Geometric Group Theory

Cornelia Druțu

University of Oxford
Part C course HT 2024

HNN extensions

Definition

Suppose we have $A \subseteq G$ and $\theta: A \rightarrow G$ an injective homomorphism. The HNN extension of G on A with respect to θ is

$$
\begin{aligned}
G *_{A} & :=\left\langle G, t \mid t a t^{-1}=\theta(a), \forall a \in A\right\rangle \\
& =G *\langle t\rangle /\left\langle\left\langle\left\{\operatorname{tat}^{-1} \theta(a)^{-1}: a \in A\right\}\right\rangle\right\rangle
\end{aligned}
$$

t is called the stable letter of the HNN extension.
The name comes from Graham Higman, Bernhard Neumann and Hanna Neumann.
A definition with a Universal Property can be formulated using

$$
G *_{A}=\left\langle G, t \mid t a t^{-1}=\theta(a), \forall a \in A\right\rangle .
$$

HNN extensions

Definition

Let $A \subseteq G$ and $\theta: A \rightarrow G$ be injective homomorphism. The HNN extension of G on A with respect to θ is

$$
G *_{A}:=\left\langle G, t \mid t a t^{-1}=\theta(a), \forall a \in A\right\rangle
$$

Remark
If $G=\langle S \mid R\rangle$ then $G *_{A}=\left\langle S \cup\{t\} \mid R \cup\left\{\operatorname{tat}^{-1}=\theta(a): a \in A\right\}\right\rangle$.

Examples

- The Baumslag-Solitar groups $B S(m, n)=\left\langle a, t \mid t a^{m} t^{-1}=a^{n}\right\rangle$, where $m, n \in \mathbb{Z}$.
- When $m=n=1$, we have \mathbb{Z}^{2} (fundamental group of the torus.)
- When $m=1, n=-1$, the fundamental group of the Klein bottle.
- When $m=1$ (or $n=1$) the group is solvable.

Reduced words of HNN extensions

Suppose A_{1} is a set of right coset representatives for A and A_{2} is a set of right coset representatives for $\theta(A)$ such that $1 \in A_{1} \cap A_{2}$.

A reduced word of $G *_{A}$ is a sequence $\left(g_{0}, t^{\epsilon_{1}}, g_{1}, t^{\epsilon_{2}}, g_{2}, \ldots, t^{\epsilon_{n}}, g_{n}\right)$ such that

- $\epsilon= \pm 1$
- $g_{0} \in G$
- $g_{i} \in A_{1}$ if $\epsilon_{i}=1, g_{i} \in A_{2}$ if $\epsilon_{i}=-1$
- $g_{i} \neq 1$ if $\epsilon_{i+1}=-\epsilon_{i}$

A reduced element of $G *_{A}$ is an element of the form $g_{0} t^{\epsilon_{1}} g_{1} \ldots t^{\epsilon_{n}} g_{n}$.
Theorem
Each $g \in G *_{A}$ is represented by a unique reduced word.

Reduced words of HNN extensions

Theorem
Each $g \in G *_{A}$ is represented by a unique reduced word.
Proof:
Existence of a representation: We induct on the length of g as a reduced word in $G \cup\left\{t, t^{-1}\right\}$. The length 1 case is obvious.
Assume true for n. Length $n+1$ means either $g=u t^{ \pm 1}$, length $(u) \leq n$, or

$$
g \in\left\{w t h, w t^{-1} h\right\}
$$

where length $(w) \leq n-1$ and $h \in G$. If $g=u t^{ \pm 1}$, apply induction. If

$$
g=w t h=w t a h_{1}=w t a t^{-1} t h_{1}=w \theta(a) t h_{1}
$$

then length $(w \theta(a)) \leq n$ so we can apply the inductive assumption. The case $g=w t^{-1} h$ is similar.

Reduced words of HNN extensions

Uniqueness of representation: Let X be the set of reduced words. $G *_{A}$ acts on it (i.e. there exists a group homomorphism $\left.G *_{A} \rightarrow \operatorname{Bij}(X)\right)$ as follows:

$$
\phi(g)\left(g_{0}, t^{\epsilon_{1}}, g_{1}, \ldots, t^{\epsilon_{n}}, g_{n}\right)=\left(g g_{0}, t^{\epsilon_{1}}, g_{1}, \ldots, t^{\epsilon_{n}}, g_{n}\right)
$$

and $\phi(t)\left(g_{0}, t^{\epsilon_{1}}, g_{1}, \ldots, t^{\epsilon_{n}}, g_{n}\right)$ equals

$$
\begin{cases}\left(\theta\left(g_{0}\right), t, 1, t^{\epsilon_{1}}, \ldots, t^{\epsilon_{n}}, g_{n}\right) & \text { if } g_{0} \in A \text { and } \epsilon_{1}=1 \\ \left(\theta\left(g_{0}\right) g_{1}, t^{\epsilon_{2}}, \ldots, t^{\epsilon_{n}}, g_{n}\right) & \text { if } g_{0} \in A \text { and } \epsilon_{1}=-1 \\ \left(\theta(a), t, g_{0}^{\prime}, t^{\epsilon_{1}}, \ldots, t^{\epsilon_{n}}, g_{n}\right) & \text { if } g_{0}=a g_{0}^{\prime} \text { and } g_{0}^{\prime} \in A_{1} \backslash\{1\}\end{cases}
$$

Exercise: Prove that $\phi(t)$ is a bijection. For instance, prove that $\phi\left(t^{-1}\right)$ is its inverse.

We thus have a homomorphism $\phi: G *\langle t\rangle \rightarrow \operatorname{Bij}(X)$.
Exercise: prove that $\phi\left(\right.$ tat $\left.^{-1}\right)=\phi(\theta(a)), \forall a \in A$.
Hence ϕ defines $\bar{\phi}: G *_{A} \rightarrow B i j(X)$. And if $g=g_{0} t^{\epsilon_{1}} g_{1} \ldots t^{\epsilon_{n}} g_{n}$ then
$\phi(g)(1)=\left(g_{0}, t^{\epsilon_{1}}, g_{1}, \ldots, t^{\epsilon_{n}}, g_{n}\right)$.

HNN extensions

Theorem

Each $g \in G *_{A}$ is represented by a unique reduced word.

Corollary
The group G embeds into $G *_{A}$.

Corollary (Britton's lemma)
If $g_{0} t^{\epsilon_{1}} g_{1} \ldots t^{\epsilon_{n}} g_{n}$ is such that $g_{i} \in G \backslash A$ when $\left(\epsilon_{i}, \epsilon_{i+1}\right)=(1,-1)$ and $g_{i} \in G \backslash \theta(A)$ when $\left(\epsilon_{i}, \epsilon_{i+1}\right)=(-1,1)$ then it is non-trivial.

Graphs of groups

Definition

If $G=A *_{H} B$ or $G=A *_{H}$ then we say that G splits over H.

Definition

Let Y be an oriented graph such that the corresponding unoriented graph is connected and each of its edges appears with both orientations in Y.

A graph of groups is a pair (G, Y), where G is a map that assigns a group G_{v} to each vertex $v \in V(Y)$ and a group G_{e} to each edge $e \in E(Y)$ such that
(1) $G_{e}=G_{\bar{e}}$
(2) for all edges e, there exists an injective homomorphism
$\alpha_{e}: G_{e} \rightarrow G_{t(e)}$
where $t(e)$ is the terminus of the edge $e=[o(e), t(e)]$.

Graphs of groups

Graphs of groups appear naturally when G acts on a graph X without inversions.

When this happens, we define the quotient graph $Y=X / G$ and the projection $p: X \rightarrow Y$ as follows:

- Vertices are orbits $G v, v \in X$
- Gv, Gw are joined if there exists an edge $\left[v_{1}, w_{1}\right]$ such that $v_{1} \in G v$, $w_{1} \in G w$.
We define $p: X \rightarrow X / G$ by $p(v)=G v, p(e)=\{G o(e), G t(e)\}$.
In this case,
- $\forall v \in Y$, define $G_{v}=\operatorname{Stab}(\hat{v})$ where \hat{v} is some element of $p^{-1}(v)$
- $\forall e \in Y$, define $G_{e}=\operatorname{Stab}(\hat{e})$ where \hat{e} is some element of $p^{-1}(e)$ taking care that, whenever we can, \hat{v} is an endpoint of \hat{e} such that $G_{e} \subseteq G_{v}$.
For some edges, we might have to define α_{e} not as an inclusion, but as an inclusion composed with a conjugation.

Graphs of groups

Definition

The path group of the graph of groups (G, Y) is
$F(G, Y)=$

$$
\left\langle\bigcup_{v \in V} G_{v} \cup E(Y) \mid \bar{e}=e^{-1}, e \alpha_{e}(g) e^{-1}=\alpha_{\bar{e}}(g), \forall e \in E(Y), g \in G_{e}\right\rangle
$$

If $G_{v}=\left\langle S_{v} \mid R_{v}\right\rangle$ then

$$
F(G, Y)=\left\langle\bigcup_{v \in V} S_{V} \cup E(Y) \mid \bigcup_{v \in V(Y)} R_{v}, \bar{e}=e^{-1}, e \alpha_{e}(g) e^{-1}=\alpha_{\bar{e}}(g)\right\rangle
$$

Graphs of groups

Remarks

(1) If all $G_{v}=\{1\}$ then $F(G, Y)=F\left(E^{+}(Y)\right)$.
(2) There exists an epimorphism $F(G, Y) \rightarrow F\left(E^{+}(Y)\right)$ defined by sending each G_{v} to $\{1\}$.
(3) If all $G_{e}=1$ then

$$
F(G, Y)=*_{v \in V(Y)} G_{v} * F\left(E^{+}(Y)\right)
$$

Graphs of groups

Definition

A path in (G, Y) is a sequence

$$
c=\left(g_{0}, e_{1}, g_{1}, e_{2}, \ldots, g_{n-1}, e_{n}, g_{n}\right)
$$

such that $t\left(e_{i}\right)=o\left(e_{i+1}\right)$ and $g_{i} \in G_{t\left(e_{i}\right)}=G_{o\left(e_{i+1}\right)}$. If $v_{0}=o\left(e_{1}\right)$, $v_{n}=t\left(e_{n}\right)$ then we call this a path from v_{0} to v_{n}. We call

$$
v_{0}, v_{1}=t\left(e_{1}\right)=o\left(e_{2}\right), \ldots, v_{i}=t\left(e_{i}\right)=o\left(e_{i+1}\right), \ldots, v_{n}
$$

its sequence of vertices. We define $|c|$ to be the element of the path group $g_{0} e_{1} g_{1} \ldots e_{n} g_{n}$. If $a_{0}, a_{1} \in V(Y)$ then we define

$$
\pi\left[a_{0}, a_{1}\right]=\left\{|c|: c \text { a path from } a_{0} \text { to } a_{1}\right\}
$$

Graphs of groups

Remark

If $a_{0}, a_{1}, a_{2} \in V(Y)$ and $\gamma \in \pi\left[a_{0}, a_{1}\right], \delta \in \pi\left[a_{1}, a_{2}\right]$ then $\gamma \delta \in \pi\left[a_{0}, a_{2}\right]$.
Proposition
Let (G, Y) be a graph of groups and suppose $a_{0} \in V(Y)$. The set $\pi\left[a_{0}, a_{0}\right]$ is a subgroup of $F(G, Y)$.

Proof.
If

$$
c=\left(g_{0}, e_{1}, g_{1}, e_{2}, \ldots, g_{n-1}, e_{n}, g_{n}\right)
$$

is a path from a_{0} to a_{0} then

$$
|c|^{-1}=g_{n}^{-1} \overline{e_{n}} g_{n-1}^{-1} \ldots \overline{e_{1}} g_{0}^{-1} \in \pi\left[a_{0}, a_{0}\right]
$$

Graphs of groups with basepoint

Proposition
Let (G, Y) be a graph of groups and suppose $a_{0} \in V(Y)$. The set $\pi\left[a_{0}, a_{0}\right]$ is a subgroup of $F(G, Y)$.

We call this subgroup the fundamental group of the graph of groups (G, Y) with basepoint a_{0} and denote it $\pi_{1}\left(G, Y, a_{0}\right)$.

