Geometric Group Theory

Cornelia Druțu

University of Oxford

Part C course HT 2024

Cornelia Druțu (University of Oxford)

Geometric Group Theory

Part C course HT 2024 1 / 14

HNN extensions

Definition

Suppose we have $A \subseteq G$ and $\theta : A \to G$ an injective homomorphism. The HNN extension of G on A with respect to θ is

$$G_{A} := \langle G, t | tat^{-1} = \theta(a), \forall a \in A \rangle$$
$$= G * \langle t \rangle / \langle \langle \{tat^{-1}\theta(a)^{-1} : a \in A\} \rangle \rangle$$

t is called the stable letter of the HNN extension.

The name comes from Graham Higman, Bernhard Neumann and Hanna Neumann.

A definition with a Universal Property can be formulated using

$$G*_{A} = \langle G, t | tat^{-1} = \theta(a), \forall a \in A \rangle.$$

HNN extensions

Definition

Let $A \subseteq G$ and $\theta : A \to G$ be injective homomorphism. The HNN extension of G on A with respect to θ is

$${{\mathcal{G}}}*_{{\mathcal{A}}}:=\langle {{\mathcal{G}}},t|tat^{-1}= heta({{\mathsf{a}}}),orall{{\mathsf{a}}}\in {{\mathcal{A}}}
angle$$

Remark

If
$$G = \langle S | R
angle$$
 then $G *_A = \langle S \cup \{t\} | R \cup \{tat^{-1} = \theta(a) : a \in A\}
angle$.

Examples

- The Baumslag-Solitar groups $BS(m, n) = \langle a, t | ta^m t^{-1} = a^n \rangle$, where $m, n \in \mathbb{Z}$.
- When m = n = 1, we have \mathbb{Z}^2 (fundamental group of the torus.)
- When m = 1, n = -1, the fundamental group of the Klein bottle.

• When m = 1 (or n = 1) the group is solvable. Cornelia Drutu (University of Oxford) Geometric Group Theory

Part C course HT 2024 3 / 14

Reduced words of HNN extensions

Suppose A_1 is a set of right coset representatives for A and A_2 is a set of right coset representatives for $\theta(A)$ such that $1 \in A_1 \cap A_2$.

A reduced word of G_{*A} is a sequence $(g_0, t^{\epsilon_1}, g_1, t^{\epsilon_2}, g_2, ..., t^{\epsilon_n}, g_n)$ such that

- $\epsilon = \pm 1$
- *g*₀ ∈ *G*
- $g_i \in A_1$ if $\epsilon_i = 1$, $g_i \in A_2$ if $\epsilon_i = -1$
- $g_i \neq 1$ if $\epsilon_{i+1} = -\epsilon_i$

A reduced element of $G*_A$ is an element of the form $g_0 t^{\epsilon_1} g_1 \dots t^{\epsilon_n} g_n$.

Theorem

Each $g \in G_{*A}$ is represented by a unique reduced word.

Reduced words of HNN extensions

Theorem

Each $g \in G_{*A}$ is represented by a unique reduced word.

Proof:

Existence of a representation: We induct on the length of g as a reduced word in $G \cup \{t, t^{-1}\}$. The length 1 case is obvious.

Assume true for *n*. Length n+1 means either $g = ut^{\pm 1}$, $length(u) \leq n$, or

$$g \in \{wth, wt^{-1}h\}$$

where $length(w) \le n-1$ and $h \in G$. If $g = ut^{\pm 1}$, apply induction. If

$$g = wth = wtah_1 = wtat^{-1}th_1 = w\theta(a)th_1$$

then $length(w\theta(a)) \le n$ so we can apply the inductive assumption. The case $g = wt^{-1}h$ is similar.

Cornelia Druţu (University of Oxford)

Reduced words of HNN extensions

Uniqueness of representation: Let X be the set of reduced words. $G*_A$ acts on it (i.e. there exists a group homomorphism $G*_A \rightarrow Bij(X)$) as follows:

$$\phi(g)(g_0, t^{\epsilon_1}, g_1, ..., t^{\epsilon_n}, g_n) = (gg_0, t^{\epsilon_1}, g_1, ..., t^{\epsilon_n}, g_n)$$

and $\phi(t)(g_0, t^{\epsilon_1}, g_1, ..., t^{\epsilon_n}, g_n)$ equals

$$\begin{cases} (\theta(g_0), t, 1, t^{\epsilon_1}, ..., t^{\epsilon_n}, g_n) & \text{if } g_0 \in A \text{ and } \epsilon_1 = 1\\ (\theta(g_0)g_1, t^{\epsilon_2}, ..., t^{\epsilon_n}, g_n) & \text{if } g_0 \in A \text{ and } \epsilon_1 = -1\\ (\theta(a), t, g'_0, t^{\epsilon_1}, ..., t^{\epsilon_n}, g_n) & \text{if } g_0 = ag'_0 \text{ and } g'_0 \in A_1 \setminus \{1\} \end{cases}$$

Exercise: Prove that $\phi(t)$ is a bijection. For instance, prove that $\phi(t^{-1})$ is its inverse.

We thus have a homomorphism $\phi : G * \langle t \rangle \to Bij(X)$. Exercise: prove that $\phi(tat^{-1}) = \phi(\theta(a)), \forall a \in A$. Hence ϕ defines $\overline{\phi} : G *_A \to Bij(X)$. And if $g = g_0 t^{\epsilon_1} g_1 \dots t^{\epsilon_n} g_n$ then $\phi(g)(1) = (g_0, t^{\epsilon_1}, g_1, \dots, t^{\epsilon_n}, g_n)$.

Theorem

Each $g \in G_{*A}$ is represented by a unique reduced word.

Corollary The group G embeds into $G*_A$.

Corollary (Britton's lemma) If $g_0 t^{\epsilon_1} g_1 \dots t^{\epsilon_n} g_n$ is such that $g_i \in G \setminus A$ when $(\epsilon_i, \epsilon_{i+1}) = (1, -1)$ and $g_i \in G \setminus \theta(A)$ when $(\epsilon_i, \epsilon_{i+1}) = (-1, 1)$ then it is non-trivial.

Cornelia Druțu (University of Oxford)

Definition

If $G = A *_H B$ or $G = A *_H$ then we say that G splits over H.

Definition

Let Y be an oriented graph such that the corresponding unoriented graph is connected and each of its edges appears with both orientations in Y.

A graph of groups is a pair (G, Y), where G is a map that assigns a group G_v to each vertex $v \in V(Y)$ and a group G_e to each edge $e \in E(Y)$ such that

$$\bullet \quad G_e = G_{\bar{e}}$$

② for all edges *e*, there exists an injective homomorphism α_e : $G_e \rightarrow G_{t(e)}$

where t(e) is the terminus of the edge e = [o(e), t(e)].

Graphs of groups appear naturally when G acts on a graph X without inversions.

When this happens, we define the quotient graph Y = X/G and the projection $p: X \to Y$ as follows:

- Vertices are orbits Gv, $v \in X$
- Gv, Gw are joined if there exists an edge $[v_1, w_1]$ such that $v_1 \in Gv$, $w_1 \in Gw$.

We define $p: X \to X/G$ by p(v) = Gv, $p(e) = \{Go(e), Gt(e)\}$.

In this case,

• $\forall v \in Y$, define $G_v = \operatorname{Stab}(\hat{v})$ where \hat{v} is some element of $p^{-1}(v)$ • $\forall e \in Y$, define $G_e = \operatorname{Stab}(\hat{e})$ where \hat{e} is some element of $p^{-1}(e)$

taking care that, whenever we can, \hat{v} is an endpoint of \hat{e} such that $G_e \subseteq G_v$.

For some edges, we might have to define α_e not as an inclusion, but as an inclusion composed with a conjugation.

Cornelia Druțu (University of Oxford)

Geometric Group Theory

Definition

The path group of the graph of groups (G, Y) is

$$F(G, Y) = \langle \bigcup_{v \in V} G_v \cup E(Y) | \overline{e} = e^{-1}, e\alpha_e(g)e^{-1} = \alpha_{\overline{e}}(g), \forall e \in E(Y), g \in G_e \rangle.$$

If $G_v = \langle S_v | R_v \rangle$ then

$$F(G,Y) = \langle \bigcup_{v \in V} S_v \cup E(Y) | \bigcup_{v \in V(Y)} R_v, \bar{e} = e^{-1}, e\alpha_e(g)e^{-1} = \alpha_{\bar{e}}(g) \rangle.$$

Remarks

- If all $G_v = \{1\}$ then $F(G, Y) = F(E^+(Y))$.
- Or There exists an epimorphism F(G, Y) → F(E⁺(Y)) defined by sending each G_v to {1}.
- If all $G_e = 1$ then

$$F(G, Y) = *_{v \in V(Y)} G_v * F(E^+(Y)).$$

Definition

A path in (G, Y) is a sequence

$$c = (g_0, e_1, g_1, e_2, ..., g_{n-1}, e_n, g_n)$$

such that $t(e_i) = o(e_{i+1})$ and $g_i \in G_{t(e_i)} = G_{o(e_{i+1})}$. If $v_0 = o(e_1)$, $v_n = t(e_n)$ then we call this a path from v_0 to v_n . We call

$$v_0, v_1 = t(e_1) = o(e_2), ..., v_i = t(e_i) = o(e_{i+1}), ..., v_n$$

its sequence of vertices. We define |c| to be the element of the path group $g_0e_1g_1...e_ng_n$. If $a_0, a_1 \in V(Y)$ then we define

$$\pi[a_0, a_1] = \{ |c| : c \text{ a path from } a_0 \text{ to } a_1 \}$$

Remark

If $a_0, a_1, a_2 \in V(Y)$ and $\gamma \in \pi[a_0, a_1]$, $\delta \in \pi[a_1, a_2]$ then $\gamma \delta \in \pi[a_0, a_2]$.

Proposition

Let (G, Y) be a graph of groups and suppose $a_0 \in V(Y)$. The set $\pi[a_0, a_0]$ is a subgroup of F(G, Y).

Proof.

lf

$$c = (g_0, e_1, g_1, e_2, ..., g_{n-1}, e_n, g_n)$$

is a path from a_0 to a_0 then

$$|c|^{-1} = g_n^{-1} \bar{e_n} g_{n-1}^{-1} ... \bar{e_1} g_0^{-1} \in \pi[a_0, a_0]$$

Graphs of groups with basepoint

Proposition

Let (G, Y) be a graph of groups and suppose $a_0 \in V(Y)$. The set $\pi[a_0, a_0]$ is a subgroup of F(G, Y).

We call this subgroup the fundamental group of the graph of groups (G, Y) with basepoint a_0 and denote it $\pi_1(G, Y, a_0)$.