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Preliminaries

This is a short, sharp, background narrative that sets the analysis of differential and integral
equations within a function space setting. This is not examinable but provides a context and big
picture to the methods introduced in the course.

You may have already met function spaces within finite element methods, quantum mechanics,
and elsewhere.

Inner Product Spaces

A Hilbert space is a complete normed space, X, that is equipped with an inner product, that
is a real valued, bi-linear, function

⟨u, v⟩ : X ×X → R,

such that the norm on X is given by

||u|| = ⟨u, u⟩1/2.

“Completeness” merely requires that all Cauchy sequences have a convergent subsequence. So the
rationals are incomplete (we can easily have a sequence of rationals converging to an irrational
number which by definition is not in the space;) whereas as R is complete (indeed we can define
the reals as the completion of the rationals).

We all know the n-dimensional Euclidean space, Rn: then the inner product is the familiar vector
“dot” product, or scalar product, ⟨u, v⟩ = uT .v.

Non-zero elements u and v in X are orthogonal iff ⟨u, v⟩ = 0.

Note that if we work in the complex extension, Cn, we must define

⟨u, v⟩ = uT .v̄,

and so on, where v̄ denotes the complex conjugate of v.

Let us think primarily of real spaces (since we often want to consider real valued functions as solu-
tions to applied problems) yet introduce ideas about the spectra (eigenvalues and so forth) within
their complexification (we know real matrices have complex valued spectra and eigenvectors, and
so on) .

The space of pth power (p > 1), complex valued ,integrable function on Ω = [a, b] are those
functions f for which the following integral exists:∫

Ω
|f(t)|pdt.
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This space is called Lp[Ω] and is equipped with the norm

||f ||p ≡
(∫

Ω
|f(t)|pdt

)1/p

.

For p = 2 Lp[Ω] is a Hilbert space with the inner product

⟨u, v⟩ =
∫
Ω
u(t)v̄(t)dt.

For p ̸= 2 but positive it is a complete normed pace (these are usually called Banach spaces), but
it has no inner product, since if we try to define

⟨u, v⟩ =
∫
Ω
u(t)p/2v̄(t)p/2dt

this isn’t linear in u and v̄.

L2[Ω] generalises to cases where Ω is a non trivial subset on Rm (where m = 1, 2, 3, . . . ), usually
with a piecewise smooth boundary δΩ.

We only really need to know about Cn and L2[Ω] for now.

We meet will L2[Ω] when we consider integral operators and differential operators, made up of a
differential form (in one or more dimensions) and imposing appropriate boundary conditions. We
also meet it in finite element methods, within numerical analysis, and in the definition of weak
solutions to PDEs.

The general theory of Hilbert spaces is available in chapter 3 of E. Kreyzig, “Introduction for Func-
tional Analysis”, which is very far from introductory! It is freely available in pdf form https://

physics.bme.hu/sites/physics.bme.hu/files/users/BMETE15AF53_kov/Kreyszig%20-%20Introductory%

20Functional%20Analysis%20with%20Applications%20(1).pdf. Enjoy.

Lots of this is peppered throughout the book by P. Grindrod, “Patterns and Waves”, including the
Fredholm alternative and applications and more general spectral theory of differential operations
in some specific applied math settings: freely available, see https://www.researchgate.net/

publication/351122823_Patterns_And_Waves_The_Theory_and_Application_of_Reaction-Diffusion_

Equations

Linear Operators and Equations

A linear operator L acting on a Hilbert space, X, has both a domain, D(L) and range in X, so
that

L : D(L) ⊂ X → X.

We define the adjoint operator L∗ on X to be the linear operator such that

⟨Lu, v⟩ = ⟨u, L∗v⟩

https://physics.bme.hu/sites/physics.bme.hu/files/users/BMETE15AF53_kov/Kreyszig%20-%20Introductory%20Functional%20Analysis%20with%20Applications%20(1).pdf
https://physics.bme.hu/sites/physics.bme.hu/files/users/BMETE15AF53_kov/Kreyszig%20-%20Introductory%20Functional%20Analysis%20with%20Applications%20(1).pdf
https://physics.bme.hu/sites/physics.bme.hu/files/users/BMETE15AF53_kov/Kreyszig%20-%20Introductory%20Functional%20Analysis%20with%20Applications%20(1).pdf
https://www.researchgate.net/publication/351122823_Patterns_And_Waves_The_Theory_and_Application_of_Reaction-Diffusion_Equations
https://www.researchgate.net/publication/351122823_Patterns_And_Waves_The_Theory_and_Application_of_Reaction-Diffusion_Equations
https://www.researchgate.net/publication/351122823_Patterns_And_Waves_The_Theory_and_Application_of_Reaction-Diffusion_Equations
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for all u and v in X for which these expressions are finite and well-defined. If you are given X
and L then you should always work directly from this definition to find L∗ (see the examples
below).

We are guaranteed that an adjoint operator L∗ exists, since for all v fixed ⟨Lu, v⟩ is a linear
functional in u and there is a theorem (the the Riesz representation theorem, see Kryezig) that
states it can be written as ⟨u,w⟩ for some w ∈ X, so we can set L∗v = w, defining L∗ point-wise.
Moreover ⟨Lu, v⟩ is clearly linear in v. It is obvious that (L∗)∗ = L. In any example, such as
the differential or integral operators discussed below, these issues are very straightforward. Their
general utility is often very useful, though, for modellers (not to get sucked into “the weeds”).

Some operators are self adjoint (L = L∗) in which case all of the spectrum lives on the real axis.

In the case of equations, we might be interested in solutions of an inhomogeneous equation:

Lu = g,

with g given; where we also have the related homogeneous equation

Lu = 0.

Similarly we can consider an adjoint equation

L∗u = h,

with h given; and we also have the related homogeneous adjoint equation

L∗u = 0.

These equations (and their possible solutions) are the catalyst for Fredholm Alternative theory.

In fact, “Lu = g has a solution iff g is orthogonal to the null space of L∗”.

Say this to yourself every day. If L and thus L∗ are invertible (so there is no null space in either
case - that is, no non-zero solutions to the homogeneous equations above) then a unique solution
of Lu = g exists. Alternatively if the null spaces are non-trivial then this provides a solvability
condition.

In the case of X = Rn then L is merely multiplication by an n × n real matrix A, and and L∗

corresponds to multiplication by the real matrix AT .

Suppose X = L2([a, b]) the space of square integrable functions over the interval [a.b]. Consider
the Fredholm operator

Lu(x) = u(x)− λ

∫ b

a
K(x, t)u(t)dt,

where, say, u is real valued.

To find the adjoint operator in this example we consider any real valued function v and the inner
product

⟨Lu, v⟩ =
∫ b

a
v(x)

(
u(x)− λ

∫ b

a
K(x, t)u(t)dt

)
dx =

∫ b

a
uv − λ

∫ b

a

∫ b

a
v(x)K(x, t)u(t)dtdx
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swapping x and t in the last integraland reversing the order of integration we see

⟨Lu, v⟩ =
∫ b

a
uv − λ.

∫ b

a

∫ b

a
v(t)K(t, x)u(x)dtdx =

∫ b

a
y(x)

(
v(x)− λ

∫ b

a
K(t, x)v(t)dt

)
dx.

Hence we take

L∗v(x) = v(x)− λ

∫ b

a
K(t, x)v(t)dt,

so that ⟨Lu, v⟩ = ⟨u, L∗v⟩, as required in the above definition of the adjoint.

A linear differential operator defined over some spatial domain, Ω say, is a linear differential form
defined over Ω (with either ordinary or partial derivatives depending upon the dimension of Ω),
together with some suitable homogeneous boundary conditions to be imposed on the (assumed)
piecewise smooth boundary, δΩ.

Suppose, for example, X = L2([a, b]) the space of square integrable functions over the interval
[a, b], with its intergral inner product.

Consider the linear operator

Lu(x) = u′′(x) +A(x)u′(x) +B(x)u(x) a < x < b, u(a) = 0, u(b) = 0,

for given real valued functions A and B.

We have (using integration by parts, twice for the first term and once for the middle term),

⟨Lu, v⟩ =
∫ b

a
v(x)

(
u′′(x) +A(x)u′(x) +B(x)u(x)

)
dx

=
[
v(x)u′(x)

]b
a
−
[
v′(x)u(x)

]b
a
+ [v(x)A(x)u(x)]ba +

∫ b

a
u(x)(v′′(x)− (A(x)v(x))′ +B(x)v(x))dx.

Applying the boundary conditions on u, then 0 = [v′(x)u(x)]ba = [v(x)A(x)u(x)]ba, and we have

⟨Lu, v⟩ =
[
v(x)u′(x)

]b
a
+

∫ b

a
u(x)

(
v′′(x)− (A(x)v(x))′ +B(x)v(x)

)
dx.

But this must be true for a wide choice of u in X, and so we must impose

L∗v = v′′(x)− (A(x)v(x))′ +B(x)v(x) a < x < b, v(a) = 0, v(b) = 0.

Then ⟨Lu, v⟩ = ⟨u, L∗v⟩ as required.

We might wish to solve an inhomogeneous equation (these often arise in asymptotic approaches
to bifurcation analysis):

Lu(x) = u′′(x) +A(x)u′(x) +B(x)u(x) = g(x) a < x < b, u(a) = 0, u(b) = 0.

Or we might have a PDE where x ∈ Ω a suitable subset of Rm together with suitable boundary
conditions. Then all of the above considerations will be in play.
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If Ω is in Rm then the divergence theorem (sometimes called Green’s theorem) does the job of
the integration by parts and the operator L and its adjoint L∗ contain partial derivatives. Thus
the corresponding equations will be PDEs.

For example, consider the operator

Lu = ∆u(x) + a(x)u x ∈ Ω ⊂ Rm, n.∇u = 0 x ∈ δΩ.

Then, using the divergence theorem, and the no-flux (Neumann) boundary condition on u, we
have ∫

Ω
∇.((∇u)v − (∇v)u) dx =

∫
δΩ

n.((∇u)v − (∇v)u) dA = −
∫
δΩ

n.(∇v)u dA.

So ∫
Ω
(∇.∇u+ αu)v dx−

∫
Ω
(∇.∇v + αv)u dx = −

∫
δΩ

n.(∇v)u dA.

Thus, if
L∗v = ∆v(x) + a(x)v x ∈ Ω ⊂ Rm, n.∇v = 0 x ∈ δΩ,

that is L∗ = L, we have
⟨Lu, v⟩ − ⟨u, L∗v⟩ = 0.

Hence L is self-adjoint.

If you ever have a problem (an equation) to solve for a function u(x) with inhomogeneous bound-
ary conditions, then it is often rather useful to choose a function, u0(x) say, that satisfies the
boundary given conditions, so that u(x) = u0(x) + ũ(x), and then ũ(x) satisfies homogeneous
boundary conditions. The substitution may well change the inhomogeneous part of the full
equation. But it makes the whole process much easier, since the resulting differential form has
homogeneous boundary conditions: hence it is a linear operator. And so all of the above applies.

For differential operators there are some important subtleties we have glossed over, since the
domain of 2nd order operators L, like the one above, is dense in L2([a, b]): it contains those
u ∈ L2([a, b]) for which u

′′ ∈ L2([a, b]); and which satisfy the homogeneous boundary conditions.
Nevertheless that domain, D(L), is itself a vector space and inherits the integral inner product
and thus all notions of orthogonality.

For Fredholm integral operators we just need a well-behaved kernel, K ∈ L2 with respect to both
arguments, in order for L to be well defined.
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1 Introduction

In the Supplementary Applied Mathematics course you were introduced to several approaches
for understanding and solving boundary value problems given by ordinary differential equations.
The first half of this course provides further tools and perspectives on related problems in integral
equations and the theory of linear operators, filling in some of the theoretical gaps in boundary
value problem theory. The second half of this course will then explore the calculus of variations,
and optimal control theory. Throughout, by way of example, we will also introduce you to some
aspects of perturbation theory which arise naturally in the examples. We will not have time
to cover any of these topics in detail, but you should be able to come away from this course
having a basic understanding of the ideas, and the ability to continue learning about any of these
methods on your own. Good resources for the material on integral equations and the Fredholm
Alternative can be found in Chapters 1, 3, and 4 of Principles Of Applied Mathematics: Transfor-
mation And Approximation by James Keener. Further material on the calculus of variations and
optimal control can be found in Calculus of Variations and Optimal Control Theory: A Concise
Introduction by Daniel Liberzon. You should review some aspects of linear algebra, particularly
the rank-nullity Theorem, the kernel and nullspace of a matrix, and how these ideas relate to
eigenvalues and diagonalization.

1.1 Integral Equations

There are many different formulations of integral equations, but the following are four common
nontrivial examples.

Volterra non-homogeneous

y(x) = f(x) +

∫ x

a
K(x, t) y(t) dt, x ∈ [a, b].

Volterra homogeneous

y(x) =

∫ x

a
K(x, t) y(t) dt, x ∈ [a, b].

Fredholm non-homogeneous

y(x) = f(x) + λ

∫ b

a
K(x, t) y(t) dt, x ∈ [a, b].

Fredholm homogeneous

y(x) = λ

∫ b

a
K(x, t) y(t) dt, x ∈ [a, b].
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The function K(x, t) is the kernel of the integral equation.

A value of λ for which the homogeneous Fredholm equation has a solution which is not identically
zero is called an eigenvalue, and the corresponding non-zero solution y(x) is an eigenfunction.
As with boundary value problems, one can develop a spectral theory of the eigenvalues and
eigenfunctions in order to express the solution to the inhomogeneous problem.

We remark that throughout we always consider λ ̸= 0. Note that some literature will put the λ on
the y(x) on the left-hand side, or will relate the eigenvalues written each way via λ = 1/µ; these
conventions are unimportant as long as λ ̸= 0 and one is careful where the λ appears. We will
also only consider real solutions in this course, but the theory generalizes easily to the complex
case. Finally, unless otherwise stated, all functions considered will be continuous. Rather than
work out or present the general theory, we will focus on Fredholm equations of a particular type.
First, we relate these operators to familiar boundary value problems.

1.1.1 Relationship with differential equations

Example 1. Consider the differential equation

y′′(x) + λy(x) = g(x),

where λ > 0 is constant and g is contonuous on [a, b]. Integrating from a to x ∈ [a, b] gives

y′(x)− y′(a) + λ

∫ x

a
y(t) dt =

∫ x

a
g(t) dt.

Integrating again gives

y(x)− y(a)− y′(a)(x− a) + λ

∫ x

a

∫ u

a
y(t) dtdu =

∫ x

a

∫ u

a
g(t) dt du.

Switching the order of integration gives

y(x)− y(a)− y′(a)(x− a) + λ

∫ x

a
(x− t)y(t) dt =

∫ x

a
(x− t)g(t) dt. (1)

Initial conditions Suppose y(a) and y′(a) are given. Then we have a Volterra non-homogeneous
integral equation with

K(x, t) = λ(t− x), f(x) = y(a) + y′(a)(x− a) +

∫ x

a
(x− t)g(t) dt.

Boundary conditions Suppose y(a) and y(b) are given. Then, putting x = b in (1)

y(b)− y(a)− y′(a)(b− a) + λ

∫ b

a
(b− t)y(t) dt =

∫ b

a
(b− t)g(t) dt,

so that

y′(a) =
1

b− a

(
y(b)− y(a) + λ

∫ b

a
(b− t)y(t) dt−

∫ b

a
(b− t)g(t) dt

)
.
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On substituting into (1) and simplifying this gives the non-homogeneous Fredholm equation

y(x) = f(x) + λ

∫ b

a
K(x, t) y(t) dt

where

f(x) = y(a)+
(x− a)

(b− a)
(y(b)− y(a))+

1

b− a

∫ x

a
(x− b)(t− a)g(t) dt+

1

b− a

∫ b

x
(x− a)(t− b)g(t) dt

K(x, t) =


(t− a)(b− x)

b− a
a ≤ t ≤ x ≤ b,

(x− a)(b− t)

b− a
a ≤ x ≤ t ≤ b.

■

NB: This kernel should look familiar to you from the study of Green’s functions for boundary
value problems.
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2 Fredholm Alternative

The Fredholm Alternative is often considered one of the most important Theorems in applied
mathematics (competing with Taylor’s Theorem, among others). It gives a notion of ‘solvability
criterion’ for a wide range of linear operators, and has numerous applications in differential and
integral equations. Here we will present it first in the finite-dimensional case of linear algebra,
followed by the cases of integral and differential equations. For integral equations of a particular
type, the proof of this Theorem demonstrates how to construct solutions in a manner analogous
to the eigenfunction expansions for boundary value problems.

2.1 Matrices

Consider a linear equation of the form,
Ax = b, (2)

where A is an m×n real matrix, x ∈ Rn, b ∈ Rm. Let ai be the ith column of A. Then we have
a solvability condition as follows.

Proposition 1. The Fredholm Alternative for general matrices
Either

1. The system Ax = b has a solution x;

or

2. The system ATv = 0 has a solution v with vTb ̸= 0;

Thus Ax = b has a solution x if and only if vTb = 0 for every v in Rm such that ATv = 0.

Proof.

Ax = b has a solution x ⇔ b is a linear combination of the columns of A

⇔ b ∈ span({a1, · · · ,an})
⇔ span(b) ⊆ span(a1, · · · ,an)

⇔ span(b)⊥ ⊇ span(a1, · · · ,an)
⊥

⇔ every vector v with each aT
i v = 0 also has bTv = 0.

Note that B⊥ denotes all vectors perpendicular to every vector in the set B.

To relate this to integral equations we need to consider square matrices. Then we can write

Proposition 2. The Fredholm Alternative for square matrices
Either



Further Mathematical Methods 12

1. The system Ax = b has a unique solution x;

or

2. There exist nonzero solutions to the system ATv = 0. In this case Ax = b has a solution
if and only if vTb = 0 for every v such that ATv = 0. Such a solution (if it exists) is not
unique, since any null vector of A may be added to it.

2.2 Integral equations

We will consider the non-homogeneous Fredholm equation

y(x) = f(x) + λ

∫ b

a
K(x, t) y(t) dt, x ∈ [a, b].

2.2.1 A simple case

Recap (from the “Preliminaries” section): consider the operator:

Lu = u(x)− λ

∫ b

a
K(x, t)u(t)dx,

defined within the Hilbert space L2[a, b], thne we have

⟨Lu, v⟩ =
∫ b

a

(
v(x)u(x)− λv(x)

∫ b

a
K(x, t)u(t)dt

)
dx

⟨Lu, v⟩ =
∫ b

a
v(x)u(x)dx− λ

∫ b

a
v(x)

∫ b

a
K(x, t)u(t)dtdx

⟨Lu, v⟩ =
∫ b

a
v(x)u(x)dx− λ

∫ b

a

∫ b

a
v(t)K(t, x)u(x)dtdx

⟨Lu, v⟩ =
∫ b

a

(
u(x)v(x)− λu(x)

∫ b

a
v(t)K(t, x)dt

)
dx

=

∫ b

a
u(x)

(
v(x)− λ

∫ b

a
v(t)K(t, x)dt

)
dx

This is ⟨u, L∗v⟩ , by definition. So in this case we have the adjoint operator:

L∗v = v(x)− λ

∫ b

a
K((t, x)v(t) dt

Now consider simplest case for K: that of a separable product of two functions g and h. We have
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y(z) = f(x) + λ

∫ b

a
g(x)h(t)y(t)dt (Ly = f). (3)

Here f , the inhomogeneity, and g and h and λ (real) in the operator L are all given.

This can be written as
y(x) = f(x) + λg(x)X

where X is a (real) linear functional of y, given by

X =

∫ b

a
h(t)y(t)dt,

(which is the inner product of y and h).

Similarly we may have an adjoint equation (using the adjoint operator, L∗),

ỹ(z) = f(x) + λ

∫ b

a
g(x)h(t)ỹ(t)dt (L∗ỹ = f). (4)

This can be written as
ỹ(x) = f(x) + λh(x)Y

where Y is a (real) linear functional of ỹ, given by

Y =

∫ b

a
g(t)ỹ(t)dt.

Both the equation and the adjoint equation have homogeneous forms :

y(x) = λg(x)X, (Ly = 0), (5)

and
ỹ(x) = λh(x)Y, (L∗ỹ = 0). (6)

Notice that L∗ỹ = 0, which is equation (6), has a solution, that is, there is a non-trivial null space
for the adjoint operator, iff it is in the form ỹ = ch(x), for any constant c, and then (6) implies
we must have

ch(x) = λh(x)Y = λh(x)c

∫ b

a
g(t)h(t)dt.

So there is a non trivial null space for the adjoint operator (spanned by h(x)) iff

1 = λ

∫ b

a
g(t)h(t)dt.

If (λ, g, h) do not satisfy this then there is no non-trivial null space.
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Similarly, the equation Ly = 0, which is equation (5), has a solution, that is, there is a non-trivial
null space for the operator L, in the form y = cg(x) iff

1 = λ

∫ b

a
g(t)h(t)dt.

Now, returning to (3). Does it have a solution?

Multiplying by h(x) and integrating we get

X =

∫ b

a
h(x)y(x) =

∫ b

a
f(x)h(x)dx+

∫ b

a
λg(x)h(x)dx X

where X is as above.

So

X

(
1− λ

∫ b

a
g(x)h(x)dx

)
=

∫ b

a
f(x)h(x)dx. (7)

If (1− λ
∫ b
a g(x)h(x)dx) ̸= 0, we can solve this last for X and hence

y(x) = f(x) + λg(x)

∫ b
a f(x)h(x)dx.

(1− λ
∫ b
a g(x)h(x)dx)

.

Finally if (1− λ
∫ b
a g(x)h(x)dx) = 0 then from (7) the RHS musts be zero so that

0 =

∫ b

a
f(x)h(x)dx.

This says f(x) must be orthogonal to h(x), which spans the null space of L∗, the adjoint operator.

In that case, X is a constant and so we have

y = f(x) + constant g(x),

meaning we can add on any multiple of the function g(x) which lies in the null space of the
operator L. If desired you can check this is a solution (since f in y makes no contribution to X
since it must already be orthogonal to h, in this case

Notice that the condition (1− λ
∫ b
a g(x)h(x)dx) = 0 is exactly the condition where both L∗ and

L each have non-trivial null spaces spanned by h(x) and g(x) respectively.

We can consider the adjoint equation (4) in te same way. The inhomogeneity will have to be
orthogonal the any non-trivial null space of the adjoint of L∗: but (L∗)∗ = L, so it will have to
be orthogonal the any non-trivial null space of L.

Thus we arrive at the following conclusion.

Proposition 3. Fredholm Alternative (Degenerate Integral Kernel)
Either
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1. There are unique solutions to both (3) and (4);

or

2. The are nonzero solutions to both (3) to (4). In this case there exists a solution to (3) iff f
is orthogonal to the null space of the adjoint, L∗, which is spanned by the h(x), the solution
of (6): so iff ∫ b

a
f(x)h(x) dx = 0.

If a solution of (3) does exist in this case then it is non-unique, since any nonzero solution
of (5), which is thus in the null space of L, can be added.

If the solvability condition
∫ b
a f(x)h(x) dx = 0 is met then the general solution of (3) is

y(x) = f(x) + cg(x),

for all c ∈ R.

2.3 Integral equations: general case

We consider the Fredholm equation

y(x) = f(x) + λ

∫ b

a
K(x, t)y(t) dt, x ∈ [a, b] (F)

along with the adjoint and homogeneous equations

y(x) = f(x) + λ

∫ b

a
K(t, x)y(t) dt, x ∈ [a, b] (FT )

y(x) = λ

∫ b

a
K(x, t)y(t) dt, x ∈ [a, b] (H)

y(x) = λ

∫ b

a
K(t, x)y(t) dt, x ∈ [a, b] (HT )

where f : [a, b] → R and the kernel K : [a, b]2 → R are continuous and λ is constant.

Theorem 1. The Fredholm Alternative For each fixed λ exactly one of the following two
statements is true. Either

1. The equation (F) has a unique continuous solution. In particular if f ≡ 0 on [a, b] then
y ≡ 0 on [a, b]. In this case (FT ) also has a unique continuous solution.

or
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2. The equation (H) has a finite maximal linearly independent set of, say, r continuous solutions
y1, . . . , yr (r > 0). In this case (HT ) also has a maximal linearly independent set of r
continuous solutions z1, . . . , zr and (F) has a solution if and only if the solvability conditions∫ b

a
f(x)zk(x) dx = 0, k = 1, . . . , r,

are all satisfied. When they are, the complete solution to (F) is given by

y(x) = g(x) +

r∑
i=1

ciyi(x), x ∈ [a, b],

where c1, . . . , cr are arbitrary constants and g : [a, b] → R is any continuous solution to (F).

We sketch the proof of the theorem for the degenerate kernel

K(x, t) =

n∑
j=1

gj(x)hj(t), x, t ∈ [a, b].

Proof. We may assume that each of the sets {g1, g2, · · · , gn} and {h1, h2, · · · , hn} are linearly
independent (otherwise express each element in terms of a linearly independent subset). Then
we have

y(x) = f(x) + λ
n∑

j=1

Xjgj(x), where Xj =

∫ b

a
hj(t)y(t) dt, (F1)

y(x) = f(x) + λ

n∑
j=1

Yjhj(x), where Yj =

∫ b

a
gj(t)y(t) dt, (FT

1 )

y(x) = λ

n∑
j=1

Xjgj(x), (H1)

y(x) = λ

n∑
j=1

Yjhj(x). (HT
1 )

Multiply (F1) by hi(x) and integrate over x to give

µXi −
n∑

j=1

aijXj = bi,

where

µ =
1

λ
, aij =

∫ b

a
gj(x)hi(x) dx, bi = µ

∫ b

a
f(x)hi(x) dx.

We may write this as
(µI −A)X = b (F2)
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where X = (Xj) and b = (bj) are column vectors, A = (aij) is a matrix, and I is the identity
matrix. Similarly (FT

1 ) becomes

(µI −A)T Y =
(
µI −AT

)
Y = c (FT

2 )

where AT is the transpose of A and c = (ci) with

ci = µ

∫ b

a
f(x)gi(x) dx.

Similarly (H1) and (HT
1 ) become

(µI −A)X = 0 (H2)

(µI −A)T Y = 0 (HT
2 )

Now we are back in the case of linear algebra. So, suppose that there are no nontrivial solutions
to (H2), i.e., that µ is not an eigenvalue of A. Then, since µI−A is nonsingular, there are unique
solutions to (F2) and (FT

2 ), thus (1) holds.

On the other hand, suppose µ is an eigenvalue of A with eigenspace of dimension r spanned by
eigenvectors Xk, k = 1, . . . , r. Then the corresponding eigenspace of AT is also of dimension r
and spanned by Yk, k = 1, . . . , r, say. Then

yk(x) = λ
n∑

j=1

Xk
j gj(x), (8)

zk(x) = λ
n∑

j=1

Y k
j hj(x), (9)

form a maximal set of linearly independent solutions of (H) and (HT ) respectively. We know (F2)
has a solution if and only if

bTYk = 0, k = 1, . . . , r,

which is, noting from (9) that Yk corresponds to the solution zk(x) of (H
T ),

n∑
j=1

(
µ

∫ b

a
f(x)hj(x) dx

)(∫ b

a
gj(t)zk(t) dt

)
= 0.

Rearranging, this is

∫ b

a

∫ b

a

 n∑
j=1

gj(t)hj(x)

 zk(t) dt

 f(x) dx = 0,

i.e. ∫ b

a

(∫ b

a
K(t, x)zk(t) dt

)
f(x) dx = 0,
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which gives ∫ b

a
zk(x)f(x) dx = 0,

since zk is a solution of (HT ).

This method of proof can be used to solve (F) for degenerate kernels.

Example 2. Solve the integral equation

y(x) = f(x) + λ

∫ 2π

0
sin(x+ t)y(t) dt,

in the two cases

(a) f(x) = 1;

(b) f(x) = x.

The equation may be written

y(x) = f(x) + λ

∫ 2π

0
(sinx cos t+ cosx sin t) y(t) dt

= f(x) + λX1 sinx+ λX2 cosx (10)

where

X1 =

∫ 2π

0
y(t) cos tdt, X2 =

∫ 2π

0
y(t) sin tdt.

Note that it is self-adjoint. Multiplying (10) by cosx (and sinx) and integrating with respect to
x gives

X1 − λπX2 =

∫ 2π

0
f(x) cosx dx, (11)

X2 − λπX1 =

∫ 2π

0
f(x) sinx dx (12)

since ∫ 2π

0
cos2 x dx =

∫ 2π

0
sin2 x dx = π,

∫ 2π

0
cosx sinx dx = 0.

This system is invertible if the determinant of the coefficient matrix∣∣∣∣ 1 −λπ
−λπ 1

∣∣∣∣ = 1− λ2π2 ̸= 0.



Further Mathematical Methods 19

In this case the (unique) solution is

X1 =
1

1− λ2π2

∫ 2π

0
f(x) (cosx+ λπ sinx) dx,

X2 =
1

1− λ2π2

∫ 2π

0
f(x) (sinx+ λπ cosx) dx.

Since ∫ 2π

0
x sinx dx = −2π,

∫ 2π

0
cosx dx =

∫ 2π

0
sinx dx =

∫ 2π

0
x cosx dx = 0,

in case (a) we have X1 = X2 = 0 and therefore

y(x) = 1, x ∈ [0, 2π],

while in case (b) we have

y(x) = x− 2πλ

1− λ2π2
(λπ sinx+ cosx) ,

provided λ2π2 ̸= 1.

When λ = 1/π the homogeneous version of (11)-(12) has solutionsX1 = X2, while when λ = −1/π
it has solutions X1 = −X2. Thus the homogeneous version of (10) has solutions

y(x) = c(sinx+ cosx) when λ = 1/π,

y(x) = d(sinx− cosx) when λ = −1/π,

where c and d are constants. Thus in order for solutions to exist we have the solvability conditions∫ 2π

0
f(x)(sinx+ cosx) dx = 0, when λ = 1/π,

and ∫ 2π

0
f(x)(sinx− cosx) dx = 0, when λ = −1/π.

In case (a) both conditions are met. Since y = 1 is a particular solution when λ = ±1/π, the
general solution in this case is

y(x) = 1 + c(sinx+ cosx) when λ = 1/π,

y(x) = 1 + d(sinx− cosx) when λ = −1/π,

where c and d are arbitrary constants.

In case (b) neither condition is met and there are no solutions when λ = ±1/π.

■
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2.4 Linear ordinary differential equations

We are going to describe solvability conditions for linear ODE’s analogous to those for linear
algebraic equations. We will do this for the 2nd order real scalar case, and give the general
version later.

Consider a differential operator

L[u] =
d2u

dx2
+ α(x)

du

dx
+ β(x)u = u′′ + αu′ + βu,

where α(x), β(x) are continuous real-valued functions on [0, 1]. We are going to consider:

Primary problem
L[u] = b(x) on 0 ≤ x ≤ 1,

with 2 linear homogeneous boundary conditions on u and u′ at x = 0, 1.

Adjoint problem
L∗[v] = 0 on 0 ≤ x ≤ 1,

with 2 linear homogeneous boundary conditions on v and v′ at x = 0, 1.

The solvability result is that

Primary has a solution u⇔
∫ 1
0 v(x)b(x) dx = 0 for every solution v of the Adjoint problem

The adjoint differential operator is

L∗[v] = v′′ − (αv)′ + βv.

This obeys the fundamental identity∫ 1

0
(vL[u]− uL∗[v]) dx =

∫ 1

0
v(u′′ + αu′ + βu)− u(v′′ − (αv)′ + βv) dx

=
[
vu′ − uv′ + αuv

]1
0

= B(u, v),

a bilinear form in the boundary values of u and v. This bilinear form is non-singular if B(u, v) = 0
for all v implies u = 0. Equivalently

B(u, v) =
(
v(1) v′(1) v(0) v′(0)

)
α(1) 1 0 0
−1 0 0 0
0 0 −α(0) −1
0 0 1 0




u(1)
u′(1)
u(0)
u′(0)


and B(u, v) is non-singular if the central matrix is non-singular. Then if u(1), u′(1), u(0), u′(0)
obey 2 linear homogeneous equations (the primary boundary conditions) then we shall need 2
linear homogeneous equations on v(1), v′(1), v(0), v′(0) to force B(u, v) = 0 (there are 2 degrees
of freedom left). These conditions on v are the adjoint boundary conditions.
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2.4.1 Examples of adjoints

Example 3. Suppose the primary boundary conditions are

u(0) = 0, u′(0) = 0 Primary boundary conditions.

(an initial value problem, IVP).Then

B(u, v) = v(1)u′(1)− v′(1)u(1) + α(1)v(1)u(1).

To force this to vanish (for arbitrary u(1), u′(1)) we must have

v(1) = 0, v′(1) = 0 Adjoint boundary conditions.

■

Example 4. Suppose the primary boundary conditions are

u(0) = 0, u(1) = 0 Primary boundary conditions.

(a boundary value problem, BVP).Then

B(u, v) = v(1)u′(1)− v(0)u′(0).

To force this to vanish (for arbitrary u′(0), u′(1)) we must have

v(0) = 0, v(1) = 0 Adjoint boundary conditions.

■

Example 5. Suppose the primary boundary conditions are

u(0) = u(1), u′(1) = 0 Primary boundary conditions.

(a generalised boundary value problem).Then

B(u, v) = −v′(1)u(0) + α(1)v(1)u(0)− v(0)u′(0) + v′(0)u(0)− α(0)v(0)u(0).

To force this to vanish (for arbitrary u(0), u′(0)) we must have

v(0) = 0, v′(1)− α(1)v(1) = v′(0) Adjoint boundary conditions.

■
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Easy part of proof If a solution u of the primary problem exists, and v is any solution of the
adjoint problem, then ∫ 1

0
(vL[u]− uL∗[v]) dx = B(u, v) = 0.

We then multiply the primary problem by v and integrate, and multiply the adjoint problem by
u and integrate, then subtract the first from the second to get,∫ 1

0
(vL[u]− uL∗[v]) dx =

∫ 1

0
vb dx = 0.

The harder part (if adjoint condition holds then a solution exists) requires 2 steps:

1. Convert the ode problem to an integral equation by using a Green’s function.

2. Use the “Fredholm Alternative” theory of integral equations to write down solvability
conditions for the integral equation.

This is why the solvability condition for ODE’s is sometimes called the Fredholm Alternative.

2.4.2 Applications

Example 6. Primary:
u′′ = b(x), u′(0) = u′(1) = 0.

Adjoint:
v′′ = 0, v′(0) = v′(1) = 0.

There is a nontrivial solution of the adjoint, namely

v = 1.

Hence there is a solution of the primary if and only if∫ 1

0
b(x) dx = 0.

■

Example 7. Find the asymptotic solution of the equation

ẍ+ (1 + ϵ)x = cos t, x(0) = x(2π), ẋ(0) = ẋ(2π), (13)

as ϵ→ 0. Suppose we try a perturbation expansion

x(t) ∼ x0(t) + ϵx1(t) + · · · . (14)

Substituting into the equation gives

(ẍ0 + ϵẍ1 + · · · ) + (1 + ϵ)(x0 + ϵx1 + · · · ) = cos t.
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Expanding the brackets gives

ẍ0 + x0 + ϵ(ẍ1 + x0 + x1) + · · · = cos t.

Equating coefficients of powers of ϵ gives

ẍ0 + x0 = cos t, ẍ1 + x0 + x1 = 0, · · ·

Thus the leading-order problem is

ẍ0 + x0 = cos t, x0(0) = x0(2π), ẋ0(0) = ẋ0(2π). (15)

Note that this is self-adjoint. Is there a solution? The homogeneous version

ẍ0 + x0 = 0, x0(0) = x0(2π), ẋ0(0) = ẋ0(2π),

has solutions
x0 = cos t, and x0 = sin t.

Since ∫ 2π

0
cos2 t dt ̸= 0

we conclude that (15) has no solution. This does not mean that (13) has no solution: it means
that our expansion (14) was incorrect. In (13) we are forcing with a term that is almost resonant
(it is resonant when ϵ = 0). Thus we expect the response to be large. Let us try instead

x(t) ∼ 1

ϵ
x0(t) + x1(t) + · · · . (16)

Substituting into the equation gives

ẍ0 + x0 + ϵ(ẍ1 + x0 + x1) + · · · = ϵ cos t.

Equating coefficients of powers of ϵ now gives

ẍ0 + x0 = 0, ẍ1 + x0 + x1 = cos t, · · ·

This time the leading-order problem is

ẍ0 + x0 = 0, x0(0) = x0(2π), ẋ0(0) = ẋ0(2π), (17)

with solution
x0 = A cos t+B sin t,

where A and B are arbitrary constants, undetermined at this stage. To determine A and B we
need to consider the equation at next order. This is

ẍ1 + x0 + x1 = cos t,
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or, using our expression for x0,

ẍ1 + x1 = (1−A) cos t−B sin t, x1(0) = x1(2π), ẋ1(0) = ẋ1(2π).

Now we use the Fredholm alternative again. There is a solution for x1 if and only if the right-hand
side is orthogonal to the solutions cos t and sin t of the homogeneous problem. Multiplying by
cos t and integrating gives

1−A = 0 ⇒ A = 1.

Multiplying by sin t and integrating gives

B = 0.

Thus the leading order solution is

x ∼ 1

ϵ
cos t.

In fact, this leading-order solution is the exact solution of the original problem, and we can
continue looking at higher-order terms to see they are all zero. While this is a linear problem (and
hence we could have solved the problem directly), this example illustrates a powerful combined
use of asymptotic methods and solvability conditions which is widely applicable for nonlinear
systems, especially oscillators. The solvability theory always tells us something important in the
case that ϵ = 0 – namely, that there is no solution, as we saw above in the regular perturbation
expansion.

■

Example 8. Consider the equation

ϵ
∂u

∂t
− ∂2u

∂x2
= u− u3 + ϵ, u′(−∞) = 0, u′(∞) = 0,

(with u(−∞) close to −1 and u(∞) close to 1). Consider an expansion

u ∼ u0 + ϵu1 + · · · .

Then, at leading order (equating coefficents of ϵ0)

−∂
2u0
∂x2

= u0 − u30, u0(−∞) = −1, u0(∞) = 1.

The solution is

u0 = tanh

(
x− x0(t)√

2

)
,

where x0(t) is arbitrary. This is the solution to the steady problem with ϵ = 0, but it can be
translated arbitrarily. To determine x0 we need to go to the next order. At first order (equating
coefficients of ϵ1)

∂u0
∂t

− ∂2u1
∂x2

= u1 − 3u20u1 + 1, u′1(−∞) = 0, u′1(∞) = 0.
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Rearranging

−∂
2u1
∂x2

− u1 + 3u20u1 = 1− ∂u0
∂t

= 1 +
dx0
dt

∂u0
∂x

. (18)

Now, since

−∂
2u0
∂x2

− u0 + u30 = 0,

differentiating gives

−∂
3u0
∂x3

− ∂u0
∂x

+ 3u20
∂u0
∂x

= 0.

Thus u1 = ∂u0/∂x satisfies the homogeneous version of (18). Therefore, by the Fredholm Alter-
native, the right-hand side must be orthogonal to ∂u0/∂x:

0 =

∫ ∞

−∞

(
1 +

dx0
dt

∂u0
∂x

)
∂u0
∂x

= [u0]
∞
−∞ +

dx0
dt

∫ ∞

−∞

(
∂u0
∂x

)2

dx = 2 +
dx0
dt

∫ ∞

−∞

(
∂u0
∂x

)2

dx.

Thus
dx0
dt

= − 2∫∞
−∞ (∂u0/∂x)

2 dx
.

■

Example 9. Consider the equation for y(x):

y′′ + Ty + y3 = 0, y(0) = 0, y(1) = 0. (19)

Let us first consider the linearised equation:

y′′ + Ty = 0, y(0) = 0, y(1) = 0.

This is an eigenvalue problem: there are solutions only for particular values of T . After imposing
the boundary condition at x = 0 we have

y = sin
√
Tx.

The condition at x = 1 then implies

sin
√
T = 0 ⇒ T = n2π2.

Then the solution is
y = A sinnπx, T = n2π2,

where A is arbitrary.

Let us see how the nonlinear term affects this calculation when we are close to the bifurcation
point T = n2π2. Returning to (19) let us pose an expansion

y = ϵy0 + ϵ3y1 + · · · , T = T0 + ϵ2T1 + · · · .
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Then, equating coefficients of ϵ1:

y′′0 + T0y0 = 0, y0(0) = 0, y0(1) = 0,

so that
T0 = n2π2, y0 = A sinnπx,

as above. The coefficient A is determined by proceeding to next order. Equating coefficients of
ϵ3:

y′′1 + T0y1 + T1y0 + y30 = 0, y1(0) = 0, y1(1) = 0.

Substituting in for y0, T0 gives

y′′1 + n2π2y1 = −AT1 sinnπx−A3 sin3 nπx. (20)

Now the homogeneous equation is satisfied by sinnπx. Thus in order for there to be a solution
for y1, by the Fredholm Alternative the right-hand side must be orthoginonal to sinnπx. Thus

0 =

∫ 1

0
AT1 sin

2 nπx+A3 sin4 nπxdx =
AT1
2

+
3A3

8
.

since ∫ 1

0
sin2 nπxdx =

1

2
,

∫ 1

0
sin2 nπxdx =

3

8
.

As an alternative to evaluating the integrals we observe

sin3 nπx =

(
1

2i

(
einπx − e−inπx

))3

= − 1

8i

(
e3inπx − 3einπx + 3einπx − e−3inπx

)3
= −1

4
(sin 3nπx− 3 sinnπx) .

Thus the right-hand side of (20) is

−AT1 sinnπx+A3 1

4
(sin 3nπx− 3 sinnπx) .

We know that sin 3nπx is orthogonal to sinnπx. Thus we need the coefficient of sinnπx to vanish,
i.e.

−AT1 −
3A3

4
= 0.

Thus the amplitude is

A =

√
−4T1

3
.

Note that this means that the branch of solutions exists for T1 < 0, i.e. for T slightly less than
the critical value n2π2.

■
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Example 9 revisited
Here we look at a solution for the previous example where we do not presume the asymptotic
seris scalings that are given above: (T = T0 +O(ϵ2) and u = ϵu+O(ϵ3), etc).

Instead, let us suppose we do not anticipate those, and instead we expand both u and T as full
regular series in integer powers of (small) ϵ. This should be the default form mst analysts. Only
with experience and anticipation might we guess the right terms to put into teh expansion. The
key to a regular expansion is that the unknown function or coefficient next term is uniformly
bounded so that the whole O(ϵnext term is genuinely of a higher order in ϵ than the whole
preceding terms and thus negligible when contrasted with it as ϵ→ 0.

Consider consider the following nonlinear equation for u(x):

u′′ + Tu+ u3 = 0 0 < x < π, u(0) = u(1) = 0.

Introduce a small parameter ϵ so that T = T0+ϵT1+ϵ
2T2+ . . . , where the Ti’s are real constants,

independent of ϵ, to be determined (succesively) and consider small solutions as an asymptotic
expansion

u = ϵϕ1(x) + ϵ2ϕ2(x) + ϵ3ϕ3(x) + . . . ,

where the ϕi(x)’s are real functions independent of ϵ to be determined (successively).

Substituting in and equating powers of ϵ we find to order ϵ,

ϕ′′1 + T0ϕ1 = 0 ϕ1(0) = ϕ1(1) = 0.

So we must have T0 = n2π2 and ϕ1 = A sinnπx for some real constant A ̸= 0, and thus is non
trivial for A non zero.

This equation can be written Lϕ1 = 0, where L is self-adjoint.

To order ϵ2 we have
ϕ′′2 + T0ϕ2 = −T1ϕ0 ϕ2(0) = ϕ2(1) = 0.

The Fredholm Alternative says that this has a solution if and only if the RHS is orthogonal to
sinnπx ∝ ϕ1, which spans the null space of L (which is self adjoint). Thus we must take T1 = 0.
Then wlog we can take ϕ2 = 0.

To order ϵ3 we have

ϕ′′3 + n2ϕ3 = −T2A sinnπx−A3 sin3 nπx ϕ3(0) = ϕ3(1) = 0.

The Fredholm Alternative says that this has a solution if and only if the RHS is orthogonal to
sinnπx ∝ ϕ1 (which spans the null space of the adjoint operator): hence we have

−T2
∫ π

0
sin2 nπxdx = A2

∫ π

0
sin4 nπxdx.

So A = ±
√

−T2
∫ π
0 sin2 nπxdx/

∫ π
0 sin4 nπxdx = ±

√
−4T2/3, as required. A is real iff T2 ≤ 0.



Further Mathematical Methods 28

WLOG we can take T2 = −1 < 0 and absorb |T2| into the definition of ϵ2.

Hence we have
T = n2π2 − ϵ2 +O(ϵ3)

and
u(x) = ϵA sinnπx+O(ϵ3)

with A = 2/
√
3 given as above: there is a pitchfork bifurcation at T = n2π2.

Of course what is T2 here is written as T1 in the above earlier version of this solution ; and u3
here is y1 in that version .

2.4.3 Generalisation

Suppose u is a vector of complex-valued functions, obeying a higher-order primary problem

Primary
L[u] = b(x) on 0 ≤ x ≤ 1,

with primary boundary conditions on u at x = 0, 1, where the primary differential form on the
domin is

L[u] =

k∑
r=0

Ar(x)
dru

dxr
=

k∑
r=0

Ar(x)u
(r),

where the Ar(x) are matrices, continuous in x, and b is a vector of continuous functions. To
state the adjoint problem we introduce some notation.

1. A∗ = conjugate of transpose of A [like A′ in Matlab].

2. If v is a vector of continuous functions (same order as b) then define an inner product

⟨v, b⟩ =
∫ 1

0
v(x)∗b(x) dx =

∑
i

∫ 1

0
vi(x)bi(x) dx.

Then

Primary has a solution u ⇔ ⟨v, b⟩ = 0 for every solution v of the Adjoint problem

Adjoint
L∗[v] = 0,

with adjoint boundary conditions on v at x = 0, 1. The adjoint differential operator is

L∗[v] =
k∑

r=0

(−1)r (A∗
rv)

(r) .
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The fundamental identity is

⟨v, L[u]⟩ − ⟨L∗[v],u⟩ =

∫ 1

0

∑
r

(
v∗Aru

(r) − (−1)r(v∗A∗
r)

(r)u
)
dx

=

[∑
r

v∗Aru
(r−1) − (v∗Ar)

′u(r−2) + · · ·+ (−1)r−1(v∗Ar)
(r−1)u

]1
0

= B(u,v).

This B is used to construct the adjoint boundary conditions exactly as in the basic case considered
earlier (B is a Hermitian form now). The easy part of the proof is just as before.
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3 Calculus of variations

3.1 The main idea

Start with a simple example: consider a plane curve joining two points (a, c) and (b, d) and
given by the smooth graph y = y(x).

NB this disallows some slopes.

Define the functional

J [y] =

∫ b

a
(y′(x))2 dx.

NB J : V → R, where V is a suitable function space, e.g. the set C2[a, b] of twice continuously
differentiable functions y(x) defined on [a, b], satisfying y(a) = c and y(b) = d [we won’t dwell
much on the strict conditions on y(x)].

Now we ask: which function y(x) ∈ V minimises the functional J [y]?

To answer this, let y(x) be the desired extremal function which minimises J [y]. Then any admiss-
able perturbation about y(x) should increase J . So consider J [y + ϵη], where η ∈ C2[a, b] with
η(a) = η(b) = 0. Now

J [y + ϵη] =

∫ b

a
(y′(x) + ϵη′(x))2 dx

= J [y] + 2ϵ

∫ b

a
y′(x)η′(x) dx+ ϵ2

∫ b

a
(η′(x))2 dx.

We want this to have a minimum when ϵ = 0, and a necessary condition is∫ b

a
y′(x)η′(x) dx = 0.
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[Then the coefficient of ϵ2 ≥ 0 so it is a minimum not a maximum.]

Now integrate by parts to give[
y′(x)η(x)

]b
a︸ ︷︷ ︸

=0 since η(a)=η(b)=0

−
∫ b

a
η(x)y′′(x) dx = 0.

We deduce that ∫ b

a
η(x)y′′(x) dx = 0

for all η ∈ C2[a, b] with η(a) = η(b) = 0.

Fundamental Lemma of Calculus of Variations (FLCV)
If ∫ b

a
η(x)ϕ(x) dx = 0 ∀η ∈ C2[a, b] with η(a) = η(b) = 0,

and ϕ is continuous, then
ϕ(x) ≡ 0 on [a, b].

Hence we find that the function y(x) that minimises J [y] satisfies

y′′(x) ≡ 0,

i.e.

y = Ax+B = c+
(d− c)

(b− a)
(x− a),

which is a straight line from (a, c) to (b, d).

Possible motivations
(i) 1-d flow of electricity through a semiconductor. ϕ(x) = electric potential (voltage).

The energy dissipated (as heat) in the medium is given by

J [ϕ] =

∫ l

0
σ(x)(ϕ′(x))2 dx,

where σ(x) is the ocnductivity of the medium. So dissipation is minimised when ϕ satisfies

d

dx
(σ(x)ϕ′(x)) = 0.

(ii) Drive from A to B in a given time T . Let your position at time t be x(t). Then x(0) = a,
x(T ) = b. Suppose there is a frictional resistance kẋ(t). Then the work done against friction
during the journey is

J [x] =

∫ T

0
kẋ(t)2 dt.

This suggests that driving at constant speed (ẍ = 0) is the most efficient.
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3.2 Generalization: A class of problems

This simple example falls into a class of problems: to minimise or maximise a functional

J [y] =

∫ b

a
F (x, y(x), y′(x)) dx

(where F (x, y, y′) is given) over all y ∈ C2[a, b] satisfying y(a) = c, y(b) = d.

Let y(x) be an extremal function and perturb:

J [y + ϵη] =

∫ b

a
F (x, y + ϵη, y′ + ϵη′) dx,

where η ∈ C2[a, b] with η(a) = η(b) = 0. Expand using Taylor’s theorem:

J [y + ϵη] = J [y] + ϵ

∫ b

a

(
η
∂F

∂y
(x, y, y′) + η′

∂F

∂y′
(x, y, y′)

)
dx+O(ϵ2).

NB here we treat x, y and y′ as independent variables.

At an extremal we must have ∫ b

a

(
η
∂F

∂y
+ η′

∂F

∂y′

)
dx = 0.

Integrate by parts: ∫ b

a
η

(
∂F

∂y
− d

dx

(
∂F

∂y′

))
dx+

[
η
∂F

∂y′

]b
a︸ ︷︷ ︸

=0 since η(a)=η(b)=0

= 0.
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Since this is true for all η ∈ C2[a, b] with η(a) = η(b) = 0 by the FLCV we have Euler’s equation
(basic equation of Calculus of Variations):

d

dx

(
∂F

∂y′

)
− ∂F

∂y
= 0

NB d/dx not ∂/∂x.

Examples
(i) In our previous example F (x, y, y′) = (y′)2. This gives

d

dx
(2y′) = 0, i.e. y′′ = 0.

(ii) Curve of minimum length joining (a, c) to (b, d). Length

J [y] =

∫ b

a

√
1 + (y′)2 dx,

subject to y(a) = c, y(b) = d. Then

F =
√

1 + (y′)2,
∂F

∂y
= 0,

∂F

∂y′
=

y′√
1 + (y′)2

.

So Euler’s equation is
d

dx

(
∂F

∂y′

)
=

y′′

(1 + (y′)2)3/2
= 0.

Thus y′′ = 0 so y = Ax+B. Linear (again). Thus

y(x) = c+
(d− c)

(b− a)
(x− a),

a straight line, as expected.

3.3 Extensions

3.3.1 Natural boundary conditions

This time let

J [y] =

∫ b

a
F (x, y, y′) dx

where y(a) = c but y(b) is NOT prescribed. Again let y(x) be an extremal of J [y] and consider
y + ϵη, where η(a) = 0 but η(b) is arbitrary. Then

J [y + ϵη] =

∫ b

a
F (x, y, y′) dx

∼ J [y] + ϵ

∫ b

a

(
η
∂F

∂y
+ η′

∂F

∂y′

)
dx+O(ϵ2).
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At an extremal, we must have ∫ b

a

(
η
∂F

∂y
+ η′

∂F

∂y′

)
dx = 0

⇒
∫ b

a
η

(
∂F

∂y
− d

dx

(
∂F

∂y′

))
dx+

[
η
∂F

∂y′

]a
b

= 0.

This is true for all η ∈ C2[a, b] satisfying η(a) = 0. In particular it is true for all η ∈ C2[a, b]
satisfying η(a) = η(b) = 0, so∫ b

a
η

(
∂F

∂y
− d

dx

(
∂F

∂y′

))
dx+

[
η
∂F

∂y′

]a
b

= 0, ∀η ∈ C2[a, b] such that η(a) = 0.

Then FLCV ⇒ Euler’s equation again. Now we are left with[
η
∂F

∂y′

]a
b

= 0 = η(b)
∂F

∂y′

∣∣∣∣
x=b

.

Since η(b) is arbitrary we must have

∂F

∂y′
= 0 at x = b.

This is the natural boundary condition applied at any boundary where no boundary condi-
tions are prescribed in advance.

Trivial Example
Minimise the length

J [y] =

∫ b

a

√
1 + (y′)2 dx

subject to y(a) = c but y(b) kept free.

Euler equation is
y′′ = 0 ⇒ y = Ax+B.

Boundary conditions.

Imposed boundary condition
y(a) = c.

Natural boundary condition

∂F

∂y′
=

y′√
1 + (y′)2

= 0 at x = b.

Thus y′(b) = 0. Thus A = 0 and y′ ≡ 0, i.e.

y = c

as expected.
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Figure 1:

3.3.2 Generalisation to higher derivatives

Suppose we want to minimise

J [y] =

∫ b

a
F (x, y, y′, y′′) dx

subject to y(a) = c, y(b) = d, y′(a) = m, y′(b) = n. Perturbing y to y + ϵη and linearising in η
gives

J [y + ϵη] ∼ J [y] + ϵ

∫ b

a

(
η
∂F

∂y
+ η′

∂F

∂y′
+ η′′

∂F

∂y′′

)
dx+O(ϵ2).

At an extremal we have ∫ b

a

(
η
∂F

∂y
+ η′

∂F

∂y′
+ η′′

∂F

∂y′′

)
dx = 0

⇒
∫ b

a

(
η
∂F

∂y
− η

d

dx

(
∂F

∂y′

)
+ η

d2

dx2

(
∂F

∂y′′

))
dx+

[
η
∂F

∂y′
+ η′

∂F

∂y′′
− η

d

dx

(
∂F

∂y′′

)]b
a

= 0

Thus the Euler equation is

∂F

∂y
− d

dx

(
∂F

∂y′

)
+

d2

dx2

(
∂F

∂y′′

)
= 0.

This generalises in the obvious way.

3.3.3 More dependent variables

Suppose we want to minimise

J [y, z] =

∫ b

a
F (x, y, y′, z, z′) dx
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subject to y(a) = c, y(b) = d, z(a) = m, z(b) = n. We perturb and consider J [y + ϵη, z + δξ].
Since we can vary η and ξ independently we get an Euler equation for each variable:

d

dx

(
∂F

∂y′

)
=

∂F

∂y
,

d

dx

(
∂F

∂z′

)
=

∂F

∂z
.

These will be coupled in general.

3.4 Constraints

3.4.1 Pointwise constraints

Once we have more dependent variables we can consider pointwise constraints of the form

G(y, z) = 0. (21)

The condition for stationarity is∫ b

a

([
∂F

∂y
− d

dx

(
∂F

∂y′

)]
η +

[
∂F

∂z
− d

dx

(
∂F

∂z′

)]
ξ

)
dx = 0. (22)

However, now η and ξ cannot be assigned arbitrarily because of the constraint (21). Taylor
expanding (21) gives

∂G

∂y
η +

∂G

∂z
ξ = 0.

Multiply by a Lagrange multiplier λ (which in this case is a function of x) and integrate to give∫ b

a

(
λ
∂G

∂y
η + λ

∂G

∂z
ξ

)
dx = 0.

Subtract this from (22) to give∫ b

a

([
∂F

∂y
− d

dx

(
∂F

∂y′

)
− λ

∂G

∂y

]
η +

[
∂F

∂z
− d

dx

(
∂F

∂z′

)
− λ

∂G

∂z

]
ξ

)
dx = 0.

Now suppose we choose λ so that the coefficient of η vanishes. Then since ξ can be chosen
arbitrarily its coefficient must also vanish. Thus

∂F

∂y
− d

dx

(
∂F

∂y′

)
− λ

∂G

∂y
= 0,

∂F

∂z
− d

dx

(
∂F

∂z′

)
− λ

∂G

∂z
= 0.

These two equations and (21) form three equations for y, z and λ. Note that this is the same as
minimising F − λG, as G does not depend on y′ or z′.
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3.4.2 Integral Constraints

Suppose we have to minimise or maximise a functional

J [y] =

∫ b

a
F (x, y, y′) dx

subject to y(a) = c and y(b) = d [can easily generalise to natural boundary conditions] and y has
to satisfy the constraint

K[y] =

∫ b

a
G(x, y, y′) = C (constant).

Example
The minimal length curve enclosing a given area

Figure 2:

min J [y] =

∫ b

a

√
1 + (y′)2 dx

subject to y(a) = c, y(b) = d and

K[y] =

∫ b

a
y(x) dx = C.

Now if we perturb about the extremal y(x) then

K[y + ϵη] ∼ K[y] + ϵ

∫ b

a

(
η
∂G

∂y
+ η′

∂G

∂y′

)
dx+O(ϵ2)

∼ C + ϵ

∫ b

a

(
η
∂G

∂y
+ η′

∂G

∂y′

)
dx+O(ϵ2)

= C,
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so η is not arbitrary. It has to satisfy∫ b

a

(
η
∂G

∂y
+ η′

∂G

∂y′

)
dx = 0.

A trick to get around this problem is to add two perturbation functions, ξ and η satisfying
ξ(a) = η(a) = ξ(b) = η(b) = 0. Then

K[y + ϵη + δξ] ∼ K[y] + ϵ

∫ b

a

(
η
∂G

∂y
+ η′

∂G

∂y′

)
dx+ δ

∫ b

a

(
ξ
∂G

∂y
+ ξ′

∂G

∂y′

)
dx+O(ϵ2)

= C. (23)

The idea now is to fix the function ξ(x) and, for any subsequently chosen η(x), then to determine
δ as a function of ϵ in such a way that (23) is satisfied. Thus η will be arbitrary, but we have to
choose δ(ϵ) in the right way. In order to be able to choose such a δ we need

∂K

∂δ

∣∣∣∣
δ=0,ϵ=0

=

∫ b

a

(
ξ
∂G

∂y
+ ξ′

∂G

∂y′

)
dx =

∫ b

a
ξ

(
∂G

∂y
− d

dx

(
∂G

∂y′

))
dx ̸= 0.

Provided
∂G

∂y
− d

dx

(
∂G

∂y′

)
̸≡ 0

(cases where this is zero are degenerate and uninteresting), we can certainly choose ξ so that this
is true. Let us choose such a ξ. Then, for any subsequent choice of η, we can determine δ as a
function of ϵ so that (23) is satisfied. Now

J [y + ϵη + δ(ϵ)ξ] ∼ J [y] + ϵ

∫ b

a

(
η
∂F

∂y
+ η′

∂F

∂y′

)
dx+ δ(ϵ)

∫ b

a

(
ξ
∂F

∂y
+ ξ′

∂F

∂y′

)
dx

+O(ϵ2)

∼ J [y] + ϵ

∫ b

a

(
η
∂F

∂y
+ η′

∂F

∂y′

)
dx+ ϵ

dδ

dϵ
(0)

∫ b

a

(
ξ
∂F

∂y
+ ξ′

∂F

∂y′

)
dx

+O(ϵ2).

Since y is an extremal we must have∫ b

a
η

(
∂F

∂y
− d

dx

(
∂F

∂y′

))
dx+

dδ

dϵ
(0)

∫ b

a
ξ

(
∂F

∂y
− d

dx

(
∂F

∂y′

))
dx = 0. (24)

Similarly, integrating by parts in (23) gives∫ b

a
η

(
∂G

∂y
− d

dx

(
∂G

∂y′

))
dx+

dδ

dϵ
(0)

∫ b

a
ξ

(
∂G

∂y
− d

dx

(
∂G

∂y′

))
dx = 0. (25)

Solving (25) for dδ/dϵ and substituting into (24) gives∫ b

a
η

(
∂

∂y
(F − λG)− d

dx

(
∂F

∂y′
− λ

∂G

∂y′

))
dx = 0, (26)
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where λ is a constant, defined as the ratio of two definite integrals involving the arbitrary fixed
function ξ:

λ =

∫ b

a
ξ

(
∂F

∂y
− d

dx

(
∂F

∂y′

))
dx∫ b

a
ξ

(
∂G

∂y
− d

dx

(
∂G

∂y′

))
dx

.

Since (26) is true for any η ∈ C2[a, b] satisfying η(a) = η(b) = 0 the FLVC implies that F − λG
satisfies Euler’s equation:

∂

∂y
(F − λG)− d

dx

(
∂

∂y′
(F − λG)

)
= 0.

λ is called a Lagrange multiplier and is fixed by satisfying the constraint∫ b

a
G(x, y, y′) dx = C.

This can also be thought of (and is taught in many books as) introducing a new functional (e.g.
for C = 0)

Ĵ =

∫ b

a
F (x, y, y′)− λG(x, y, y′) dx

and minimising over y. Then λ is determined from the constraint∫ b

a
G(x, y, y′) dx = C.

Simple Example
Minimise ∫ 1

0
(y′(x))2 dx

over all C2[0, 1] functions satisfying y(0) = y(1) = 0 and∫ 1

0
y(x) dx = 1.

So F = (y′)2, G = y, giving

−λ− d

dx
(2y′) = 0

so that

y(x) = −λx
2

4
+Ax+B = −λx(x− 1)

4
,

after imposing the boundary conditions. Then fix λ by imposing the constraint∫ 1

0
y(x) dx =

λ

24
= 1.

Thus λ = 24 and
y(x) = 6x(1− x).
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3.5 More independent variables

Consider

J [ϕ] =

∫∫
D
F (x, ϕ, ϕx, ϕy) dx dy

where ϕ = ϕ(x, y), D is a region of the (x, y) plane, and ϕ satisfies ϕ = 0 on ∂D.

Figure 3:

J [ϕ+ ϵη] = J [ϕ] + ϵ

∫∫
D

(
η
∂F

∂ϕ
+ ηx

∂F

∂ϕx
+ ηy

∂F

∂ϕy

)
dx dy

Now instead of integration by parts we need to use Green’s Theorem. From the identity

∇ · (ηf) = ∇η · f + η∇ · f ,

we find ∫∫
D
(∇η · f + η∇ · f) dx dy =

∫
∂D

η f · nds.

Thus, with

f =

(
∂F

∂ϕx
,
∂F

∂ϕy

)
,

we find ∫∫
D

(
ηx
∂F

∂ϕx
+ ηy

∂F

∂ϕy

)
dx dy = −

∫∫
D

(
η
∂

∂x

(
∂F

∂ϕx

)
+ η

∂

∂y

(
∂F

∂ϕy

))
dx dy

+

∫
∂D

η

(
∂F

∂ϕx
nx +

∂F

∂ϕy
ny

)
ds.
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Thus ∫∫
D

(
η
∂F

∂ϕ
− η

∂

∂x

(
∂F

∂ϕx

)
− η

∂

∂y

(
∂F

∂ϕy

))
dx dy = 0

for all η so the Euler equation (or Euler-Lagrange equation) is

∂

∂x

(
∂F

∂ϕx

)
+

∂

∂y

(
∂F

∂ϕy

)
=
∂F

∂ϕ
.

This is now a p.d.e.

3.6 Vector fields: two dependent variables and two independent variables

Notation. Here we will write all vectors as column vectors: so use (u, v)T to mean

(
u
v

)
. This

is a good practice to keep especially when you start to consider vector calculus and the nabla
operations.

Let Ω be a bounded convex domain in two dimensions, with a piecewise smooth boundary denoted
by δΩ. Consider the functional:

J(u, v) =

∫
Ω
F (x, y, u(x, y), ux(x, y), uy(x, y), v(x, y), vx(x, y), vy(x, y)) dxdy,

defined for the C2 vector field (u(x, y), v(x, y))T on Ω, satisfying boundary conditions where
(u, v)T is given and continuous on the bpoundary, δΩ .
Find a pair of partial differential equations that the extremal vector field (u, v)T must satisfy.

Solution
Suppose that (u, v)T is an extremal.
Consider J(u+ η, v + ψ) where both η and ψ vanish on the boundary, δΩ, then

J(u+ η, v + ψ) =

∫
Ω
F dxdy +

∫
Ω
Fuη + Fuxηx + Fuyηy + Fvψ + Fvxψx + Fvyψy dxdy,

Here F and its partial derivates are all evaluated at

(x, y, u(x, y), ux(x, y), uy(x, y), v(x, y), vx(x, y), vy(x, u)).

We will write (Fux , Fuy)
T to denote the column vector field over Ω.

The second integral must vanish at an extremal. It is equal to∫
Ω
Fuη + Fvψ +

(
Fux

Fuy

)
.∇η +

(
Fvx

Fvy

)
.∇ψ dxdy,

=

∫
Ω

(
Fu −∇.

(
Fux

Fuy

))
η +

(
Fv −∇.

(
Fvx

Fvy

))
ψ dxdy,
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This is true by the Divergence theorem (Green’s theorem), since we have the identities

∇.
(
η

(
Fux

Fuy

))
= η∇.

(
Fux

Fuy

)
+∇η.

(
Fux

Fuy

)
.

So ∫
δΩ

(
η

(
Fux

Fuy

))
.n dS +

∫
Ω

(
Fu −∇.

(
Fux

Fuy

))
η dxdy

=

∫
Ω
ηFu +

(
Fux

Fuy

)
.∇η dxdy

and the integrand within the boundary integral (from the Divergence theorem) vanishes due to
the boundary condition on η. Similar for v and ψ.

Hence we have a pair of scalar partial differential equations

Fu −∇.
(
Fux

Fuy

)
= 0 Fv −∇.

(
Fvx

Fvy

)
= 0 (x, y)T ∈ Ω.

So if, say, F (x, u, u, v, ux, uu, vx, vy) = ∇u.∇u+∇v.∇v then we have

0 = 2∇.∇u = 2∆u and 0 = 2∇.∇v = 2∆v.

3.7 The Hamiltonian

Suppose a function y(x) satisfies Euler’s equation

d

dx

(
∂F

∂y′

)
=
∂F

∂y

for some function F (x, y, y′). Note that

dF

dx
=

∂F

∂x
+
∂F

∂y

dy

dx
+
∂F

∂y′
dy′

dx

=
∂F

∂x
+

d

dx

(
∂F

∂y′

)
dy

dx
+
∂F

∂y′
d2y

dx2

=
∂F

∂x
+

d

dx

(
dy

dx

∂F

∂y′

)
=
∂F

∂x
+

d

dx

(
y′
∂F

∂y′

)
.

Therefore, if we define the Hamiltonian

H = y′
∂F

∂y′
− F,

then
dH

dx
= −∂F

∂x
.

If F does not depend explicitly on x (the problem is autonomous) then

∂F

∂x
= 0

and hence H = constant. In this case H is a conserved quantity (often identifyable as energy).
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Example
Suppose

F =
√
1 + (y′)2 + y2.

The Euler equation is

d

dx

(
y′√

1 + (y′)2

)
= 2y.

This is not very nice...but

H =
(y′)2√
1 + (y′)2

−
√

1 + (y′)2 − y2 = − 1√
1 + (y′)2

− y2 = constant,

gives a first integral of the o.d.e.

We can transform the Euler equation into canonical form by changing independent variables.
Think of F and H as functions of (x, p, q) instead of (x, y, y′), where

q = y, p =
∂F

∂y′
;

p is known as the generalised momentum. Then, then definition of H is

H = py′ − F

(where y′ is a function of x, p, q) and Euler’s equation is

dp

dx
=
∂F

∂y
.

So
∂H

∂y′
= p+ y′

∂p

∂y′
− ∂F

∂y′
= y′

∂p

∂y′

by the Chain rule, since p = ∂F/∂y′. But

∂H

∂y′
=
∂H

∂q

∂q

∂y′
+
∂H

∂p

∂p

∂y′
=
∂H

∂p

∂p

∂y′
.

Thus

y′ =
dq

dx
=
∂H

∂p
.

Also

dp

dx
=

∂F

∂y
=

∂

∂y

(
py′ −H

)
= y′

∂p

∂y
− ∂H

∂y
.

But
∂H

∂y
=
∂H

∂p

∂p

∂y
+
∂H

∂q

∂q

∂y
= y′

∂p

∂y
+
∂H

∂q
.
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Thus
dp

dx
= y′

∂p

∂y
− y′

∂p

∂y
− ∂H

∂q
= −∂H

∂q
.

Thus
dp

dx
= −∂H

∂q

dq

dx
=
∂H

∂p
.

These are Hamilton’s equations. Note that

dH

dx
=
∂H

∂x
+
∂H

∂p

dp

dx
+
∂H

∂q

dq

dx
=
∂H

∂x
+

dq

dx

dp

dx
− dp

dx

dq

dx
=
∂H

∂x
.

Thus if
∂H

∂x
= 0

then H is conserved as expected.

Free boundaries

Minimise

J [y, b] =

∫ b

a
F (x, y, y′) dx

subject to y(a) = c, y(b) = d where b is unspecified.

J [y + ϵη; b+ ϵβ] =

∫ b+ϵβ

a
F (x, y + ϵη, y′ + ϵη′) dx

= J [y, b] + ϵ

{∫ b

a

(
η
∂F

∂y
+ η′

∂F

∂y′

)
dx+ βF (b, y(b), y′(b))

}
+O(ϵ2).

Taylor expanding the boundary condition

d = y(b+ ϵβ) + η(b+ ϵβ)

= y(b) + ϵ
[
βy′(b) + η(b)

]
+O(ϵ2)

= d+ ϵ
[
βy′(b) + η(b)

]
+O(ϵ2).

Thus
η(a) = 0, η(b) = −βy′(b).

At an extremal ∫ b

a

(
η
∂F

∂y
+ η′

∂F

∂y′

)
dx+ βF (b, y(b), y′(b)) = 0.

Integrate by parts to give

βF (b, y(b), y′(b)) +

∫ b

a
η

[
∂F

∂y
− d

dx

(
∂F

∂y′

)]
dx+

[
η
∂F

∂y′

]b
a

= 0.
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Hence

β

[
F − y′

∂F

∂y′

]
x=b

+

∫ b

a
η

[
∂F

∂y
− d

dx

(
∂F

∂y′

)]
dx = 0.

Thus FLCV gives us Euler’s equation and the extra free boundary condition

F = y′
∂F

∂y′
at x = b

(i.e. H = 0).

Example
minimise

J [y, b] =

∫ b

0

(
1

2

(
y′
)2

+
1

2
y2 + 1

)
dx

subject to y(0) = 0, y(b) = 1. Euler’s equation is

y′′ = y.

Solving and applying the boundary conditions gives

y =
sinhx

sinh b
.

The extra free boundary condition is

1

2

(
y′
)2 − 1

2
y2 − 1 = 0 at x = b.

This gives
cosh2 b

sinh2 b
= 3 ⇒ b = tanh−1

(
1√
3

)
.

CHECK

J

[
sinhx

sinh b
, b

]
=

1

2
coth b+ b.

This is minimised when

−1

2
cosech2b+ 1 = 0 ⇒ b = tanh−1

(
1√
3

)
.

OR note that

H =
1

2

(
y′
)2 − 1

2
y2 − 1 = constant (autonomous) = 0

by the free boundary condition. Hence

y′ =
√
y2 + 2.
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Thus

x =

∫
dy√
y2 + 2

= sinh−1

(
y√
2

)
.

Thus
y =

√
2 sinhx.

Then the boundary condition y(b) = 1 gives

b = sinh−1

(
1√
2

)
= tanh−1

(
1√
3

)
.
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4 Optimal control

Example
Suppose x(t) satisfies the differential equation

ẋ = u+ x,

where u(t) is our control variable. Suppose we want to vary u so as to control x. For example,
starting from x(0) = a we may wish to arrive at x(T ) = 0.

Is this possible? Yes! Just choose any function x(t) satisfying the initial and final condition and
then read off the required control as

u = ẋ− x.

However, in practice there may be bounds on the achievable u, e.g. −1 ≤ u ≤ 1. This will
leads to bounds on the initial condition for which the desired final condition is achievable. In the
example if u ≤ 1 then the maximum achievable value of x(T )− x(0) occurs when

ẋ− x = 1 ⇒ x = −1 +Aet = −1 + (1 + a)et.

Then x(T ) = 0 gives a = −1 + e−T . The problem is controllable only if a is greater than this
value.

We may wish to find the control which minimises a cost function. For example, the work done
agaist friction may be ∫ T

0
uẋ dt.

Thus we may want to define the cost function as

C =

∫ T

0
u(u+ x) dt

and ask for the control which achieves the goal and minimises C[x, u].

4.1 General setting

So, in general we may find the following optimal control problem:

minimise C[x, u] =

∫ T

0
h(t, x, u) dt,

over all controls u(t) satisfying the control problem

ẋ = f(t, x, u), x(0) = a, x(T ) = b.

We wish to “control” the solution x so as to arrive at the far boundary condition at the lowest
possible cost.
This now resembles a variational problem, with the control functional acting as a constraint.
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Notation: in this section we will use subscripts to denote partial derivatives and a dot to denote
a full time derivative (d/dt), where no confusion arises.

Let us approach it by perturbing about the extremal functions x(t) and u(t):

C[x+ ϵξ, u+ ϵη] = C[x, u] + ϵ

∫ T

0
(ξhx + ηhu) dt+O(ϵ2),

while
ẋ+ ϵξ̇ = f(t, x, u) + ϵ (ξfx + ηfu) +O(ϵ2),

and ξ(0) = 0 = ξ(T ).

Since ẋ = f(t, x, u) for an extremal function we need∫ T

0
(ξhx + ηhu) dt = 0,

for all ξ and η satisfying
ξ̇ = ξfx + ηfu,

with ξ(0) = ξ(T ) = 0. We require ∂f/∂u ̸= 0, otherwise the control u has no influence on the
problem. Then we can solve for

η =
(
ξ̇ − ξfx

)/
fu,

and plug it into the integral ∫ T

0

(
ξhx +

(
ξ̇ − ξfx

)
(hu/fu)

)
dt = 0.

As usual integrate by parts to give∫ T

0
ξ

(
hx − fx(hu/fu)−

d

dt
(hu/fu)

)
dt+ [ξ(hu/fu)]

T
0 = 0

Since ξ(0) = ξ(T ) = 0 the boundary term is zero. Hence we find that x and u have to satisfy the
o.d.e.

d

dt
(hu/fu) = hx − fx ((hu/fu)) .

This o.d.e. is coupled with the control problem

dx

dt
= f,

with x(0) = a, x(T ) = b. In principle two coupled first order o.d.e.s with two boundary conditions
gives a unique solution.



Further Mathematical Methods 49

Return to the example

f = u+ x, h = u(u+ x),

so that we get
d

dt
(2u+ x) = u− (2u+ x) ,

i.e.

2u̇+ ẋ = −(u+ x),

along with the control problem
ẋ = u+ x.

Adding gives
u̇+ ẋ = 0,

so that u+ x = A constant. Then ẋ = A, x(0) = a, x(T ) = 0 gives

x = a+At, A = − a

T
,

so that

x = a

(
1− t

T

)
,

(constant velocity is the most efficient), and the optimal control is

u = a

(
t

T
− 1− 1

T

)
.

Note the existence of a first integral which facilitated the solution of this example. As in the
calculus of variations this will be generally true for autonomous problems.

Returning to the general case.
We define the Hamiltonian:

H(t, x, u) = f (hu/fu)− h,

where we have the dynamics
d

dt
(hu/fu) = hx − fx (hu/fu) .

together with
dx

dt
= f.

We will show that when the system is autonomous (there being no explicit dependence upon t,
and it is thus translatable with respect to time) there is a first integral for the motion, a conserved
quantity.
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To ease the notation we will use subscripts to denote partial differentiation of f and h and ḟ , etc
to denote df/dt and other full time derivatives.

We have

H(t, x, u) = f

(
hu
fu

)
− h.

Then direct differentiation yields

Ḣ = ḟ

(
hu
fu

)
+ f

˙(
hu
fu

)
− ht − hxf − huu̇.

So substituting for
˙(hu
fu

)
= hx − fx

(
hu
fu

)
,

Ḣ = (ft + fxf + fuu̇)

(
hu
fu

)
+ f

(
hx − fx

(
hu
fu

))
− ht − hxf − huu̇.

Thus

Ḣ = ft

(
hu
fu

)
− ht

Equivalently
dH

dt
=

(
∂h

∂u

/
∂f

∂u

)
∂f

∂t
− ∂h

∂t
.

So if the problem is autonomous, then

∂f

∂t
=
∂h

∂t
= 0

and H is conserved.

In the above example f = u+ x, h = u(u+ x) and

H = (u+ x)(2u+ x)− u(u+ x) = (u+ x)2

which is conserved as we found before.

Example 2
Solve

ẋ = x+ u, x(0) = 0, x(1) = 1,

where u is chosen to minimise ∫ 1

0
u2 dt.

Now f = x+ u, h = u2, so the Hamiltonian is

H = (x+ u)× 2u− u2 = u2 + 2xu.
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Completing the square

(u+ x)2 = H2 + x2 ⇒ u+ x = ±
√
H + x2.

Choose the plus sign (ẋ should be positive from the initial and final conditions) to give

ẋ =
√
H + x2.

Therefore

t =

∫
dx√
H + x2

= sinh−1

(
x√
H

)
.

Therefore
x =

√
H sinh t.

The final condition x(1) = 1 determines H, to gives

x =
sinh t

sinh 1
, H = cosech21, u =

e−t

sinh 1
.

4.2 The Pontryagin Maximum Principle (Non-examinable)

Form of problem : The state vector x of a system obeys

ẋ = f(x, t, u), x, f ∈ Rn,

where u is a control which we are free to choose subject to u(t) ∈ Uf (x(t), t), the set of feasible
controls which may depend on x and t. We have to choose u in such a way as to maximise (or
minimise) some “gain” function∫ T

0
h(x, t, u) dt, h(x, t, u) ∈ R.

Boundary conditions: typically x(0) given; T and x(T ) may both be given, or T fixed but x(T )
free, or x(T ) fixed but T free, etc. E.g. if x(T ) is given, T is free and h = 1 we have a minumum

time control,
∫ T
0 h dt = T = time to get between specified end states.

Procedure (Pontryagin Maximum Principle) Introduce a vector p ∈ Rn and define

H0(x, t, u, p) = h(x, t, u) + pf(x, t, u) ≡ h(x, t, u) +
∑
i

pifi(x, t, u).

(The “pre-Hamiltonian”.) Let u0(x, t, p) be the value of u in Uf (x, t) that maximisesH0(x, t, u, p),
and let the Hamiltonian

H(x, t, p) = max {H0(x, t, u, p) : u ∈ Uf (x, t)} = H0(x, t, u0(x, t, p), p). (27)
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Then the optimal trajectory is found by solving

ẋ = f(x, y, u0(x, t, p)) =
∂H

∂p
(if max is attained),

ṗ = −∂H
∂x

(system of 2n ode’s), subject to

(i) the given value of x(0),

(ii) given value of x(T ), or p(T ) = 0 if x(T ) is free,

(iii) given value of T , or H = 0 at T if T is free.

Notes

(i) Can replace max with min throughout.

(ii) p is called the dual variable vector, adjoint, co-state.

Example Suppose x ∈ R, ẍ = u, and u is restricted by −1 ≤ u ≤ 1, and from some initial state
you have to reach x(T ) = 0 in minimum time T . Take the start vector to be(

x1
x2

)
=

(
x
ẋ

)
,

so the differential equations are

ẋ1 = x2,

ẋ2 = u,

i.e.

f =

(
x2
u

)
.

We want to minimise

T =

∫ T

0
1 dt, so take h = 1,

and we have

(x1, x2) =

{
(x0, ẋ0) as t = 0,
(0, 0) as t = T.

Then
H0 = h+ pf = 1 + p1x2 + p2u,

where p1,p2 are conjugate to x1 and x2 respectively. Hence

H = minH0 = 1 + p1x2 − |p2|, u0 = −sign(p2).
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Then

ṗ1 = −∂H
∂x1

= 0,

ṗ2 = −∂H
∂x2

= −p1.

We already see that

(a) the optimal trajectory will use u = ±1 only: “bang-bang” control.

(b) u changes between ±1 at most once on the optimal trajectory (since p2 monotonic and
u0 = −sign(p2).)

What does this mean in the phase plane? After the first switch, we must be on one of the dark

paths. These are called the switching locus. Hence we must follow one family until we hit the
switching locus and the the other until x = ẋ = 0. This is the “time optimal” control. (Can also

find p1 and p2 etc by using the boundary conditions, but using (a) and (b) and the phase plane
is easier.)
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Note u does not vary continuously on the optimal trajectory. There is a discontinuity in ẍ
where u changes sign. In some applications u may not be a real variable or vector at all, e.g.
sound insulation: a board is to be built of layers of different materials subject to constraints on
weight, thickness, cost, so as to minimise sound coming through. This is optimal control

t → x,

u → what material used at x,

state → displacement/stress at x

(all assumed ∝ eiωt). Consequently we should prove the Pontryagin Maximum Principle (P.M.P.)
by a method not assuming and continuity in u.

“Proof” (Why the method usually works) First we prove the following
Lemma Suppose

g(y, z) = max{f(x, y, z) : x ∈ X(y)} = f(x0(y, z), y, z), x0(y, z) ∈ X(y).

Then
∂g

∂z
(y, z) =

∂f

∂z
(x0(y, z), y, z).

Proof If f is differentiable

∂g

∂z
(y, z) =

∂f

∂z
(x0(y, z), y, z) +

∂f

∂x
(x0(y, z), y, z)

∂x0(y, z)

∂z
.

But x0 defined to be maximum implies that

∂f

∂x
(x0(y, z), y, z) = 0.

But this inequality holds even if f is not differentiable in x. We have

f(x0(y, z), y, z
′) ≤ g(y, z′)

with equality at z = z′. Hence the z′ derivatives are equal at z = z′, i.e. the required result.
Depends on z being in the interior of the set over which f is defined and on f , g being differentiable
in z. Does not depend on any differentiability in x or y. □

Now, to prove the Pontryagin maximum principle we have to show that there is a p defined on
the optimal trajectory such that

(i) the optimal control u is the value maximising H.

(ii) ṗ = −∂H
∂x

on the optimal trajectory.

(ii) The boundary conditions hold.
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Define

F (ξ, τ) = sup

∫ T

τ
h(x, t, u) dt starting from x(τ) = ξ,

(subject to ẋ = f , u ∈ Uf (x, t) etc.) Then F (x(0), 0) is the required maximum. Assume f , f are
continuous in (x, t) and F is C1. We are going to show that p = Fx (i.e. pi = ∂F/∂xi) is the
required function.

From the point (x, t) one possible control is to hold u constant (some value in Uf (x, t)) for
small time δ, and then apply the optimal control from where you reach (x1, t + δ). Here x1 =
x+ f(x, t, u)δ + o(δ), so h(x, t, u)δ + o(δ) + F (x1, t+ δ) ≤ F (x, t). Subtract F (x, t), divide by δ
and let δ → 0:

h(x, t, u) + Fx(x, t)f(x, t, u) + Ft ≤ 0, (28)

for all u ∈ Uf (x, t). (i.e.

h(x, t, u) +
∑
i

∂F

∂xi
fi + Ft ≤ 0.

If we integrate this inequality along any feasible trajectory (optimal or not) we have∫ T

0
h(x, t, u) dt+ F (x(T ), T )− F (x(0), 0) ≤ 0,

i.e. ∫ T

0
h(x, t, u) dt ≤ F (x(0), 0).

(remember h ≥ 0.) This equation also clearly follows from the definition of F , since F (x(0), 0)
is the supremum of the left-hand side over all possible controls. However, this definition of F
means that there are controls that get arbitrarily close in this inequality. For simplicity, assume
equality is attained for some optimal control. Then, for the optimal trajectory, equality holds
in (28) for almost all t, and again for simplicity assume it holds everywhere. So (28) says

H0(x, t, u, Fx(x, t)) + Ft(x, t) ≤ 0,

for all u, with equality for the optimal trajectory. Hence the optimal control does maximise H0

for p = Fx [(i) is satisfied], and we also see that the maximised value is

H(x, t, Fx(x, t)) = −Ft(x, t). (29)

Now assume that H is C1 and F is C2. To derive the ṗ equation, first note that by (27)

H0(x, t, u0(x, t, p), p
′) ≤ H(x, t, p′),

with equality at p′ = p. Hence (by the previous Lemma) the p′-derivatives must agree at p, so

f(x, t, u0(x, t, p)) = Hp(x, t, p). (30)

Then the derivative of p along the optimal trajectory is

ṗ =
d

dt
(Fx(x, t)) = Fxt(x, t) + Fxxf(x, t, u0(x, t, Fx)).
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But by (29)

Fxt(x, t) = − ∂

∂x
(H(x, t, Fx))

= −Hx(x, t, Fx)−Hp(x, t, Fx)Fxx

= −Hx(x, t, Fx)− f(x, t, Fx)Fxx

by (30). So
ṗ = −Hx(x, t, Fx)

as required [(ii) is satisfied].

For the boundary conditions, note that if x(T ) is free then F (x, T ) ≡ 0 for all x, so p = ∂F/∂x = 0
at T . If T is free but x(T ) = xT is fixed, then F (xT , T ) ≡ 0, so

0 =
∂F

∂t

∣∣∣∣
T

= −H(T )

by (29). So (iii) is satisfied.

Note If max is replaced by min, all inequalities are reversed and the “proof” is still OK.
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