtat ‘th; = wh(a)thy

then length(w6(a)) < n so we can apply the inductive assumption. The
case g = wt~Lh is similar.
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Reduced words of HNN extensions

Uniqueness of representation: Let X be the set of reduced words. G4 acts
on it (i.e. there exists a group homomorphism Gx4 — Bij(X)) as follows:
¢(g)(g0a tq:gl, ceey tenagn) = (gg07 tq?glv ) tEnygn)

and ¢(t)(go, t, g1, ..., t, gn) equals

(0(go), t,1,t, ...t g,) ifgpeAande =1

(0(g0)g1, t2, ..., t, gn) if go € Aand e = —1

(0(a), t,gp, t, ...t gn) if go = agf and g} € A1\ {1}
Exercise: Prove that ¢(t) is a bijection. For instance, prove that ¢(t71) is
its inverse.
We thus have a homomorphism ¢ : G * (t) — Bij(X).
Exercise: prove that ¢(tat™1) = ¢(0(a)), Va € A.
Hence ¢ defines ¢ : G4 — Bij(X). And if g = got“gy...t"g, then

_ €1 €
¢(g)(]‘)*(g0/t 7g17"'7tn7gn)- D
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N
HNN extensions

Theorem

Each g € Gx, is represented by a unique reduced word.

Corollary
The group G embeds into Gx4.

Corollary (Britton's lemma)

If gotg1...t"g, is such that gi € G\ A when (¢;,€i+1) = (1,—1) and
gi € G\ O(A) when (¢j,€i41) = (—1,1) then it is non-trivial.
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|
Graphs of groups

Definition
If G=Axy B or G = Axy then we say that G splits over H.

Definition
Let Y be an oriented graph such that the corresponding unoriented graph
is connected and each of its edges appears with both orientations in Y.

A graph of groups is a pair (G, Y), where G is a map that assigns a group
G, to each vertex v € V(Y) and a group G, to each edge e € E(Y') such
that
Q Ge =Gz
@ for all edges e, there exists an injective homomorphism
e : Ge — Gt(e)
where t(e) is the terminus of the edge e = [o(e), t(e)].

v
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|
Graphs of groups

Graphs of groups appear naturally when G acts on a graph X without
inversions.

When this happens, we define the quotient graph Y = X/G and the
projection p : X — Y as follows:
@ Vertices are orbits Gv, v € X
e Gv, Gw are joined if there exists an edge [v1, wy] such that v; € Gv,
wy € Gw.
We define p: X — X/G by p(v) = Gv, p(e) = {Go(e), Gt(e)}.
In this case,

e Vv € Y, define G, = Stab(?) where ¥ is some element of p~1(v)

e Ve € Y, define G, = Stab(é) where é is some element of p~(e)
taking care that, whenever we can, v is an endpoint of & such that
Ge C G,.
For some edges, we might have to define ae not as an inclusion, but as an

inclusion composed with a conjugation.
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|
Graphs of groups

Definition
The path group of the graph of groups (G, Y) is
F(G,Y) =
(lJ GUE(Y)e=e" eac(g)e™ = az(g),Ve € E(Y),g € Ge).

veVv

If G, = (5,|R,) then

FG,Y)=(JSUEM)I | R.e=e" eaclg)e ™ = az(g)).
vev vev(y)

v

Cornelia Drutu (University of Oxford) Geometric Group Theory Part C course HT 2024 10 / 14



|
Graphs of groups

Remarks
Q Ifall G, = {1} then F(G,Y) = F(E*(Y)).
@ There exists an epimorphism F(G,Y) — F(ET(Y)) defined by
sending each G, to {1}.
@ Ifall G. =1 then

F(G,Y) =*,ev(v)Gy * F(ET(Y)).

Cornelia Drutu (University of Oxford) Geometric Group Theory Part C course HT 2024 11 /14



|
Graphs of groups

Definition
A path in (G, Y) is a sequence

c= (g07 €1,81,€2,..-,8n—1, en7gn)

such that t(e,-) = o(e,-+1) and gj € Gt(e,-) = GO(ei+1)' If vo = o(el),
vp = t(ep) then we call this a path from vy to v,. We call

Vo, V1 = t(el) = 0(62), V= t(e,-) = O(ei+]_), cees Vp

its sequence of vertices. We define |c| to be the element of the path group
g0€181---€ngn- If ag, a1 € V(YY) then we define

m[ao, a1] = {|c| : ¢ a path from ag to a1}
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|
Graphs of groups

Remark
If a9, a1,a2 € V(Y) and v € wlao, a1], § € m[a1, az] then v € 7[ap, a2].

Proposition

Let (G, Y) be a graph of groups and suppose agp € V(Y. The set
m[ao, ao] is a subgroup of F(G,Y).

Proof.
If
c= (gOa €1,81,€2,...,8n—1, €n, gn)

is a path from ag to ag then

el ™ = g, teng, 185t € mlao, ao]

4
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Graphs of groups with basepoint

Proposition
Let (G, Y) be a graph of groups and suppose ag € V(Y). The set
m[ao, ao] is a subgroup of F(G,Y).

We call this subgroup the fundamental group of the graph of groups
(G, Y) with basepoint ap and denote it 71(G, Y, ap).
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